
SMC-2000 Multi-Axis Motion Controller

User’s Guide Version 3.1

SMC-2000 User's Guide Overview •••• 1

Overview

Introduction
The SMC-2000 Series are packaged motion controllers designed for stand-alone operation. Features include
coordinated motion profiling, uncommitted inputs and outputs, non-volatile memory for stand-alone operation
and RS232/RS422 communication. Extended performance capability includes: fast 8 MHz encoder input
frequency, precise 16-bit motor command output DAC, +/-2 billion counts total travel per move, faster sample
rate, and multitasking of up to four programs. The controllers provide increased performance and flexibility
featuring plug and play operation.

Designed for maximum system flexibility, the SMC-2000 is available in one, two, four, and eight axes
configurations.

Each axis accepts feedback from a quadrature linear or rotary encoder with input frequencies up to 8 million
quadrature counts per second. For dual-loop applications that require one encoder on both the motor and the
load, auxiliary encoder inputs are included for each axis.

The powerful controller provides several modes of motion including jogging, point-to-point positioning, linear
and circular interpolation with infinite vector feed, electronic gearing and user-defined path following. Several
motion parameters can be specified including acceleration and deceleration rates, and slew speed. To eliminate
jerk, the SMC-2000 provides S-curve profiling.

For synchronizing motion with external events, the SMC-2000 includes 8 optically isolated inputs, eight
programmable outputs and seven analog inputs (eight optional). I/O expansion boards provide additional inputs
and outputs. Event triggers can automatically check for elapsed time, distance and motion complete.

Despite its full range of sophisticated features, the SMC-2000 is easy to program. Instructions are represented
by two letter commands such as BG for Begin and SP for Speed. Conditional Instructions, Jump Statements,
and arithmetic functions are included for writing self-contained applications programs.

To prevent system damage during machine operation, the SMC-2000 provides several error handling features.
These include software and hardware limits, automatic shut-off on excessive error, abort input, and
user-definable error and limit routines.

SMC-2000 Functional Elements
The SMC-2000 circuitry can be divided into the following functional groups as shown in Figure 1.1 and
discussed below.

68340
Microcomputer
1024K RAM

256K EPROM
1024 EEPROM

I/O
Interface

4-Axes
Motor/Encoder

Interface

RS-232 / RS-422 Serial
Communication FIFO

80 Bytes

Watch Dog
Timer

8 24V Out

8 Digital In

8 Analog In

To Host

To Amps

From
Limits

From
Encoders

Figure 1.1 - SMC-2000 Functional Elements

Microcomputer Section
The main processing unit of the SMC-2000 is a specialized 32-bit Motorola 68340 Series Microcomputer with
256K RAM, 64 K EPROM and 128 K bytes EEPROM. The RAM provides memory for variables, array
elements, and application programs. The EPROM stores the firmware of the SMC-2000. The EEPROM allows
parameters and programs to be saved in non-volatile memory upon power down.

Motor Interface
For each axis, a sub-micron gate array performs quadrature decoding of the encoders at up to 8 MHz, generates
the +/-10 Volt analog signal (16-Bit D-to-A) for input to a servo amplifier. Interface to hardware limits and
home inputs is also included.

Communication
Communication to the SMC-2000 is via two separately addressable RS232 ports. The factory may also
configure the ports for RS422. The serial ports may be daisy-chained to other SMC-2000 controllers.

General I/O
The SMC-2000 provides interface circuitry for eight opto-isolated inputs, eight general outputs, and seven (or
eight) analog inputs (14-Bit ADC). The eight axis SMC-2000 provides 24 inputs and 16 outputs. Additional
I/O is optional.

SMC-2000 User's Guide Overview •••• 3

System Elements
As shown in Fig. 1.2, the SMC-2000 is part of a motion control system that includes amplifiers, motors, and
encoders. These elements are described below

Computer SMC-2000 Controller Driver

Power Supply

Encoder Motor

Figure 1.2 - Elements of Servo systems

Motor
A motor converts current into torque, which produces motion. Each axis of motion requires a motor sized
properly to move the load at the required speed and acceleration. (Yaskawa's "YSize" software can help you
with motor sizing).

The servo motor and can be brush-type or brushless, rotary or linear. Please refer to Yaskawa catalogs for more
information.

Amplifier
For each axis, the power amplifier converts the +/-10 Volt signal from the controller into enough current to drive
the motor. As such, the amplifier should be sized properly to meet the power requirements of the motor. For
brushless motors, an amplifier that provides electronic commutation is required. The amplifier should be set up
to operate in a torque control mode. Set the torque reference gain so that 10 Volts at the torque reference input
will allow the amplifier/motor to operate at peak torque (typically 200-300% of rated torque). See Yaskawa
technical manuals for specifications. Please call Yaskawa if you need help configuring your amplifier.

Encoder
An encoder translates motion into an electrical signal to be fed back into the controller. The SMC-2000 accepts
feedback from either a rotary or linear encoder. The preferred encoder is the one with two channels in
quadrature, CHA and CHB. This encoder may also have a third channel (or index) for synchronization. When
necessary, the SMC-2000 can interface to encoders with pulse and direction signals.

There is no limit on encoder line density, however, the input frequency to the controller must not exceed
2,000,000 full encoder cycles/second (8,000,000 quadrature counts/sec). For example, if the encoder line
density is 10000 cycles per inch, the maximum speed is 200 inches/second.

The encoder type may be either single-ended (CHA and CHB) or differential (CHA,CHA-,CHB,CHB-). The
SMC-2000 decodes either type into quadrature states or four times the number of cycles.

The standard voltage level is TTL (zero to five volts), however, voltage levels up to 12 Volts are acceptable. (If
using differential signals, 12 Volts can be input directly to the SMC-2000. Single-ended 12 Volt signals require
a bias voltage input to the complementary inputs)

SMC-2000 User's Guide Overview •••• 1

SMC-2000 User's Guide Getting Started •••• 1

Getting Started

Elements You Need
Before you start, you must get all the necessary system elements. These include:

1. SMC-2000 Series Controller

2. Servo motors and amplifiers

3. 24 Volt Class 2 Power Supply for SMC-2000 and Amplifiers

4. PC (Personal Computer with RS232 port) with at least 4MB of RAM and Windows 3.1 or higher.

5. Communication Disk (YTerm-2000 software) from Yaskawa

6. All interface and communication cables

Warning: Follow the “Tuning Servo System” procedure before applying power to the SMC
unit and the servo amplifier at the same time. Applying power to the SMC unit and the
amplifiers at the same time may result in damage to the mechanical system if the initial gain
parameters for the SMC unit are not properly set.

Installing the SMC-2000

Connecting AC and DC Power to the Controller
The SMC-2000 requires a single AC supply voltage, single phase, 50 Hz or 60 Hz, from 85 volts to 264 volts,
and a +24 (±10%) Volt Class 2 DC supply for I/O. It is also recommended that AC and DC wiring is kept
separate in order to avoid noise and interference.

Warning: Do NOT use the I/O 24 VDC power supply to power any holding brakes that may
be connected to your servo motors. Use a dedicated supply for that purpose.

Warning: Dangerous voltages, current, temperatures and energy levels exist in this product and in its
associated amplifier(s) and servo motor(s). Extreme caution should be exercised in the application of this
equipment. Only qualified individuals should attempt to install, set up and operate this equipment.

2 ••••Getting Started SMC-2000 User's Guide

The AC and DC power is applied to the power connector at the bottom of the front panel. The power connector
is a 6-pin black screw-type terminal. Note that the AC power is applied to the LEFT side while the DC power is
applied to the RIGHT. The five connections are:

Pin Connect to:
GND Earth Ground

N & L AC In, 85V - 264V

0 & 24V 24 Volt DC and Common

Warning: Never open the controller box when AC power is applied to it.

Applying AC power will turn on the green light power indicator.

Connecting Servo Motors and the Amplifiers
Before connecting the amplifier to the controller, you need to verify that the ground level of the amplifier is
either floating or at the same potential as earth.

WARNING: When the amplifier ground is not isolated from the power line or when it has a
different potential than that of the computer ground serious damage will result to the
computer controller and amplifier.

If you are not sure about the potential of the ground levels, connect the two ground signals by a 10 KΩ resistor
and measure the voltage across the resistor. Only if the voltage is zero, proceed to connect the two ground
signals directly.

Establishing Communication - RS232
Use the 9-Pin RS232 cable to connect the MAIN (Com 1) SMC-2000 serial port to your computer Com port.
Your computer must be configured for a baud rate setting of 19.2 KB, full duplex, no parity, 8 bits data, one
start bit, and one stop bit. The Yaskawa software “YTerm-2000” will accomplish this configuration.

At this point you should install YTerm-2000 software. This software requires the use of Windows 3.1 or above,
and at least 4M of RAM. The YTerm-2000 communication disk from Yaskawa provides a terminal emulator /
configuration program for your computer. Follow the steps below to install and run the terminal emulator.

Installation:

1. Insert Disk in drive A: (or B)

2. From Windows Program Manager or Start Menu, select <Run> command.

3. Run: A:\Setup (or B:\Setup)

4. After the Yaskawa group is created, make sure the SMC-2000 has AC power connected to it then
double-click the YTerm-2000 icon to start the program.

Encoder Interface
Encoder interface is part of the Yaskawa supplied cable that connects the SMC with the Yaskawa amplifier.

See the pinout for connector AE1 or AE2 for Auxiliary Encoder interface connection, found in the appendix.

SMC-2000 User's Guide Getting Started •••• 3

Tuning Servo System
Step 1. Setting servo(s) parameters

Yaskawa servo amplifier models SGD, SGDA, SGDB need to be set up to operate in a Torque Mode.

Parameter (SGD, SGDA) Function Setting
Cn-01, bit B , A Torque Control Mode Selection 1,0

Cn-13 Torque Reference Gain 30

Cn-01, bit 2,3 Limit Switch Disable 1,1

Parameter (SGDB) Function Setting
Cn-2B Torque Control Mode Selection 2

Cn-13 Torque Reference Gain 30

Cn-01, bit 2,3 Limit Switch Disable 1,1

NOTE: When using a motor with an absolute encoder please see the Absolute Encoder
section in chapter 12 for additional parameter settings.

Step 2. Applying Power to SMC unit and servos
Apply power to SMC-2000. Input the command MO (CR), this will shut off control of the SMC to the servo(s).

Apply power to the servo amplifier.

Step 3. Setting Gain values in SMC unit
Set gains to default values:

Command Function Default value for

 SG** servo
KD Derivative Constant 10

KP Proportional Constant 1

KI Integrator 0

Step 4. Enable Servo
In order to properly tune the servo system, enable one servo at a time with the SH* command (*=X, Y, Z, W,
E, F, G, H). After enabling a servo, maximize the gains.

Step 5. Maximize Gains
For more damping, you can increase KD (maximum is 4095). Increase gradually and stop after the motor
vibrates. A vibration is noticed by the audible sound or by interrogation. If you send the command

TE X (CR) Tell error

4 ••••Getting Started SMC-2000 User's Guide

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration. When
that is the case, simply reduce KD.

Next you need to increase the value of KP gradually (maximum allowed is 1023). You can monitor the
improvement in the response with the Tell Error instruction.

KP 10 (CR) Proportion gain

TE X (CR) Tell error

As the proportional gain is increased, the error decreases.

Here again, the system may vibrate if the gain is too high. When that is the case, reduce KP. Typically, KP
should not be greater than KD/4.

Finally, increase the value of KI, start with zero value and increase it gradually. The integrator eliminates the
position error, resulting in improved accuracy. Therefore, the response to the instruction

TE X (CR)

becomes zero. As KI is increased, its effect is amplified and it may lead to vibrations. When that occurs, simply
reduce KI.

After tuning one axis, disable the servo with the MO* command (*=X, Y, Z, W, E, F, G, H), and repeat the
tuning process for the remaining axes.

After each servo has been properly tuned, the values now need to be burned into the EEROM. This is done by
issuing the BN command. After the BN command has been issued the new values will remain effective.

Next, you are ready to try a few motion examples.

Motion Examples
Here are a few examples for using your controller.

Example 1- Profiled Move
Objective: Rotate the X-axis a distance of 10,000 counts at a slew speed of 20,000 counts/sec and an
acceleration and deceleration rates of 100,000 counts/s2.

Instruction Interpretation
PR 10000 Distance

SP 20000 Speed

DC 100000 Deceleration

AC 100000 Acceleration

BG X Start Motion

In response, the motor turns and stops.

Example 2 - Multiple Axes
Objective: To move four axes independently.

SMC-2000 User's Guide Getting Started •••• 5

Instruction Interpretation
PR 500,1000,600,-400 Distances of X,Y,Z,W

SP 10000,12000,20000,10000 Slew speeds of X,Y,Z,W

AC 100000,10000,100000,100000 Accelerations of X,Y,Z,W

DC 80000,40000,30000,50000 Decelerations of X,Y,Z,W

BG XZ Start X and Z motion

BG YW Start Y and W motion

Example 3 - Independent Moves
The motion parameters may be specified independently as illustrated below.

Instruction Interpretation
PR ,300,-600 Distances of Y and Z

SP ,2000 Slew speed of Y

DC,80000 Deceleration of Y

AC,100000 Acceleration of Y

SP ,,40000 Slew speed of Z

AC ,,100000 Acceleration of Z

DC ,,150000 Deceleration of Z

BG Z Start Z motion

BG Y Start Y motion

Example 4 - Position Interrogation
The position of all axes may be interrogated with the instruction

TP Tell position all axes

which returns all of the positions of the motors separated by commas.

Individual axis may be interrogated with the instructions:
TP X Tell position - X axis only

TP Y Tell position - Y axis only

TP Z Tell position - Z axis only

TP W Tell position - W axis only

TP E Tell position - E axis only (SMC-2000-8 only)

TP F Tell position - F axis only (SMC-2000-8 only)

TP G Tell position - G axis only (SMC-2000-8 only)

TP H Tell position - H axis only (SMC-2000-8 only)

The position error, which is the difference between the commanded position and the actual position, can be
interrogated by the instructions

6 ••••Getting Started SMC-2000 User's Guide

TE Tell error - all axes

TE X Tell error - X axis only

TE Y Tell error - Y axis only

TE Z Tell error - Z axis only

TE W Tell error - W axis only

Example 5- Absolute Position
Objective: Command motion by specifying the absolute position.

Instruction Interpretation
DP 0,2000 Define the current positions of X,Y as 0 and 2000

PA 7000,4000 Sets the desired absolute positions

BG X Start X motion

BG Y Start Y motion

After both motions are completed, command:
PA 0,0 Move to 0,0

BG XY Start both motions

Example 6 - Velocity Control

Objective: Drive the X and Y motors at specified speeds.

Instruction Interpretation
JG 10000,-20000 Set Jog Speeds and Directions

AC 100000, 40000 Set accelerations

DC 50000,50000 Set decelerations

BG XY Start motion

after a few seconds, command:
JG -40000 New X speed and Direction

TV X Returns X speed

and then
JG ,20000 New Y speed

TV Y Returns Y speed

These cause velocity changes, including direction reversal. The motion can be stopped with the instruction
ST Stop

SMC-2000 User's Guide Getting Started •••• 7

Example 7 - Operation under Torque Limit
The magnitude of the motor command may be limited independently by the instruction TL. The following
program illustrates that effect.

Instruction Interpretation
TL 0.2 Set output limit of X axis to 0.2 volts

JG 10000 Set X speed

BG X Start X motion

The X motor will probably not move as the output signal is not sufficient to overcome the friction. If the motion
starts, it can be stopped easily by the touch of a finger.

Increase the torque level gradually by instructions such as
TL 1.0 Increase torque limit to 1 volt.

TL 9.998 Increase torque limit to maximum, 9.998 Volts.

The maximum level of 10 volts provides the full output torque.

Example 8 - Interrogation
The values of the parameters may be interrogated. For example, the instruction

KP ? Return gain of X-axis.

returns the value of the proportional gain of the X axis. Similarly, the instruction
KP ,,? Return gain of Z-axis.

returns the value of the Z axis gain.
KP ?,?,?,? Return gains of all axes.

returns the gain values for the four axes.

The same procedure applies to other parameters such as KI, KD, FA, etc.

Example 9 - Operation in the Buffer Mode
The instructions may be buffered before execution as shown below.

PR 600000 Distance

SP 10000 Speed

WT 10000 Wait 10000 milliseconds before reading the next
instruction

BG X Start the motion

8 ••••Getting Started SMC-2000 User's Guide

Example 10 - Motion Programs
Motion programs may be edited and stored in memory using Yaskawa’s YTerm-2000 software. They may be
executed at a later time.

#A Define label

PR 700 Distance

SP 2000 Speed

BGX Start X motion

EN End program

Now the program may be executed with the command
XQ #A Start the program running

Example 11 - Motion Programs with Loops
Motion programs may include conditional jumps as shown below.

Instruction Interpretation
#A Label

DP 0 Define current position as zero

V1=1000 Set initial value of V1

#LOOP Label for loop

PA V1 Move X motor V1 counts

BG X Start X motion

AM X After X motion is complete

WT 500 Wait 500 ms

TP X Tell position X

V1=V1+1000 Increase the value of V1

JP #LOOP,V1<10001 Repeat if V1<10001

EN End

After the above program is entered and downloaded to the SMC-2000, use the following command to run the
program:

XQ #A Execute Program #A

Example 12 - Motion Programs with Trippoints
The motion programs may include trippoints as shown below.

Instruction Interpretation
#B Label

DP 0,0 Define initial positions

PR 30000,60000 Set targets

SP 5000,5000 Set speeds

SMC-2000 User's Guide Getting Started •••• 9

BGX Start X motion

AD 4000 Wait until X moved 4000

BGY Start Y motion

AP 6000 Wait until position X=6000

SP 2000,50000 Change speeds

AP ,50000 Wait until position Y=50000

SP ,10000 Change speed of Y

EN End program

To start the program, command:
XQ #B Execute Program #B

Example 13 - Control Variables
Objective: To show how control variables may be utilized.

Instruction Interpretation
#A;DP0 Label; Define current position as zero

PR 4000 Initial position

SP 2000 Set speed

BGX Move X

AMX Wait until move is complete

WT 500 Wait 500 ms

#B

V1 = _TPX Determine distance to zero

PR -V1/2 Command X move 1/2 the distance

BGX Start X motion

AMX After X moved

WT 500 Wait 500 ms

V1= Report the value of V1

JP #C, V1=0 Exit if position=0

JP #B Repeat otherwise

#C;EN End

To start the program, command
XQ #A Execute Program #A

This program moves X to an initial position of 1000 and returns it to zero on increments of half the distance.
Note that _TPX is an internal variable that returns the value of the X position. Internal variables may be
created by preceding a SMC-2000 instruction with an underscore, _.

Example 14 - Control Variables and Offset
Objective: Illustrate the use of variables in iterative loops and use of multiple instructions on one line.

10 ••••Getting Started SMC-2000 User's Guide

Instruction Interpretation
#A;KI0;DP0;V1=8 Set initial values

#B;OF V1;WT 200 Set offset value

V2=_TPX;JP #C,@ABS[V2]<2;V2= Exit if error small, report position

V1=V1-1;JP #B Decrease Offset

#C;EN End

This program starts with a large offset and gradually decreases its value, resulting in decreasing error.

Example 15 - Linear Interpolation
Objective: Move X,Y,Z motors distance of 7000,3000,6000, respectively, along linear trajectory. Namely,
motors start and stop together.

Instruction Interpretation
LM XYZ Specify linear interpolation axes

LI 7000,3000,6000 Relative distances for linear interpolation

LE Linear End

VS 6000 Vector speed

VA 20000 Vector acceleration

VD 20000 Vector deceleration

BGS Start motion

Example 16 - Circular Interpolation
Objective: Move the XY axes in circular mode to form the path shown on Fig. 2.3.

Instruction Interpretation
VM XY Select XY axes for circular interpolation

VP -4000,0 Linear segment

CR 2000,270,-180 Circular segment

VP 0,4000 Linear segment

CR 2000,90,-180 Circular segment

VS 1000 Vector speed

VA 50000 Vector acceleration

VD 50000 Vector deceleration

VE End vector sequence

BGS Start motion

SMC-2000 User's Guide Getting Started •••• 11

X

Y

R=2000

Figure 2-3 - Motion Path for Example 16

SMC-2000 User's Guide Hardware Interface •••• 1

Hardware Interface

Cable Shielding, Segregation and Noise Immunity

Yaskawa recommends the following shielding and wiring precautions to maximize the performance of the SMC-
2000:

a) Signal cables (encoder, communication, I/O) should be routed away from AC power/signal wiring such
as motor power and amplifier power wiring

b) Separate metal conduit should be used for running signal and power wiring from the enclosure

c) Parallel runs of signal and power wiring should be avoided. If unavoidable, parallel runs should be in a
separate wire-way spaced at least 2 inches apart.

d) Signal and power wires should cross at right angles.

e) Shielded cables should be properly terminated by grounding the shielding conductor at one end only.

f) The shield should continue throughout the cable from device to device. The shield should be
continuous across plugs/receptacles and terminal blocks, or the shields may be grounded separately by
grounding one end and tying the shield back at the other (See Fig. 3-1a).

 DO NOT ground shields at both ends as this can create ground loops (See Fig. 3-2a).

 DO NOT allow the shield to remain ungrounded, this causes the shield to actually pick up and transmit
noise.

 To improve noise immunity, all inductive loads (Brakes, Relay Coils, etc.) should have a flyback diode
connected across them to absorb and back EMF produced by that load. The flyback diode should be placed as
close to the load as possible (See Fig. 3.2a).

2 •••• Hardware Interface SMC-2000 User's Guide

Proper Shield Terminations

 Figure 3-1 – Proper shield terminations

Improper Shield Terminations

Figure 3-2 – Improper shield terminations

 SMC 2000 D1 or
I/O Connector Case

Terminal Block Shields tied
back at device

PROPER
Shield tied back at

terminal block.

b)

SMC 2000 D1 or I/O
Connector Case

Terminal Block

PROPER
Shield connected across
terminal block.

Shields tied
back at device

a)

PROPER
Shields of field

cables grounded at
one point

 SMC 2000 D1 or
I/O Connector Case

Terminal Block Shields tied
back at device

b)

SMC 2000 D1 or I/O
Connector Case

Terminal Block

WRONG
Shield grounded at

more than one point.

Shields tied
back at device

a)

WRONG
Shields of field

cables ungrounded

SMC-2000 User's Guide Hardware Interface •••• 3

Encoder Interface
For each axis of motion, the SMC-2000 accepts inputs from incremental encoders with two channels in
quadrature, or 90 electrical degrees out of phase. The SMC-2000 performs quadrature decoding of the two
signals, resulting in bi-directional position information with a resolution of four times the number of full encoder
cycles. For example, a 500 cycle encoder is decoded into 2000 quadrature counts per revolution. An optional
third channel or index pulse may be used for homing or synchronization. Several types of incremental encoders
may be used: linear or rotary, analog or digital, single-ended or differential. Any line resolution may be used,
the only limitation being that the encoder input frequency must not exceed 2,000,000 full cycles/sec (or
8,000,000 quadrature counts/sec). The SMC-2000 also accepts inputs from an additional encoder for each axis.
These are called auxiliary encoders and can be used for dual-loop applications.

The encoder inputs are not isolated.

Connections for the various types of encoders are described below.

Pin # of X, Y, ... Signal
1 Channel B

2 Channel B complementary

3 Channel A

4 Channel A complementary

5 Index

6 Index complementary

Use the above table to connect the signals as needed. For example, when connecting an encoder with Channels
A, B single ended, use pins 1 and 3, and ignore 2 and 4-6.

In a similar manner, the auxiliary encoders may be connected by using the pin-out for connector AE1 or AE2
found in the appendix.

The SMC-2000 can interface to incremental encoders of the pulse and direction type, instead of two channels in
quadrature. In that case, replace Channel A by the pulse signal, and Channel B by the direction, and use the CE
command to configure the SMC-2000 for pulse and direction encoder format. For pulse and direction format,
the SMC-2000 provides a resolution of 1X counts per pulse.

Note that while TTL level signals are common, the SMC-2000 encoder inputs accept signals in the range of +/-
12V. If you are using a non-TTL single-ended encoder signal (no complement), to assure proper bias, connect a
voltage equal to the average signal to the complementary input. For example, if Channel A varies between 2 and
12V, connect 7 volts to Channel A complement input.

Opto-isolated Inputs
The SMC-2000 provides opto-isolated digital inputs for limit, home, abort, and the uncommitted inputs. All
inputs have the same common ground and are sinking inputs.

If nothing is connected to the inputs, no current flows, resulting in a logic one. A logic zero is generated when
at least 1 mA of current flows through the input.

The 8-Axis SMC provides 16 isolated inputs and 8 additional TTL inputs.

4 •••• Hardware Interface SMC-2000 User's Guide

SMC

I/O SWITCH

0 V

0 V
+24
VDC

SWITCH

Figure 3-3 - Digital input diagram

Outputs
The SMC-2000 provides several output signals including eight general outputs, and four amplifier enable signals
AEN. All the output signals are 24 volts and are sinking outputs. The maximum current draw is 600 mA per
point, and a total of 800 mA per group of eight i.e. outputs 1-8, 9-16 ... The 8-Axis SMC provides an additional
eight outputs.

WARNING: All inductive loads (Brakes, Relay Coils,...) should have a flyback diode
connected across them to absorb any back EMF produced by that load. The flyback diode
should be placed as close to the load as possible.

SMC

I/O
LOAD

+24
VDC

LOAD
+24
VDC

0 V

Figure 3-4 - Digital output diagram

Analog Inputs
The SMC-2000 has seven analog inputs configured for the range between -10V and 10V. The inputs are
decoded by a 14-bit A/D decoder. The impedance of these inputs is 10 KΩ.

SMC-2000 User's Guide Hardware Interface •••• 5

Amplifier Interface
The SMC-2000 generates +/-10 Volt range analog signal, ACMD, and ground for each axis. This signal is input
to power amplifiers which have been sized to drive the motors and load. For best performance, the amplifiers
should be configured for a current mode of operation with no additional compensation. The gain should be set
such that a 10 Volt input results in the maximum required current.

The SMC-2000 also provides an AEN, amplifier enable signal, to control the status of the amplifier. This signal
toggles when the watchdog timer activates, when a motor-off command is given, or when OE1 (Off-on-error is
enabled) command is given and the position error exceeds the error limit. As shown in Figure 3-3, AEN can be
used to disable the amplifier for these conditions.

The standard configuration of the AEN signal is 24 VDC active low.

SMC-2000 AMP

ACMD
AEN
GND

INPUT
ENABLE

GND

Figure 3-5 - Connecting AEN to an amplifier

Motors with Brakes
A separate 24 VDC power supply should be used to power the brakes because holding brakes typically generate
large power spikes when they are de-energized.

Severe damage may result when connecting the same power supply to the SMC and the
brake!
Yaskawa recommends that all inductive loads have a diode across them to absorb back EMF.

Step Motors
To connect step motors to the SMC 2000 you must follow this procedure:

1. For each axis that is a stepper, a jumper wire is necessary between ground pin 23 on the AE1 or AE2
connector and the axis stepper mode jumper pin on the AE connector. Newer controllers already have this
jumper wire installed during assembly.

2. Connect step and direction signals from the axis connector pins with the labels, STEP (pin 12) and
SEN/DIR (pin 13) to respective signals on your step motor amplifier. The signals are 5V TTL level.
Consult the documentation for your step motor amplifier.

3. Configure the SMC 2000 for motor type using the MT command. You can configure the SMC 2000 for
active high or active low pulses. Use the command MT 2 for active high step motor pulses and MT -2 for
active low step motor pulses. See the Commands section of this manual for details.

6 •••• Hardware Interface SMC-2000 User's Guide

The pulse output signal has a 50% duty cycle. Step motors operate open loop and do not require encoder
feedback. When a stepper is used, the auxiliary encoder for the corresponding axis is unavailable for an external
connection. If an encoder is used for position feedback, connect the encoder to the main encoder input
corresponding to that axis. The commanded position of the stepper can be interrogated with RP or DE. The
encoder position can be interrogated with TP.

The frequency of the step motor pulses can be smoothed with the filter parameter, KS. The KS parameter has a
range between 1 and 16, where 16 implies the largest amount of smoothing.

The SMC 2000 profiler commands the step motor amplifier. All SMC 2000 motion commands apply such as
PR, PA, VP, CR and JG. The acceleration, acceleration, slew speed, and S-curve filtering are also used.
However, since step motors run open loop, the PID filter does not function and the position error is not
generated.

When configured for stepper motor operation, the SMC 2000 can accept encoder signals into the main encoder
inputs. This is useful for monitoring encoder position to insure that encoder position is consistent with
commanded position.

Note: When configured for step motors, the encoder inputs can not be used for closed loop position control and
the auxiliary encoder inputs are not available.

SMC-2000 User's Guide Communication - RS232 •••• 1

Communication - RS232

RS232 Ports
The SMC-2000 has two RS232 ports. The main port can be configured by the factory, and the auxiliary port
can be configured with the software command CC. The auxiliary port can either be configured as a general port
or for the daisy-chain communications. The auxiliary port configuration can be saved using the Burn (BN)
instruction. The RS232 ports also have a clock synchronizing line that allows synchronization of motion on
more than one controller.

The RS232 pin-out description for the main and auxiliary port is given below. Note, the auxiliary port is
essentially the same as the main port except inputs and outputs are reversed. The SMC-2000 may also be
configured by the factory for RS422. These pin-outs are also listed below.

RS232 - Main Port {COM 1}

1 CTS (-) output 6 CTS (-) output

2 Transmit Data (-) output 7 RTS (-) input

3 Receive Data (-) input 8 CTS (-) output

4 RTS (-) input 9 No connect - or - (5V or sample clock with jumpers)

5 Ground

RS232 - Auxiliary Port {COM 2}

1 CTS (-) input 6 CTS (-) input

2 Transmit Data (-) input 7 RTS (-) output

3 Receive Data (-) output 8 CTS (-) input

4 RTS (-) output 9 5V - or - (no connect or sample clock with jumpers)

5 Ground

2 •••• Communication - RS232 SMC-2000 User's Guide

*RS422 - Main Port {COM 1}

1 CTS (-) output 6 CTS (+) output

2 Transmit Data (-) output 7 Transmit Data (+) output

3 Receive Data (-) input 8 Receive Data (+) input

4 RTS (-) input 9 RTS (+) input

5 Ground

*RS422 - Auxiliary Port {COM 2}

1 CTS (-) input 6 CTS (+) input

2 Transmit Data (-) input 7 Transmit Data (+) input

3 Receive Data (-) output 8 Receive Data (+) output

4 RTS (-) output 9 RTS (+) output

5 Ground

*Configured for RS422 by factory

Configuration
Configure your PC for 8-bit data, one start-bit, one stop-bit, full duplex and no parity. The baud rate for the
RS232 communication is 19.2 K baud. A lower baud rate may be configured at the factory.

The RS232 main port is configured for handshake mode. In this mode, the RTS and CTS lines are used. The
CTS line will go high whenever the SMC-2000 is not ready to receive additional characters. The RTS line will
inhibit the SMC-2000 from sending additional characters. Note the RTS line goes high for inhibit.

The auxiliary port of the SMC-2000 can be configured either as a general port or for the daisy chain. When
configured as a general port, the port can be commanded to send ASCII messages to another SMC-2000
controller or to a display terminal or panel.

(Configure Communication) at port 2. The command is in the format of:

CC m,n,r,p

where m sets the baud rate, n sets for either handshake or non-handshake mode, r sets for general port or the
auxiliary port, and p turns echo on or off.

m - Baud Rate - 300,1200,4800,9600,19200,38400

n - Handshake - 0=No; 1=Yes

r - Mode - 0=General Port; 1=Daisy-chain

p - Echo - 0=Off; 1=On; Valid only if r=0

Note, for the handshake of the auxiliary port, the roles for the RTS and CTS lines are reversed.

Example:

SMC-2000 User's Guide Communication - RS232 •••• 3

CC 1200,0,0,1

Configure communication at port 2, with 1200 baud, no
handshake, general port and echo turned on.

Daisy-Chaining
Up to eight SMC-2000 controllers may be connected in a daisy chain. The daisy-chain connection is
straightforward. One SMC-2000 is connected to the host terminal via the RS232 at port 1, or the main port.
Port 2, or the auxiliary port, of that SMC-2000 is then brought into port 1 of the next SMC-2000, and so on.
The default address of the SMC-2000 is zero, if another address is required each of the SMC-2000’s must be
configured by the factory. Please contact Yaskawa if your application requires daisy-chaining.

To communicate with any one of the SMC-2000s, give the command of %A, where A is the address of the SMC
that you want to communicate with. All instructions following this command will be sent only to the SMC with
that address. Only when a new %A command is given will the instruction be sent to another SMC. The only
exception is "!" command. To talk to all the SMC-2000s in the daisy-chain at one time, insert the character "!"
before the software command. All SMCs receive the command, but only address 0 will echo.

Note: The CC command must be specified to configure the port {P2} of each unit.

Example:
Problem: 6-axis motion system. Address 0 is a 4-axis
SMC-2000-4. A 2-axis SMC-2000-2 is set for Address 1.

Required Motion:

Address 0 X Axis is 500 counts
Y Axis is 1000 counts
Z Axis is 2000 counts
W Axis is 1500 counts

Address 1 X Axis is 700 counts
Y Axis is 1500 counts

Software Command Interpretation
%0 Talk only to controller 0 (SMC-2000-4)

PR 500,1000,2000,1500 Specify X,Y,Z,W distances

%1 Talk only to controller 1 (SMC-2000-2)

PR 700,1500 Specify X,Y distances

!BG Begin motion on both controllers

Synchronizing Sample Clocks
It is possible to synchronize the sample clocks of all SMC-2000's in the daisy chain. This involves burning in
the command, TM-1, in all SMC-2000's except for one SMC-2000, which will be the source. If it is necessary
to synchronize the sample clocks please contact Yaskawa.

Operator Interface
To program an operator interface you need to select a port (either 1 or 2), If you select port 2 it must be
configured by using the Configure Communication (CC) command as shown on page 26. You must also decide
if the port will be a general port or an operator data entry port. NOTE: configuring a port as an operator data

4 •••• Communication - RS232 SMC-2000 User's Guide

entry port will disable ALL commands sent to that port, see Operator Data Entry Mode in chapter 7 for a
complete description. All serial commands, such as message (MG) or input variable (IN) default to port 1. To
assign serial commands to port 2, you must follow the command with a “{P2}” such as:

IN {P2} “Enter a value”,VALUE

Which will send out the prompt “Enter a value” to port 2, then wait until a return or semi-colon is sent out port
2, and assign the value of the preceding characters to the variable VALUE.

Controller Response to Data
Most SMC-2000 instructions are represented by two characters followed by the appropriate parameters. Each
instruction must be terminated by a carriage return or semicolon.

Instructions are sent in ASCII, and the SMC-2000 decodes each ASCII character (one byte) one at a time. It
takes approximately .5 msec for the controller to decode each command.

After the instruction is decoded, the SMC-2000 returns a colon (:) if the instruction was valid or a question mark
(?) if the instruction was not valid or was not recognized.

For instructions requiring data, such at Tell Position (TP), the SMC-2000 will return the data followed by a
carriage return, line feed and : .

It is good practice to check for : after each command is sent to prevent errors. An echo function is provided to
enable associating the SMC-2000 response with the data sent. The echo is enabled by sending the command EO
1 to the controller.

SMC-2000 User's Guide Communication - RS232 •••• 21

SMC-2000 User's Guide Programming Basics •••• 1

Programming Basics

Introduction
The SMC-2000 provides over 100 commands for specifying motion and machine parameters. Commands are
included to initiate action, interrogate status and configure the digital filter.

The SMC-2000 instruction set is BASIC-like and easy to use. Instructions consist of two uppercase letters that
correspond phonetically with the appropriate function. For example, the instruction BG begins motion, and ST
stops the motion.

Commands can be sent "live" for immediate execution by the SMC-2000, or an entire group of commands can
be downloaded into the SMC-2000 memory for execution at a later time. Combining commands into groups for
later execution is referred to as Applications Programming and is discussed in the following chapter.

This section describes the SMC-2000 instruction set and syntax. A complete listing of all SMC-2000
instructions is included in the command reference section.

Command Syntax
SMC-2000 instructions are represented by two ASCII upper case characters followed by applicable arguments.
A space may be inserted between the instruction and arguments. A semicolon or <enter> is used to terminate
the instruction for processing by the SMC-2000 command interpreter.

IMPORTANT: All SMC-2000 commands are sent in upper case.

 For example, the command

PR 4000 <enter> Position relative

PR is the two character instruction for position relative. 4000 is the argument which represents the required
position value in counts. The <enter> terminates the instruction. The space between PR and 4000 is optional.

For specifying data for the X,Y,Z and W axes, commas are used to separate the axes and preserve axis order as
X,Y,Z and W. If no data is specified for an axis, a comma is still needed as shown in the examples below. If no
data is specified for an axis, the previous value is maintained. The space between the data and instruction is
optional. For the SMC-2000-8, the eight axes are referred to A,B,C,D,E,F,G,H where X,Y,Z,W and A,B,C,D
may be used interchangeably.

To view the current values for each command, specify the command followed by a ? for each axis requested.
The SMC-2000 provides an alternative method for specifying data.

 •••• Programming Basics SMC-2000 User’s Guide 2

Here data is specified individually using a single axis specified such as X,Y,Z or W (or A,B,C,D,E,F,G or H for
the SMC-2000-8). An equals sign is used to assign data to that axis. For example:

PRZ=1000 Sets the Z axis data as 1000

All axes data may be specified at once using the * symbol. This sets all axes to have the same data. For
example:

PR*=1000 Sets all axes to 1000

Example XYZW Syntax for Specifying Data

PR*=1000 Specify data on all axes as 1000

PRY=1000 Specify Y as 1000

PR 1000 Specify X only as 1000

PR ,2000 Specify Y only as 2000

PR ,,3000 Specify Z only as 3000

PR ,,,4000 Specify W only as 4000

PR 2000,4000,6000,8000 Specify X,Y,Z, and W

PR ,8000,,9000 Specify Y and W only

PR*=? Request X,Y,Z,W values

PR ,? Request Y value only

For SMC-2000-8 only:

PR,,,,,,8000 Specify G axis data as 8000

PRG=8000 Alternative method for specifying G data

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST XY stops
motion on both the X and Y axes. Commas are not required in this case since the particular axis is specified by
the appropriate letter X Y Z or W. If no parameters follow the instruction, action will take place on all axes.
The letter S is used to specify a coordinated motion sequence. For the SMC-2000-8, the eight axes are
commanded with ABCDEFGH or XYZWEFGH where XYZW is used interchangeably with ABCD.

Example XYZW syntax for Requesting Action:

BG X Begin X only

BG Y Begin Y only

BG XYZW Begin all axes

BG YW Begin Y and W only

BG Begin all axes

BG S Begin coordinated sequence

BG SW Begin coordinated sequence and W axis

SMC-2000 User's Guide Programming Basics •••• 3

For the SMC-2000-8 only:

BG ABCDEFGH Begin all axes

BG D Begin D only

Controller Response to Commands
For each valid command entered, the SMC-2000 returns a colon (:). If the SMC-2000 decodes a command as
invalid, it returns a question mark (?).

Note:

The SMC-2000 returns a : for valid commands.

The SMC-2000 returns a ? for invalid commands.

For example, if the command BG is sent in lower case, the SMC-2000 will return a ?.

:bg <enter> invalid command, lower case

? SMC-2000 returns a ?

The command Tell Code, TC1, will return the reason for the ? received for the last invalid command.

:TC1 <enter> Tell Code command

1 Unrecognized command Returned response

There are several coded reasons for receiving a ?. Example codes include unrecognized command (such as
typographical entry or lower case), a command given at improper time, or a command out of range, such as
exceeding maximum speed. A complete listing of all codes is listed in the TC command in the Command
Reference section.

For interrogation instructions such as Tell Position (TP) or Tell Status (TS), the SMC-2000 returns the
requested data on the next line followed by a carriage return and line feed. The data returned is in decimal
format.

Tell Position X :TP X <enter>

data returned 0000000000

Tell Position X and Y :TP XY <enter>

data returned 0000000000,0000000000

The format of the returned data can be set using the Position Format (PF) and Variable Format (VF) command.

:PF 4 <enter> Position Format is 4 integers

:TP X <enter> Tell Position

 •••• Programming Basics SMC-2000 User’s Guide 4

0000 returned data

Command Summary
Each SMC-2000 command is described fully in the command reference section at the end of this manual. A
summary of the commands follows.

The commands are grouped in this summary by the following functional categories:

• Motion

• Program Flow

• General Configuration

• Control Settings

• Status and Error/Limits.

Motion commands are those to specify modes of motion such as Jog Mode or Linear Interpolation, and to
specify motion parameters such as speed, acceleration and deceleration, and distance.

Program flow commands are used in Application Programming to control the program sequencer. They include
the jump on condition command and event triggers such as after position and after elapsed time.

General configuration commands are used to set controller configurations such as setting and clearing outputs,
formatting variables, and motor/encoder type.

The control setting commands include filter settings such as KP, KD, and KI and sample time.

Error/Limit commands are used to configure software limits and position error limits.

SMC-2000 User's Guide Programming Basics •••• 5

Motion

AB Abort Motion

AC Acceleration

BG Begin Motion

CD Contour Data

CM Contour Mode

CR Circle

CS Clear Motion Sequence

DC Deceleration

DT Contour Time Interval

EA Select Master CAM axis

EB Enable CAM mode

EG Start CAM motion for slaves

EM Define CAM cycles for each axis

EP Define CAM table intervals & start point

EQ Stop CAM motion for slaves

ES Ellipse Scaling

ET CAM table entries for slave axes

FE Find Edge

FI Find Index

GA Master Axis for Gearing

GR Gear Ratio

HM Home

IP Increment Position

JG Jog Mode

LE Linear Interpolation End

LI Linear Interpolation Distance

LM Linear Interpolation mode

LT Latch Target

PA Position Absolute

PR Position Relative

SP Speed

ST Stop

TN Tangent

VA Vector acceleration

VD Vector Deceleration

VE Vector Sequence End

VM Coordinated Motion Mode

VP Vector Position

VR Vector speed ratio

 •••• Programming Basics SMC-2000 User’s Guide 6

AB Abort Motion

VS Vector Speed

Program Flow

AD After Distance

AI After Input

AM After Motion Complete

AP After Absolute Position

AR After Relative Distance

AS At Speed

AT After Time

AV After Vector Distance

EN End Program

HX Halt Task

IN Input Variable

II Input Interrupt

JP Jump To Program Location

JS Jump To Subroutine

MC After motor is in position

MF After motion -- forward direction

MG Message

MR After motion -- reverse direction

NO No operation

RE Return from Error Subroutine

RI Return from Interrupt

TW Timeout for in position

WC Wait for Contour Data

WT Wait

XQ Execute Program

ZS Zero Subroutine Stack

General Configuration

AE Absolute Encoder

AF Analog Feedback

AL Arm Latch

BN Burn

BP Burn Program

SMC-2000 User's Guide Programming Basics •••• 7

BV Burn Variables

CB Clear Bit

CC Configure Communications Port 2

CE Configure Encoder Type

CN Configure Switches and Stepper

DA De-Allocate Arrays

DE Define Dual Encoder Position

DL Download

DM Dimension Arrays

DP Define Position

EO Echo Off

LS List

MO Motor Off

MT Motor Type Define

OB Output Bit

OP Output Port

PF Position Format

QU Upload Array

QD Download Array

RA Record Array

RC Record

RD Record Data

RI Interrupt Mask

RS Reset

SB Set Bit

UL Upload

VF Variable Format

 •••• Programming Basics SMC-2000 User’s Guide 8

Control Filter Settings

DV Damping for dual loop

FA Acceleration Feed Forward

FV Velocity Feed Forward

GN Gain

IL Integrator Limit

IT Smoothing Time Constant - Independent

KD Derivative Constant

KI Integrator Constant

KP Proportional Constant

OF Offset

SH Servo Here

TL Torque Limit

TM Sample Time

VT Smoothing Time Constant - Vector

ZR Zero

Status

QY Query Yaskawa Encoder

RP Report Command Position

RL Report Latch

SC Stop Code

TB Tell Status

TC Tell Error Code

TD Tell Dual Encoder

TE Tell Error

TI Tell Input

TP Tell Position

TR Trace

TS Tell Switches

TT Tell Torque

TV Tell Velocity

TY Tell Yaskawa Encoder

Error And Limits

BL Reverse Software Limit

ER Error Limit

SMC-2000 User's Guide Programming Basics •••• 9

FL Forward Software Limit

OE Off on Error

Arithmetic Functions

@SIN Sine

@COS Cosine

@ABS Absolute value

@ASIN Arc Sine

@ACOS Arc Cosine

@FRAC Fraction portion

@INT Integer portion

@RND Round

@SQR Square root

@COM Return 2’s Complement

@IN Return digital input

@AN Return analog input

+ Add

- Subtract

* Multiply

/ Divide

& And

| Or

() Parentheses

 •••• Programming Basics SMC-2000 User’s Guide 10

Instruction Set Examples
Below are some examples of simple instructions. It is assumed your system is hooked-up and the motors are
under stable servo control. Note, the colon (:) is returned by the controller and appears on the screen. You do
not need to type the :.

:DP*=0 <enter> Define all axis positions as 0

:PF 6,6,6,6 <enter> Define position format as 6 digits

:PR 100,200,300,400 <enter> Specify X,Y,Z,W position command

:BG <enter> Begin Motion

:TP <enter> Tell Position

00100,00200,00300,00400 Returned Position data

:PR?,?,?,? <enter> Request Position Command

 00100,00200,00300,00400 Returned data

:BGX <enter> Begin X axis only

:TPX <enter> Tell X position only

00200 Returned position data

:tpx <enter> Enter invalid command

? TC1 <enter> Controller response - Request error code

1 Unrecognized command Controller response

:VM XY <enter> Specify Vector Mode for XY

:VS 10000 <enter> Specify Vector Speed

:VP 2000,3000 <enter> Specify Vector Segment

:VP 4000,5000 <enter> Specify Vector

:LE <enter> Segment End Vector

:BGS <enter> Begin Coordinated Sequence

:TPXY <enter> Tell X and Y position

 004200,005200 Returned data

SMC-2000 User's Guide Programming Basics •••• 11

 C
om

m
and Interrogation List

C
om

m
and Firm

w
are D

efinition
units

m
in

m
ax

default
_AB

2.0g
Status of abort input

status
0=Aborted

1=O
K

n/a
_AC

x
all

Axis acceleration rate
counts/sec

2
1024

67107840
256000

_AEx
D

150n19h &
up

The last absolute encoder axis that w
as read

axis 0,1,2 =
X,Y,Z

0
7

n/a

_AFx
all

Analog or digital feedback?
status

0=D
IG

ITAL
1=AN

ALO
G

0

_ALx
all

H
igh speed position capture status

status
0=TR

IPPED

1=N
O

T YET
0

_AV
all

D
istance from

 the start of vector sequence
counts

0
2147483647

0
_BG

x
all

Is axis in m
otion?

status
0=N

O

1=YES
n/a

_BLx
all

R
everse softw

are lim
it

counts
-2147483648

2147483647
-2147483648

_BN

all
Serial num

ber of the SM
C

2000
n/a

n/a
_BV

all
Size of the EEPR

O
M

bytes

1 m
egabyte

4 m
egabyte

n/a
_C

Ex
all

Type of encoder selected
configuratio
n

0
15

0

_C
M

all

Is the contour m
ode buffer full?

status
0=N

O

1=YES
0

_C
S

all
C

urrent segm
ent num

ber for Vector M
ode

n/a
0

511
n/a

_C
W

all

Port #1 data adjustm
ent (M

G
 from

 program
,

characters have bit 8 set)
status

1=SET
2=O

FF
2

_D
A

all
N

um
ber of available arrays

n/a
0

30
30

_D
C

x
all

Axis deceleration rate
counts/sec

2
1024

67107840
256000

_D
Ex

all
Encoder position of the auxiliary encoder

counts
-2147483648

2147483647
n/a

_D
L

all
N

um
ber of available labels

n/a
0

254
254

_D
M

all

N
um

ber of available array locations
n/a

0
8000

8000
_D

Px
all

C
urrent encoder position of axis

counts
-2147483648

2147483647
n/a

_D
T

all
Tim

e interval for contour m
ode

2
N m

Sec
0

8
0

_D
Vx

all
Is the axis using dual loop PID

?
status

0=N
O

1=YES

0
_EB

all
Is C

AM
 m

ode enabled?
status

0=N
O

1=YES

0
_ED

all

The last line that caused a C
M

D
ER

R

line num
ber

0
999

n/a
_EG

x
all

Is C
AM

M
IN

G
 axis engaged?

status
0=N

O

1=YES
0

_EM
x

all
C

am
 cycle for cam

m
ing (m

aster or slave)
counts

0
2147483647

0
_EO

all

Is echo m
ode on?

status
0=N

O

1=YES
1

_EP
all

C
AM

M
IN

G
 interval (resolution)

counts
1

32767
256

_EQ
x

all
Status of EC

AM
 slave

status
0

3
0

_ER
x

all
Axis follow

ing error lim
it (2.0g firm

w
are for Erx=0

to disable)
counts

0
32767

16384

 _ES
all

Ellipse scale ratio
n/a

0.0001
1

1
_FAx

all
Axis acceleration feed forw

ard
constant

0
8191

0
_FLx

all
Forw

ard softw
are lim

it
counts

-2147483648
2147483647

2147483647
_FVx

all
Axis velocity feed forw

ard
constant

0
8191

0
_G

R
x

all
G

ear ratio of the axis
constant

-127.9999
127.9999

0
_H

M
x

all
State of the hom

e sw
itch

status
0=AC

TIVE
1=IN

AC
TIVE

n/a
_H

Xx
all

Thread info
0=N

O
T

R
U

N
N

IN
G

1=R

U
N

N
IN

G

2=AT
TR

IPPO
IN

T
n/a

ID

D
150n19h &

up
The part num

ber of an SM
C

-2000

n/a

_ILx
all

Integrator lim
it of the axis

voltage
-9.9988

9.9988
9.9988

_IPX
all

C
urrent encoder position of axis

counts
-2147483648

2147483647
n/a

_ITx
all

S curve sm
oothing function value

constant
0.004

1
1

_JG
x

all
Jog speed for that axis

counts/sec
0

8000000
25000

_KD
x

all
D

erivative C
onstant for PID

 loop
constant

0
4095.875

64 / 10
_KIx

all
Integrator for PID

 loop
constant

0
2047.875

0 / 0
_KPx

all
Proportional C

onstant for PID
 loop

constant
0

1023.875
6 / 1

_LE
all

Length of the vector
counts

0
2147483647

0
_LFx

all
Forw

ard Lim
it Sw

itch
status

0=AC
TIVE

1=IN
AC

TIVE
n/a

_LM

all
N

um
ber of free locations in linear m

ode buffer
n/a

0
511

n/a
_LR

x
all

R
everse Lim

it Sw
itch

status
0=AC

TIVE
1=IN

AC
TIVE

n/a
_LS

all
N

ext line that w
ill be executed after current

subroutine ends
line num

ber
0

999
n/a

_LTx
D

150n19j &
up

D
istance until stop after a registration m

ark
counts

1
2147483647

??

_LZ
v2.0 & up

Serial port leading zero rem
oval

status
0=O

FF
1=O

N

0
_M

O
x

all
C

urrent state of m
otor, enabled or not

status
0=EN

ABLED

1=D
ISABLED

0 / 1

_M
Tx

all
Type of m

otor
configuratio
n

-2.5
2.5

1

_O
Ex

all
Indicates if servo enable signal w

ill shut off if
"_ER

X" is exceeded
status

0=N
O

1=YES

0

_O
Fx

all
Axis com

m
and offset

voltage
-9.9988

9.9988
0

_O
Px

all
Entire byte or w

ord of output port (x = output bank
0-3)

byte or w
ord

0
65535

0

PxC
D

all

Status code of serial port (x = 1 or 2)
status

-1
3

n/a
PxC

H

all
The last character received from

 serial port (x = 1
or 2)

character
0

255
n/a

PxN
M

all

The last num
ber received from

 serial port (x=1 or
2)

num
ber

-2147483648
2147483647

n/a

PxST
all

The last string received from
 serialport (x = 1 or

string

6 chars m
ax

n/a

2)
_PAx

all
Last com

m
anded absolute position if m

oving,
otherw

ise current position
counts

-2147483648
2147483647

0

_PF
all

Encoder position form
at

digits before
& after

-8.4
10.4

10.4

_PR
x

all
C

urrent increm
ental distance to m

ove (Even if
m

ove set by PA)
counts

-2147483648
2147483647

0

Q
Y

D
150n19h &

up
The last ASC

II string received from
 an absolute

encoder
string

6 chars m

ax
n/a

_R
C

all

Status of record m
ode

status
0= N

O
T

R
EC

O
R

D
IN

G
1=R

EC
O

R
D

IN
G

0

_R
D

all

Array index that record m
ode w

ill use next
index

0
7999

0
_R

Lx
all

Encoder value of last latched position
counts

-2147483648
2147483647

0
_R

Px
all

C
urrent com

m
anded position of the m

otor
counts

-2147483648
2147483647

0
_SC

x
all

The Stop C
ode of the axis

code
0

150
1

_SPx
all

Speed param
eter of the axis

counts/sec
0

8000000
25000

_TB
all

Status inform
ation from

 controller
byte

0
255

1
_TC

1
all

Error code and m
essage from

 controller
num

ber
0

150
0

_TD
x

all
C

urrent auxiliary encoder position
counts

-2147483648
2147483647

n/a
_TEx

all
D

ifference betw
een com

m
anded & actual axis

position
counts

-2147483648
2147483647

n/a

_TIx
all

8 inputs as a decim
al or hex value (x = input bank

0-7)
byte

0
255

n/a

TIM
E

all
C

ounter since SM
C

2000 pow
ered on

m
illiseconds

0
2147483647

0
_TLx

all
Torque lim

it of axis
voltage

0
9.9988

9.9988
_TM

all

Servo update cycle for all axes
µSec

375
20000

1000
_TN

all

Position of first tangent point
counts

-2147483648
2147483647

0
_TPx

all
C

urrent encoder position of axis
counts

-2147483648
2147483647

n/a
_TSx

all
Status of sw

itches for axis
byte

0
255

n/a
_TTx

all
C

urrent output voltage to am
plifier

voltage
-9.9988

9.9988
0

_TVx
all

Velocity of axis (averaged over 256 servo cycles)
counts/sec

0
8000000

n/a
_TYx

D
150n19h &

up
The position of an absolute encoder at tim

e of
reading

counts
-2147483648

2147483647
-2147483648

_TW
x

all
Tim

e lim
it that program

 w
ill w

ait for axis to get to
target position (M

C
x)

m
illiseconds

-1
32766

32766

_U
L

all
N

um
ber of variables available

n/a
0

254
254

_VA
all

acceleration value for vector m
ode

counts/sec
2

1024
68431360

256000
_VD

all

D
eceleration value for vector m

ode
counts/sec

2
1024

68431360
256000

_VE
all

Length of vector (all m
oves in coordinated m

ove
sequence)

counts
0

2147483647
0

 _VF
all

Setting of variable form
atting

n/a
0

10.4
10.4

_VM

all
N

um
ber of free locations in vector m

ode buffer
n/a

0
511

511
_VPx

all
Absolute coordinate of the axis in the last
segm

ent
counts

-2147483648
2147483647

0

_VR

all
Vector speed ratio

n/a
0

10
1

_VS
all

Vector Speed
counts/sec

2
8000000

25000
_VT

all
S curve sm

oothing value for vector m
ode

constant
0.004

1
1

_XQ
x

all
C

urrent line num
ber being executed (x = thread #)

line num
ber

-1
999

n/a
_ZS

all
C

urrent subroutine depth
num

ber
0

16
n/a

SMC-2000 User’s Guide Programming Motion •••• 1

Programming Motion

Overview
The SMC-2000 provides several modes of motion, including independent positioning and jogging of any axis,
coordinated motion, and electronic gearing. Each one of these modes is discussed in the following sections.
Please note the SMC-2000-2 uses X and Y, the SMC-2000-4 uses X, Y, Z and W.

The SMC-2000-8 uses the axes A, B, C, D, E, F, G, and H. For SMC-2000-8, the axes A, B, C, D can be
referred to interchangeably as X,Y,Z,W.

The example applications described below will help guide you to the appropriate mode of motion.

Example Application Mode of Motion Commands
Absolute or relative positioning where
each axis is independent and follows
prescribed velocity profile.

Independent Axis Positioning PA,PR
SP,AC,DC

Velocity control where no final
endpoint is prescribed. Motion stops
on Stop command.

Independent Jogging JG
AC,DC
ST

Motion Path described as incremental
position points versus time.

Contour Mode CM
CD
DT
WC

2,3 or 4 axis coordinated motion
where path is described by linear
segments.

Linear Interpolation LM
LI,LE
VS
VA,VD

2-D motion path consisting of arc
segments and linear segments, such as
engraving or quilting.

Coordinated Motion VM
VP
CR
VS
VA,VD
VE

2 •••• Programming Motion SMC-2000 User's Guide

Third axis must remain tangent to 2-D
motion path, such as knife cutting.

Coordinated motion with tangent axis
specified

VM
VP
CR
VS,VA,VD
TN
VE

Electronic gearing where slave axes
are scaled to master axis which can
move in both directions.

Electronic Gearing GA
GR

Master/slave where slave axes must
follow a master such as conveyer
speed.

Electronic Gearing GA
GR

Moving along arbitrary profiles or
mathematically prescribed profiles
such as sine or cosine trajectories.

Contour Mode CM
CD
DT
WC

Teaching or Record and Play Back Contour Mode with Automatic Array
Capture

CM
CD
DT
WC
RA
RD
RC

Backlash Correction Dual Loop DE

Motion Smoothing Applies to all independent modes of
motion i.e. PR, PA, JG. Smoothes
motion to eliminate vibrations due to
jerk (discontinuities in acceleration)

IT

Independent Axis Positioning
In this mode, motion between the specified axes is independent, and each axis follows its own profile. The user
specifies the desired absolute (PA) or relative position (PR), slew speed (SP), acceleration ramp (AC), and
deceleration ramp (DC), for each axis. On begin (BG), the SMC-2000 profiler generates the corresponding
trapezoidal or triangular velocity profile and position trajectory. A new command position along the trajectory
is generated every sample period. Motion is complete when the last position command or target position is
generated by the SMC-2000 profiler. The actual motor motion may not be complete at this point, however, the
next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. XYZ or W axis
specifiers are required to select the axes for motion. No axes specifier implies motion on all the axes. For the
SMC-2000-8, ABCDEFGH axes specifiers are used where XYZ and W may be interchanged with ABCD.

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the deceleration
(DC) and position (PR or PA) cannot be changed until motion is complete. Remember, motion is complete
when the profiler is finished, not when the actual motor is in position. The Stop command (ST) can be issued at
any time to decelerate the motor to a stop before it reaches its final position.

SMC-2000 User’s Guide Programming Motion •••• 3

A new position target (IP) may be specified during motion as long as the additional move is in the same
direction. Here, the user specifies the desired position increment, n. The new target is equal to the old target
plus the increment, n. Upon receiving the IP command, a revised profile will be generated for motion towards
the new end position. The IP command does not require a begin. Note: If the motor is not moving, the IP
command is equivalent to the PR and BG command combination.

Independent Axis Command Summary
PR x,y,z,w Specifies relative distance

PA x,y,z,w Specifies absolute position

SP x,y,z,w Specifies slew speed

AC x,y,z,w Specifies acceleration rate

DC x,y,z,w Specifies deceleration rate

BG XYZW Starts motion

ST XYZW Stops motion before end of move

IP x,y,z,w Changes position target

AM XYZW Trippoint for profiler complete

MC XYZW Trippoint for "in position"

For the SMC-2000-8:

 Use a,b,c,d,e,f,g,h to specify axis data above.

Example - Absolute Position
PA 10000,20000 Specify absolute X,Y position

AC 1000000,1000000 Acceleration for X,Y

DC 1000000,1000000 Deceleration for X,Y

SP 50000,30000 Speeds for X,Y

BG XY Begin motion

Example - Multiple Move Sequence
Required Motion Profiles

X-Axis 500 counts Position

 10000 count/sec Speed

 500000 counts/sec2 Acceleration

Y-Axis 1000 counts Position

 15000 count/sec Speed

 500000 counts/sec2 Acceleration

Z-Axis 100 counts Position

 5000 counts/sec Speed

 500000 counts/sec2 Acceleration

4 •••• Programming Motion SMC-2000 User's Guide

Start X and Y motion at the same time. After 20 msec, start Z motion. If input 1 is high, stop Y motion.
#A Begin Program

PR 500,1000,100 Specify position

SP 10000,15000,5000 Specify speed

AC 500000,500000,500000 Specify acceleration

DC 500000,500000,500000 Specify deceleration

BG XY Begin X and Y

WT 20;BG Z Wait 20 msec and begin

JP #B,@IN[1]=0 Jump if input 1 is low

STY Stop Y

#B;EN End Program

Fig. 6.1 shows the velocity profiles for the X,Y and Z axis.

VELOCITY
 (COUNTS/SEC)

5000

10000

TIME (MS)

0 10 20 30 40 50 60

INPUT 1
Figure 6.1 - Velocity Profiles of XYZ

Independent Jogging
In this mode, the user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each
axis. On begin (BG), the motor accelerates up to speed and continues to jog at that speed until a new speed or
stop (ST) command is issued. The direction of motion is specified by the sign of the JG parameters.

The jog mode of motion is very flexible because the speed, direction, and acceleration can be changed during
motion. The IP command can also be used to instantly change the motor position. Upon receiving this
command, the motor will instantly try to servo to a position, which is equal to the specified increment plus the
current position. This command is useful when trying to synchronize the position of two motors while they are
moving.

It should be noted that the controller operates as a closed-loop position controller even while in the jog mode.
The SMC-2000 converts the velocity profile into a position trajectory where a new position target is generated
every sample period. This method of control results in precise speed regulation with phase lock accuracy.

SMC-2000 User’s Guide Programming Motion •••• 5

Jogging Command Summary
JG +/-x,y,z,w Specifies jog speed and direction

AC x,y,z,w Specifies acceleration rate

DC x,y,z,w Specifies deceleration rate

BG XYZW Begins motion

ST XYZW Stops motion

IP x,y,z,w Increments position instantly

For the SMC-2000-8:

 Use a,b,c,d,e,f,g,h to specify axis data above.

Example - Jog in X only
Jog X motor at 50000 count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at 25000
count/s.

#A

AC 20000,,20000 Specify X,Z acceleration

DC 20000,,20000 Specify X,Z deceleration

JG 50000,,-25000 Specify X,Z speed and direction

BG X Begin X motion

AS X After X at speed

BG Z Begin Z motion

EN

Example - Joystick Jogging
The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 Volt input the
speed must be 50000 counts/sec. Therefore, the calibration factor is 50000/8191 since the SMC-2000 uses a 14-
bit ADC resulting in 8191 counts for 10 Volts.

#JOY Label

JG0 Set in Jog Mode

BGX Begin motion

#B Label for loop

V1 =@AN[1] Read analog input

VEL=V1*50000/8191 Compute speed

JG VEL Change JG speed

JP #B Loop

6 •••• Programming Motion SMC-2000 User's Guide

Linear Interpolation Mode
The SMC-2000 provides a linear interpolation mode for 2,3 or 4 axes (up to 8 axes for the SMC-2000-8). Here,
motion between the axes is coordinated to maintain the prescribed vector speed, acceleration, and deceleration
along the specified path. The motion path is described in terms of incremental distances for each axis. Several
incremental segments may be given in a continuous move sequence, making the linear interpolation mode ideal
for following a piece-wise linear path. There is no limit to the total move length.

The LM XYZW command selects the Linear Interpolation mode and axes for interpolation. For example, LM
YZ selects only the Y and Z-axes for linear interpolation. For the SMC-2000-8, use ABCDEFGH axis specifies
where XYZW may be used interchangeably with ABCD.

The LM command only needs to be specified once unless the axes for linear interpolation change, or another
mode such as VM is given.

The LI x,y,z,w or LI a,b,c,d,e,f,g,h command specifies the incremental move distance for each axis. This means
motion is prescribed with respect to the current axis position. Up to 511 incremental move segments may be
given prior to the Begin Sequence (BGS) command. Once motion has begun, additional LI segments may be
specified.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the start of
the motion. To stop the motion, use the instructions STS or AB. The ST command causes a decelerated stop,
while the AB command gives an instantaneous stop and aborts the program, while AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This command tells
the controller to decelerate to a stop following the last LI command. If an LE command is not given, an Abort
AB1 must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the SMC-2000 sequence buffer to ensure
continuous motion. If the controller receives no additional LI segments and no LE command, the controller will
stop motion instantly at the last vector. There will be no controlled deceleration. LM? or _LM returns the
available spaces for LI segments that can be sent to the buffer. 511 returned means the buffer is empty and 511
LI segments can be sent. A zero means the buffer is full and no additional segments can be sent. As long as the
buffer is not full, LI segments can be sent at the COM port baud rate.

The instruction _CS returns the segment counter. As the segments are processed, _CS increases, starting at zero.
This function allows the host computer to determine which segment is being processed.

Additional commands for linear interpolation are VS n, VA n, and VD n for specifying the vector speed,
acceleration and deceleration. The AV n command is the After Vector trippoint, which waits for the vector
distance of n to occur.

For example, note the following program:
DP 0,0 Define position

LMXY Specify axes for linear interpolation

LI 5000,0 Specify XY distances

LI 0,5000 Specify XY distances

LE Specify end move

VS 4000 Specify vector speed

BGS Begin sequence

AV 4000 After vector distance 4000

VS 1000 Specify vector speed

AV 5000 After vector distance 5000

VS 4000 Specify vector speed

SMC-2000 User’s Guide Programming Motion •••• 7

EN End program

Here the XY system is required to perform 90° turn. In order to slow the speed around the corner, we use the
AV 4000 trippoint, which slows the speed to 1000 count/s. Once the motors reach the corner, we can increase
the speed, back to 4000 cts/s, with the trippoint AV 5000.

The instruction AV can be used as an operand. _AV returns the distance along the motion sequence.

The instruction _VP returns the absolute coordinate of the last data point along the trajectory. This enables the
host to command motion backward in case of tool break.

For example, note the program shown above. Consider the first motion segment, where the X-axis moves
toward the point X=5000. Now suppose that when X=3000, the controller is interrogated.

The response to _AV will be 3000. The response to _CS is 0 and the responses to _VPX and _VPY are zeros
for both.

Now suppose that the interrogation is repeated at the second segment when Y=2000. The response to _AV at
this point is 7000, _CS equals 1, _VPX=5000 and _VPY=0.

It should be noted that the SMC-2000 computes the vector speed based on the axes specified in the LM mode.
For example, LM XYZ designates linear interpolation for the X, Y, and Z-axes. The speed of these axes will be
computed from VS2=XS2+YS2+ZS2, where XS, YS and ZS are the speed of the X, Y and Z-axes. If the LI
command specifies only X and Y, the speed of Z will still be used in the vector calculations. The controller
always uses the axis specifications from LM, not LI, to compute the speed.

Command Summary - Linear Interpolation
LM XYZW Specify axes for linear interpolation

LM ABCDEFGH Specify axes for linear interpolation (SMC-2000-8)

LI x,y,z,w
LI a,b,c,d,e,f,g,h

Specify incremental distances relative to current position

_LM or LM? Returns number of available spaces for linear segments in
SMC-2000 sequence buffer. Zero means buffer full. 511
means buffer empty.

VS n Specify vector speed

VA n Specify vector acceleration

VD n Specify vector deceleration

BGS Begin Linear Sequence

CS Clear sequence

_CS Segment counter

_VPm Return coordinate of last point, where m=X,Y,Z or W or
A,B,C,D,E,F,G or H

LE Linear End- Required at end of LI command sequence

_LE or LE? Returns length of vector (resets after 2147483647)

AMS Trippoint for After Sequence complete

AV n Trippoint for After Relative Vector distance ,n

_AV Return distance traveled

8 •••• Programming Motion SMC-2000 User's Guide

Example - Linear Move
Make a coordinated linear move in the ZW plane. Move to coordinates 40000,30000 counts at a vector speed of
100,000 counts/sec and vector acceleration of 1000000 counts/sec2.

LM ZW Specify axes for linear interpolation

LI,,40000,30000 Specify ZW distances

LE Specify end move

VS 100000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

BGS Begin sequence

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VZ and VW. The
axis speeds are determined by the SMC-2000 from:

VS VZ VW= +2 2

The resulting profile is shown in Figure 6.2.

POS W
30000

POS Z0
0 40000

VELOCITY
V W

VELOCITY
V Z

FEEDRATE

0 0.1 0.5 0.6

Figure 6.2 - Linear Interpolation

SMC-2000 User’s Guide Programming Motion •••• 9

Example - Multiple Moves
Make a coordinated linear move in the XY plane. The Arrays VX and VY are used to store 750 incremental
distances that have been filled by the program #LOAD.

#LOAD Load Program

DM VX [750],VY [750] Define Array

COUNT=0 Initialize Counter

N=0 Initialize position increment

#LOOP LOOP

VX [COUNT]=N Fill Array VX

VY [COUNT]=N Fill Array VY

N=N+10 Increment position

COUNT=COUNT+1 Increment counter

JP #LOOP,COUNT<750 Loop if array not full

#A Label

LM XY Specify linear mode for XY

COUNT=0 Initialize array counter

#LOOP2;JP#LOOP2,_LM=0 If sequence buffer full, wait

JS#C,COUNT=500 Begin motion on 500th segment

LI VX[COUNT],VY[COUNT] Specify linear segment

COUNT=COUNT+1 Increment array counter

JP #LOOP2,COUNT<750 Repeat until array done

LE End Linear Move

AMS After Move sequence done

MG "DONE" Send Message

EN End program

#C;BGS;EN Begin Motion Subroutine

Coordinated Motion Sequences
The SMC-2000 allows a long 2-D path consisting of linear and arc segments to be prescribed. Motion along the
path is continuous at the prescribed vector speed even at transitions between linear and circular segments. The
SMC-2000 performs all the complex computations of linear and circular interpolation, freeing the host PC from
this time intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Here, any pair of two axes may be
selected for coordinated motion consisting of linear and circular segments. In addition, a third axis can be
controlled such that it remains tangent to the motion of the selected pair of axes.

The VM m,n,p command specifies the axes. m,n are the coordinated pair and p is the tangent. For example,
VM X, W, Z selects the XW axes for coordinated motion and the Z-axis as the tangent. Commas are not
required.

10 •••• Programming Motion SMC-2000 User's Guide

The motion segments are described by two commands, VP for linear and CR for circular segments. The VP x,y
command specifies the end point coordinate of the linear segment, in reference to the starting point. CR r, θ, δ
define a circular arc with a radius r, starting angle of θ, and a traversed angle δ. The notation for θ is that zero
corresponds to the positive horizontal direction and for both θ and δ, the counter-clockwise (CCW) rotation is
positive.

Up to 511 segments of CR or VP may be given prior to the Begin Sequence (BGS) command. Once motion
starts, additional segments may be added.

The Clear Sequence (CS) command can be used to remove VP and CR stored in the buffer prior to the start of
the motion. To stop the motion, use the instructions STS or AB1. ST stops motion at the specified deceleration.
AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This command
requires the controller to decelerate to a stop following the last motion requirement. If a VE command is not
given, an Abort (AB1) must be used to abort the coordinated motion sequence.

It is the responsibility of the user to keep enough motion segments in the SMC-2000 sequence buffer to ensure
continuous motion. If the controller receives no additional motion segments and no VE command, the controller
will stop motion instantly at the last vector. There will be no controlled deceleration. LM? or _LM returns the
available spaces for motion segments that can be sent to the buffer. 511 returned means the buffer is empty and
511 segments can be sent. A zero means the buffer is full and no additional segments can be sent. As long as
the buffer is not full, additional segments can be sent at the COM port baud rate.

The instruction _CS returns the segment counter. It allows the host to determine the motion segment being
executed.

Additional commands for coordinated motion are VS n, VA n and VD n for specifying the vector speed,
acceleration, and deceleration. The AV n command is the After Vector trippoint, which waits for the vector
relative distance of n to occur.

The AV trippoint is useful in changing the parameters, such as the vector speed along the sequence.

When AV is used as an operand, _AV returns the distance traveled along the sequence.

The instruction _VPX and _VPY can be used to return the coordinates of the last point specified along the path.

Example:
Traverse the path shown in Fig. 6.3. Feed rate is 20000 counts/sec. Plane of motion is XY.

VM XY Specify motion plane

VS 20000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

VP -4000,0 Segment AB

CR 1500,270,-180 Segment BC

VP 0,3000 Segment CD

CR 1500,90,-180 Segment DA

VE End of sequence

BGS Begin Sequence

SMC-2000 User’s Guide Programming Motion •••• 11

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we interrogate the
controller when the motion is halfway between the points A and B.

_AV returns 2000

_CS returns 0

_VPX and _VPY return the absolute coordinate of the point A

Next, suppose that the interrogation is repeated at a point, halfway between the points C and D.

_AV returns 4000+1500π+2000=10,712

_CS returns 2

_VPX,_VPY return the coordinates of the point C

C (-4000,3000)

R = 1500

B (-4000,0)

D (0,3000)

A (0,0)
Figure 6.3 - The Required Path

Tangent Motion
Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the coordinated
motion path. To handle these applications, the SMC-2000 allows one axis to be specified as the tangent axis.
The VM command provides parameter specifications for describing the coordinated axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such
as X,Y,Z,W or A,B,C,D,E,F,G,H. p=N turns off tangent
axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define its offset
and scale factor via the TN m,n command. m defines the scale factor in counts/degree and n defines the tangent
position that equals zero degrees in the coordinated motion plane. The _TN can be used to return the initial
position of the tangent axis.

Example:
Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000 quad counts/rev encoder and has
been initialized after power-up to point the knife in the +Y direction. A 180° circular cut is desired, with a
radius of 3000, center at the origin and a starting point at (3000,0). The motion is CCW, ending at (-3000,0).

12 •••• Programming Motion SMC-2000 User's Guide

Note that the 0° position in the XY plane is in the +X direction. This corresponds to the position -500 in the Z-
axis, and defines the offset. The motion has two parts. First, X,Y and Z are driven to the starting point, and
later, the cut is performed. Assume that the knife is engaged with output bit 1.

#EXAMPLE Example program

VM XYZ XY coordinate with Z as tangent

TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in XY
plane

CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW

VE End vector

CB1 Disengage knife

PA 3000,0,_TN Move X and Y to starting position, move Z to initial
tangent position

BG XYZ Start the move to get into position

AM XYZ When the move is complete

SB1 Engage knife

WT50 Wait 50 msec for the knife to engage

BGS Do the circular cut

AMS After the coordinated move is complete

CB1 Disengage knife

MG "ALL DONE"

EN End program

Coordinated Motion Sequence Instructions - Summary

VM m,n,p Specifies plane for the motion sequence such as X,Y or
Z,W. p specifies tangent axis.

VP m,n Return coordinate of last point, where m=X,Y,Z or W.

_VPm Specifies the end point of a segment in reference to the
starting point of the sequence.

CR r,Θ, ±∆Θ Specifies arc segment where r is the radius, Θ is the starting
angle and ∆Θ is the travel angle. Positive direction is
CCW.

VS n Specifies vector speed or feed rate of sequence.

VA n Specifies vector acceleration along the sequence.

VD n Specifies vector deceleration along the sequence.

BGS Begin motion sequence.

AV n Trippoint for After Relative Vector distance, n.

_AV Return distance traveled.

AMS Holds execution of the next command until the Motion
Sequence is completed.

SMC-2000 User’s Guide Programming Motion •••• 13

_LM or LM? Return number of available spaces for linear and circular
segments in SMC-2000 sequence buffer. Zero means
buffer is full. 511 means buffer is empty.

TN m,n Tangent scale and offset.

ES m,n Ellipse scale factor.

CS Clear sequence.

_CS Segment counter.

Electronic Gearing
This mode allows 1,2 or 3 axes (or 4,5,6,7 axes for the SMC-2000-8) to be electronically geared to one driven
master axis, or all axes to be geared to an auxiliary encoder. The master may rotate in both directions and the
geared axes will follow at the specified gear ratio. The gear ratio may be different for each axis and changed
during motion.

The command GAX or GAY or GAZ or GAW (or GAA or GAB or GAC or GAD or GAE or GAF or GAG or
GAH for SMC-2000-8) specifies the master axis. There may only be one master. GR x,y,z,w specifies the gear
ratios for the slaves where the ratio may be a number between +/-127.9999 with a fractional resolution of .0001.
GR 0,0,0,0 turns off electronic gearing for any set of axes. A limit switch will also disable electronic gearing for
that axis. GR causes the specified axes to be geared to the actual position of the master. The master axis is
commanded with motion commands such as PR, PA or JG.

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of several
axes performed by GAS. For example, if the X and Y motor form a circular motion, the Z axis may move in
proportion to the vector move. Similarly, if X,Y and Z perform a linear interpolation move, W can be geared to
the vector move.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in addition to
the gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be advanced an
additional distance with PR, or JG, commands, or VP, or LI.

Command Summary - Electronic Gearing
GA n Specifies master axis for gearing where n = X,Y,Z or W or

A,B,C,D,E,F,G,H for main encoder as master

 n = XC,YC,ZC or WC or AC, BC, CC, DC, EC,
FC,GC,HC for commanded position as master

 n=S vector move for master

GR x,y,z,w Sets gearing mode and gear ratio for slave axes. 0 disables
electronic gearing for specified axis.

GR a,b,c,d,e,f,g,h Sets gearing mode and gear ratio for slave axes. 0 disables
electronic gearing for specified axis.

MR x,y,z,w Trippoint for motion past assigned point in reverse
direction. Only one field may be used.

MF x,y,z,w Trippoint for motion past assigned point in forward
direction. Only one field may be used.

14 •••• Programming Motion SMC-2000 User's Guide

Example - Simple Master Slave
Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the master. X,Z,W are
geared to master at ratios of 5,-.5 and 10 respectively.

GAY Specify master axes as Y

GR 5,,-.5,10 Set gear ratios

PR ,10000 Specify Y position

SP ,100000 Specify Y speed

BGY Begin motion

Example - Electronic Gearing
Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master. The master motor
is driven externally at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a SMC-2000-4 controller, where the Z-axis is the master and X and Y are the geared axes.
M0 Z Turn Z off, for external master

GA Z Specify master axis

GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the X-axis is to change on the fly to 2. This can be achieved by commanding:
GR 2

In several applications where both the master and the follower are controlled by the SMC-2000 controller, it
may be desired to synchronize the follower with the commanded position of the master, rather than the actual
position. This eliminates the coupling between the axes that may lead to oscillations.

For example, assume that a gantry is driven by two axes, X,Y, on both sides. The X-axis is the master and the
Y-axis is the follower. To synchronize Y with the commanded position of X, use the instructions:

GACX Specify master as commanded position of X

GR,1 Set gear ratio for Y as 1:1

PR 3000 Command X motion

BG X Start motion

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for example, that
you need to advance the slave 10 counts. Simply command

IP,10

which is equivalent to PR,10; BGY.

Often the correction is quite large. Such requirements are common on synchronizing cutting knives or conveyor
belts.

SMC-2000 User’s Guide Programming Motion •••• 15

Example - Synchronize two conveyor belts with trapezoidal
velocity correction.

GAX Define master axis as X

GR,2 Set gear ratio 2:1 for Y

PR,300 Specify correction distance

SP,5000 Specify correction speed

AC,100000 Specify correction acceleration

DC,100000 Specify correction deceleration

BGY Start correction

Contour Mode
The SMC-2000 also provides a contouring mode. This mode allows any arbitrary position curve for 1,2,3 or 4
(5,6,7 or 8 axes for SMC-2000-8) axes to be prescribed which is ideal for following computer generated paths
such as parabolic, spherical or user-defined profiles. Here, the path is not limited to straight line and arc
segments. Also, the path length may be infinite.

The Contour Mode (CM) command specifies which axes are to be contoured. Any combination of 1,2,3 or 4
axes (5,6,7 or 8 axes for SMC-2000-8) may be used. For example, CMXZ specifies contouring on the X and Z-
axes. Axes non-contouring may be operated in other modes.

The contour is described by position increments, CD x,y,z,w over a time interval, DT n. For the SMC-2000-8,
the contour is described by CD a,b,c,d,e,f,g,h.

The time interval must be 2n ms, where n is a number between 1 and 8. The controller performs linear
interpolation between the specified increments, where one point is generated for each millisecond.

Consider, for example, the trajectory shown in Fig. 6.4. The position X may be described by the points.
Point 1 X=0 at T=0ms

Point 2 X=48 at T=4ms

Point 3 X=138 at T=12ms

Point 4 X=302 at T=28ms

The same trajectory may be represented by the increments
Increment 1 DX=48 Time=4 DT=4

Increment 2 DX=90 Time=8 DT=8

Increment 3 DX=164 Time=16 DT=16

When the controller receives the command to generate a trajectory along these points, it interpolates linearly
between the points. The resulting interpolated points include the position 12 at 1 msec, position 24 at 2 msec,
etc.

The programmed commands to specify the above example are:
#A

CMX Specifies X axis for contour mode

DT 2 Specifies first time interval, 22

16 •••• Programming Motion SMC-2000 User's Guide

CD 48;WC Specifies first position increment

DT 3 Specifies second time interval, 23

CD 90;WC Specifies second position increment

DT 4 Specifies the third time interval, 24

CD 164;WC Specifies the third position increment

DT0;CD0 Exits contour mode

EN

0 4 12 28
0

48

138

302

POSITION

TIME (MS)
Figure 6.4 - The Required Trajectory

The command, WC, is used as a trippoint "When Complete". This allows the SMC-2000 to use the next
increment only when it is finished with the previous one. Zero parameters for DT or CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for new data.
No new motion commands are generated while waiting. If bad data is received, the controller responds with a ?.

The command _CS, the segment counter, returns the number of the segment being processed. This information
allows the host computer to determine when to send additional data.

Summary of Commands for Contour Mode:
CM XYZW Specifies which axes for contouring mode. Any non-

contouring axes may be operated in other modes.

CM ABCDEFGH Contour axes for SMC-2000-8

CD x,y,z,w Specifies position increment over time interval. Range is
+/-32,767. Zero ends contour mode.

CD a,b,c,d,e,f,g,h Position increment data for SMC-2000-8

SMC-2000 User’s Guide Programming Motion •••• 17

DT n Specifies time interval 2n msec for position increment,
where n is an integer between 1 and 8. Zero ends contour
mode. If n does not change, it does not need to be
specified with each CD.

WC Waits for previous time interval to be complete before next
data record is processed.

_CS Return segment number

General Velocity Profiles
The Contour Mode is ideal for generating any arbitrary velocity profiles. The velocity profile can be specified
as a mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Generating an Array
Consider for example the velocity and position profiles shown in Fig. 6.5. The objective is to rotate a motor a
distance of 6000 counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk and the system vibration.
When the position displacement is A counts in B milliseconds, the general expression for the velocity and
position profile, where T is the time in milliseconds, is:

 ()ω π= −Α
Β Β1 2cos()

 Χ = −AT
B

A B2 2π πsin()

In the given example, A=6000 and B=120, the position and velocity profiles are:

 X = 50T - (6000/2π) sin (2π T/120)

Note that the velocity, ω, in count/ms, is

 ω = 50 [1 - cos 2π T/120]

V E LO C IT Y

P O S IT IO N

A C C E LE R A T IO N

Figure 6.5 - Velocity Profile with Sinusoidal Acceleration

The SMC-2000 can compute trigonometric functions. However, the argument must be expressed in degrees.
Accordingly, the equation of X is written as:

18 •••• Programming Motion SMC-2000 User's Guide

X = 50T - 955 sin 3T

To generate an array, we compute the position value at intervals of 8 ms. This is stored at the array POS. Later,
the difference between the positions is computed and is stored in the array DIF.

The program for storing the values is given below.

Instruction Interpretation
#POINTS Program defines X points

DM POS[16] Allocate memory

DM DIF[15]

C=0 Set initial conditions, C is index

T=0 T is time in ms

#A

V1=50*T

V2=3*T Argument in degrees

V3=-955*@SIN[V2]+V1 Compute position

V4=@INT[V3] Integer value of V3

POS[C]=V4 Store in array POS

T=T+8

C=C+1

JP #A,C<16

#B Program to find position differences

C=0

#C

D=C+1

DIF[C]=POS[D]-POS[C] Compute the difference and store

C=C+1

JP #C,C<15

EN End first program

#RUN Program to run motor

CMX Contour Mode

DT3 4 millisecond intervals

C=0

#E

CD DIF[C] Contour Distance is in DIF

WC Wait for completion

C=C+1

JP #E,C<15

DT0

CD0 Stop Contour

EN End the program

SMC-2000 User’s Guide Programming Motion •••• 19

Teach (Record and Play-Back)
Several applications require teaching the machine a motion trajectory. Teaching can be accomplished by using
the SMC-2000 automatic array capture feature to capture position data. The captured data may then be played
back in the contour mode. The following array commands are used:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 8)

RD _TPX Specify data for capturing (such as _TPX or _TPZ)

RC n,m Specify capture time interval where n is 2n msec, m is
number of records to be captured

RC? or _RC Returns a 1 if recording

Example:
#RECORD Begin Program

DM XPOS[501] Dimension array with 501 elements

RA XPOS[] Specify automatic record

RD _TPX Specify X position to be captured

MOX Turn X motor off

RC2 Begin recording; 4 msec interval

#A;JP#A,_RC=1 Continue until done recording

#COMPUTE Compute DX

DM DX[500] Dimension Array for DX

C=0 Initialize counter

#L Label

D=C+1

DELTA=XPOS[D]-XPOS[C] Compute the difference

DX[C]=DELTA Store difference in array

C=C+1 Increment index

JP #L,C<500 Repeat until done

#PLAYBCK Begin Playback

CMX Specify contour mode

DT2 Specify time increment

I=0 Initialize array counter

#B Loop counter

CD DX[I];WC Specify contour data

I=I+1 Increment array counter

JP #B,I<500 Loop until done

DT 0;CD0 End contour mode

EN End program

For additional information about automatic array capture, see Chapter 7, Arrays.

20 •••• Programming Motion SMC-2000 User's Guide

Dual Loop (Auxiliary Encoder)
The SMC-2000 provides an interface for a second encoder per axis. The second encoder may be mounted on
the motor, the load or in any position.

The second encoder may be of the standard quadrature type, or it may be of the pulse and direction type. The
controller also offers the provision for inverting the direction of the encoder rotation.

The configuration of the auxiliary encoder is done by the CE (Configure Encoder) command. This command
configures both the main and the second encoder.

The command form is CE x,y,z,w or a,b,c,d,e,f,g,h for SMC-2000-8 where the parameters x,y,z,w each equals
the sum of two integers m and n. m configures the main encoder and n configures the second encoder.

m= Main Encoder n= Second Encoder
0 Normal quadrature 0 Normal quadrature

1 Pulse & direction 4 Pulse & direction

2 Reverse quadrature 8 Reversed quadrature

3 Reverse pulse & direction 12 Reversed pulse & direction

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of pulse and
direction, n=4, the total is 6, and the command for the X axis is

CE 6

The DE x,y,z,w command can be used to define the position of the auxiliary encoders. For example,

DE 0,500,-30,300

sets their initial values.

The positions of the auxiliary encoders may be interrogated with DE?. For example

DE ?,,?

returns the value of the X and Z auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the instructions

V1=_DEX

Backlash Compensation
The dual loop methods can be used for backlash compensation. This can be done by two approaches:

Continuous dual loop

Sampled dual loop

To illustrate the problem, consider that the coupling between the motor and the load has a backlash. The
approach is to mount position encoders on both the motor and the load.

The continuous dual loop combines the two feedback signals to achieve stability. This method requires careful
system tuning, and depends on the magnitude of the backlash. However, once successful, this method
compensates for the backlash continuously.

SMC-2000 User’s Guide Programming Motion •••• 21

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a
correction. This method is independent of the size of the backlash. However, it is effective only in point-to-
point motion systems which require position accuracy only at the endpoint.

Continuous Dual Loop - Example
Connect the load encoder to the main encoder port and connect the motor encoder to the dual encoder port. The
dual loop method splits the filter function between the two encoders. It applies the KP (proportional) and KI
(integral) terms to the position error, based on the load encoder, and applies the KD (derivative) term to the
motor encoder. This method results in a stable system.

The dual loop method is activated with the instruction DV (Dual Velocity), where

DV 1,1,1,1

activates the dual loop for the four axes and

DV 0,0,0,0

disables the dual loop.

Note that the dual loop compensation depends on the backlash magnitude, and in extreme cases will not stabilize
the loop. The proposed compensation procedure is to start with KP=0, KI=0 and to maximize the value of KD
under the condition DV1. Once KD is found, increase KP gradually to a maximum value, and finally, increase
KI, if necessary.

Sampled Dual Loop - Example
Run a linear slide by a rotary motor via a lead screw. As the lead screw has a backlash, it is necessary to use a
linear encoder to monitor the position of the slide. In addition, for stability reasons, it is best to use a rotary
encoder on the motor.

Connect the rotary encoder to the X-axis and connect the linear encoder to the auxiliary encoder of X. Let the
required motion distance be one inch, and assume that this corresponds to 40,000 counts of the rotary encoder
and 10,000 counts of the linear encoder.

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts. Once the
motion is complete, the controller monitors the position of the linear encoder and performs position corrections.

This is done by the following program.

Instruction Interpretation
#DUALOOP Label

CE 0 Configure encoder

DE0 Set initial value

PR 40000 Main move

BGX Start motion

#CORRECT Correction loop

AMX Wait for motion completion

V1=10000-_DEX Find linear encoder error

V2=-_TEX/4+V1 Compensate for motor error

JP#END,@ABS[V2]<2 Exit if error is small

PR V2*4 Correction move

BGX Start correction

JP#CORRECT Repeat

22 •••• Programming Motion SMC-2000 User's Guide

EN #END

Motion Smoothing (S curve profiling)
The SMC-2000 controller allows the smoothing of the velocity profile to reduce the mechanical vibration of the
system. The resulting velocity profile is known as S curve.

Trapezoidal velocity profiles have acceleration rates that change abruptly from zero to maximum value. The
discontinuous acceleration results in infinite jerk that causes vibration. The smoothing of the acceleration
profile leads to a continuous acceleration profile and a finite jerk, which reduces the mechanical shock and
vibration.

The smoothing is accomplished by filtering the acceleration profile. The degree of the smoothing is specified by
the commands:

IT x,y,z,w Independent time constant

VT n Vector time constant

IT is used for smoothing independent moves of the type JG, PR, PA, whereas VT is used to smooth vector
moves of the type VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 1 and determine the degree of filtering,
where the maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller values of
the smoothing parameters imply heavier filtering and smoother moves.

The following diagrams illustrate the effect of the smoothing. Fig. 6.6 shows the trapezoidal velocity profile
and the modified acceleration and velocity.

Also note that the smoothing process results in longer motion time.

Example - Smoothing
PR 20000 Position

AC 100000 Acceleration

DC 100000 Deceleration

SP 5000 Speed

IT .5 Filter for S-curve

BG X Begin

SMC-2000 User’s Guide Programming Motion •••• 23

ACCELERATION

VELOCITY

VELOCITY

VELOCITY

ACCELERATION

Figure 6.6 - Trapezoidal velocity and smooth velocity profiles

Homing
The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical reference.
This reference is connected to the Home input line. The HM command initializes the motor to the encoder
index pulse in addition to the Home input. The configure command (CN) is used to define the polarity of the
home input.

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is
connected to the Homing Input. When the Find Edge command and Begin is used, the motor will accelerate up
to the slew speed and slew until a transition is detected on the Homing line. The motor will then decelerate to a
stop. A high deceleration value must be input before the find edge command is issued for the motor to
decelerate rapidly after sensing the home switch. The velocity profile generated is shown in Fig. 6.7.

The Home (HM) command can be used to position the motor on the index pulse after the home switch is
detected. This allows for finer positioning on initialization. The HM command and BG command cause the
following sequence of events to occur.

1. Upon begin, motor accelerates to the slew speed. The direction of its motion is determined by the
state of the homing input. A zero (GND) will cause the motor to start in the forward direction;
+24V will cause it to start in the reverse direction. The CN command is used to define the polarity
of the home input.

2. Upon detecting the home switch changing state, the motor begins decelerating to a stop.

3. The motor then traverses very slowly back until the home switch toggles again.

4. The motor then traverses forward until the encoder index pulse is detected.

5. The SMC-2000 defines the home position (0) as the position at which the index was detected.

24 •••• Programming Motion SMC-2000 User's Guide

Example:
#HOME Label

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search

HM X Home X

BG X Begin Motion

AM X After Complete

MG "AT HOME" Send Message

EN End

#EDGE Label

AC ,2000000 Acceleration rate

DC ,2000000 Deceleration rate

SP ,8000 Speed

FE Y Find edge command

BG Y Begin motion

AM Y After complete

MG "FOUND HOME" Print message

DP,0 Define position as 0

EN End

SMC-2000 User’s Guide Programming Motion •••• 25

POSITION

POSITION

POSITION

POSITION

POSITION

HOME SWITCH

INDEX PULSES

MOTION REVERSE
TOWARD HOME
 DIRECTION

MOTION TOWARD INDEX
 DIRECTION

MOTION BEGINS
TOWARD HOME
 DIRECTION

Figure 6.7 - Motion intervals in the Home sequence

High Speed Position Capture
Often it is desirable to capture the position precisely for registration applications. The SMC-2000 provides a
position latch feature. This feature allows the position of X,Y,Z or W to be captured within 25 microseconds of
an external signal. The external signal is input at inputs 1 through 4, and 9 through 12 on the SMC-2000-8.

IN1 X-axis latch IN 9 E-axis latch

IN2 Y-axis latch IN10 F-axis latch

IN3 Z-axis latch IN11 G-axis latch

IN4 W-axis latch IN12 H-axis latch

The SMC-2000 software commands, AL, LT, and RL, are used to arm the latch and report the latched position.
The steps to use the latch are as follows:

26 •••• Programming Motion SMC-2000 User's Guide

1. Give the AL XYZW command, or ABCDEFGH for SMC-2000-8, to arm the latch for the
specified axis or axes.

2. Test to see if the latch has occurred (Input goes low) by using the _AL X or Y or Z or W
command. Example, V1=_ALX returns the state of the X latch into V1. V1 is 1 if the latch has
not occurred.

3. After the latch has occurred, read the captured position with the RL XYZW command or _RL
XYZW.

Note: The latch must be re-armed after each latching event.

Example:

#LATCH Latch program

JG,5000 Jog Y

BG Y Begin Y

AL Y Arm Latch

#WAIT Loop for Latch=1

JP #WAIT,_ALY=1 Wait for latch

RESULT=_RLY Report position

RESULT= Print result

EN End

Electronic Cam
The electronic cam is a motion control mode which enables the periodic synchronization of several axes of
motion when one of the axes is independent and is not necessarily driven by the motion controller.

The electronic cam is a more general type of electronic gearing which allows a table based relationship between
the axes. It allows synchronizing all the controller axes. Therefore, the SMC-2000-8 may have one master and
up to seven slaves. To simplify the presentation, we will limit the description to a 4-axis controller.

EAp where p=X,Y,Z,W

p is the selected master axis

To illustrate the procedure of setting cam mode the master position M0, consider the cam relationship for the
slave axis Y, when the master is X. Such a graphic relationship is shown in Figure 6.8.

SMC-2000 User’s Guide Programming Motion •••• 27

Slave
Position

Master
Position

 S0

 S1

M1 M0
Figure 6.8 - Electronic Cam Cycle

The cam cycle starts at the master position M0 and ends at the master position M1. This implies that the cycle
for the master, CM is

CM=M1 -M0

The slave axis must equal S0 . When the master position is M0 and S1 when the when the master position equals
M1. Over one cycle, the change in slave position, CS, equals

CS=S1 - S0

In the cam mode, the positions of the master and the slave are redefined to fit the values shown in Figure 6.8.
This implies that if the master axis position increases beyond M1 , the master position is decreased by CM and
the slave position is decreased by CS. On the other hand, if the master axis moves in the negative direction
through the point M0 , the master position is increased by CM and the slave position is increased by CS. To
specify the values of CM and CS, we use the instruction

EM x,y,z,w

where the values x,y,z,w are the CM or CS values for the corresponding axes.

The range of CM is an integer between 1 and 8,388,607 and the range of CS is an integer between 0 and
2,147,483,647. If CS is negative, its absolute value is specified.

For example, suppose that the cam relationship is as expressed in Fig 6.9.

 1500

4000

 3000

 0

Figure 6.9 - Electronic Cam Example

28 •••• Programming Motion SMC-2000 User's Guide

Since the cycles are 4000 and 1500 for X and Y respectively, the command is

EP m,n

For example, EP 100,500 indicates that the table starts at the master position of 500 and that the following
master points are 600, 700, etc.

Finally, the table parameters are defined with the instruction

ET[n]=x,y,z where n starts at 0 and may go up to 256

For example,

ET[7]=100,300,-200

defines a row in the table. It indicates that the position X=100, Y=300, and Z=-200 must be synchronized.

The table generated with ET[n] can be stored in the SMC-2000 with the BN command.

Note that only the slave points must be given. The master points are defined by the EP instruction.

To illustrate the process, consider the simple example where X, the master, has a cycle of 4000 counts and Y,
the slave, must be synchronized with a gear ratio of 1 during the first half of the cycle and a zero ratio during
the second half.

To construct the table we start by selecting the X axis as the master.

EAX

Define the cycles as

EM 4000,2000

Since the table is quite simple, it can be defined by a few points with an interval of 1000.

EP 1000,0

The first point, when X=0 is

ET[0]=,0

It is followed by:

ET[1]=,1000

ET[2]=,2000

ET[3]=,2000

ET[4]=,2000

Once the cam mode is defined, it can be enabled or disabled with the instruction

EB n where n=1 enables the cam mode and n=0 disables it.

When the cam mode is enabled, the position of the mater is monitored and is re-defined as a value within the
cycle.

To engage the slave axes at a programmed point, we use the command

EG x,y,z,w where x,y,z,w are the master positions at which the corresponding
 slave axes must be engaged.

If the value of any parameter is outside the range specified by the master cycle, the cam engages that axis
immediately. When a slave motor is engaged, its position is redefined to fit with the cycle.

To stop a slave axis, use the instruction

SMC-2000 User’s Guide Programming Motion •••• 29

EQ x,y,z,w where x,y,z,w are the master positions at which the corresponding
 slave axes must be disengaged.

This disengages the slave axis at a specified master position. If the parameter is outside the master cycle, the
stopping is instantaneous.

Programmed start and stop can be used only when the master moves forward.

To illustrate the complete process, consider the cam relationship described by the equation:

Y=0.5 * 100sin(0.18 * X)

where X is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The following
program includes the set-up.

The instruction EAX defines X as the master axis. The cycle of the master is CM=2000. Over that cycle, X
varies by CS=1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts each. If the master
points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18X and X varies in increments of 20,
the phase varies by increments of 3.6o. The program then computes the values of X according to the equation
and assigns the values to the table with the instruction ET[N]=,Y.

#SETUP Label

EAX Select X as master

EM 2000,1000 Cam cycles

EP 20,0 Master position increments

N=0 index

#LOOP Loop to construct table from equation

P=N*3.6 Note 3.6 = 0.18*20

S=@SIN[P]*10 Define sine position

Y=N*10+S Define slave position

ET[N]=,Y Define table

N=N+1

JP #LOOP,N<=100 Repeat the process

EN

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the engagement and
disengagement points must be done at the center of the cycle: X=1000 and Y=500. This implies that Y must be
driven to that point to avoid a jump.

This is done with the program:
#RUN Label

30 •••• Programming Motion SMC-2000 User's Guide

EB1 Enable Cam

PA,500 Starting position

SP,5000 Y Speed

BGY Move Y Motor

AM After Y moved

AI1 Wait for start signal

EG,1000 Disengage slave

AI-1 Wait for stop signal

EQ,1000 Disengage slave

EN End

The following example illustrates a cam program with a master axis, Z, and two slaves, X and Y.
#A;V1=0 Label; Initialize variable

PA 0,0; BGXY; AMZXY Go to position 0,0 on X and Y axes

EAZ Z axis as the Master for ECAM

EM0,0,4000 Change for Z is 4000, zero for X,Y

EP400,0 ECAM interval is 400 counts with zero start

ET[0]=0,0 When master is at zero position; first point

ET[1]=40,20 2nd point in the ECAM table

ET[2]=120,60 3rd point in the ECAM table

ET[3]=240,120 4th point in the ECAM table

ET[4]=280,140 5th point in the ECAM table

ET[5]=280,140 6th point in the ECAM table

ET[6]=280,140 7th point in the ECAM table

ET[7]=240,120 8th point in the ECAM table

ET[8]=120,60 9th point in the ECAM table

ET[9]=40,20 10th point in the ECAM table

ET[10]=0,0 Starting for the next cycle

EB1 Enable ECAM mode

JGZ=4000 Set Z to jog at 4000

EG 0,0 Engage both X and Y when Master=0

BGZ Begin jog on Z axis

#LOOP; JP#LOOP,V1=0 Loop until the next variable is set

EQ2000,2000 Disengage X and Y when Master = 2000

MF 2000 Wait until the master goes to 2000

ST Z Stop the Z axis motion

EB 0 Exit the ECAM mode

EN End of the program

The above example shows how the ECAM program is instructed and how the commands can be given to the
controller.

Application Programming

Introduction
The SMC-2000 programming language is a powerful language that allows users to customize a program to
handle their particular application. Complex programs can be downloaded into the SMC-2000 memory for later
execution. Utilizing the SMC-2000 to execute sophisticated programs frees the host computer for other tasks.
However, the host computer can still send commands to the controller at any time, even while a program is
being executed.

In addition to standard motion commands, the SMC-2000 provides several commands that allow the SMC-2000
to make its own decisions. These commands include conditional jumps, event triggers, and subroutines. For
example, the command JP#LOOP, N<10 causes a jump to the label #LOOP if the variable N is less than 10.

For greater programming flexibility, the SMC-2000 provides 254 user-defined variables, arrays and arithmetic
functions. For example, the length in a cut-to-length operation can be specified as a variable in a program and
then be assigned by an operator.

The following sections in this chapter discuss all aspects of creating applications programs.

Program Format
A SMC-2000 program consists of several SMC-2000 instructions combined to solve a machine control
application. Action instructions, such as starting and stopping motion, are combined with Program Flow
instructions to form the complete program. Program Flow instructions evaluate real-time conditions, such as
elapsed time or motion complete, and alter program flow accordingly.

A delimiter must separate each SMC-2000 instruction in a program. Valid delimiters are the semicolon (;) or
carriage return. The semicolon is used to separate multiple instructions on a single program line. A carriage
return enters the final command on a program line.

All SMC-2000 programs must begin with a label and end with an End (EN) statement. Labels start with the
pound (#) sign followed by a maximum of seven characters. The first character must be a letter; after that,
numbers are permitted. Spaces are not permitted. NOTE: All letter must be UPPER CASE.

The maximum number of labels that may be defined is 254.

2 •••• Application Programming SMC-2000 User’s Guide

Valid labels
#BEGIN

#SQUARE

#X1

#BEGIN1

Invalid labels
#1Square

#123

Special Labels
There are also some special labels, which are used to define input interrupt subroutines, limit switch subroutines,
error handling subroutines, and command error subroutines.

#LIMSWI Label for Limit Switch subroutine

#POSERR Label for excess Position Error subroutine

#ININT Label for Input Interrupt subroutine

#CMDERR Label for incorrect command subroutine

#COMINT Label for communication interrupt

#MCTIME Label for timeout if encoder is not in-position within time
specified by TW.

#AUTO Label for automatic program start

Example Program:
#AUTO Beginning of the Program

SH Turn motors on

PR 10000,20000;BG XY Specify relative distances on X and Y axes; Begin Motion

AM Wait for motion complete

WT 2000 Wait 2 sec

JP # AUTO Jump to label AUTO

EN End of Program

The above program will execute automatically at power up and move X and Y 10000 and 20000 units. After the
motion is complete, the motors rest for 2 seconds. The cycle repeats indefinitely until the stop command is
issued.

Executing Programs - Multitasking
Up to four programs can run independently. The programs, called threads, are numbered 0 through 3, where 0 is
the main thread.

The main thread differs from the others in the following points:

 1. Only the main thread may use the input command, IN.

2. In a case of interrupts, due to inputs, limit switches, position errors or command errors, it is the program in
thread 0 which jumps to those subroutines.

The execution of the various programs is done with the instruction:

XQ #A, n

Where n indicates the thread number. To halt the execution of any thread, use the instruction

HX n

where n is the thread number.

Note that both the XQ and HX functions can be performed by an executing program.

Multitasking is useful for executing independent operations such as PLC functions that occur independently of
motion. The example below produces a waveform on Output 1 independent of a move.

#TASK1 Task1 label

AT0 Initialize reference time

CB1 Clear Output 1

#LOOP1 Loop1 label

AT 10 Wait 10 msec from reference time

SB1 Set Output 1

AT -40 Wait 40 msec from reference time, then initialize reference

CB1 Clear Output 1

JP #LOOP1 Repeat Loop1

#TASK2 Task2 label

XQ #TASK1,1 Execute Task1

#LOOP2 Loop2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low

HX Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the main thread.
#TASK1 is executed within TASK2.

Debugging Programs
The SMC-2000 provides trace and error code commands which are used in debugging programs. The trace
command may be activated using the command, TR1. This command causes each line in a program to be sent
out to the communications port immediately prior to execution. The TR1 command is useful for debugging
programs. TR0 disables the trace function. The TR command may also be included as part of a program.

If there is a program error, the SMC-2000 will halt program execution at the line number at which an error
occurs and display the line. The user can obtain information about the type of error condition that occurred by
using the command, TC1. This command reports back a number and error condition as follows:

Error Codes:

4 •••• Application Programming SMC-2000 User’s Guide

 1 Unrecognized command

 2 Command only valid from program

 3 Command not valid in program

 4 Operand error

 5 Input buffer full

 6 Number out of range

 7 Command not valid while running

 8 Command not valid while not running

 9 Variable error

 10 Empty program line or undefined label

 11 Invalid label or line number

 12 Subroutine more than 16 deep

 13 JG only valid when running in jog mode

 14 EEPROM check sum error

 15 EEPROM write error

 16 IP incorrect sign during position move or IP given during forced deceleration

 17 ED, BN and DL not valid while program running

18 Command not valid when contouring

19 Application program/strand already executed

 20 Begin not valid with motor off

 21 Begin not valid while running

 22 Begin not possible due to Limit Switch

 24 Begin not valid because no sequence defined

 25 Variable not given in IN command

 28 S operand not valid

 29 Not valid during coordinated move

 30 Sequence segment too short

 31 Total move distance in a sequence > 2 billion

 32 More than 511 segments in a sequence

 41 Contouring record range error

 42 Contour data being sent too slowly

 46 Gear axis both master and follower

 50 Not enough fields

 51 Question mark not valid

 52 Missing “ or string too long

 53 Error in {}

 54 Question mark part of string

 55 Missing [or []

 56 Array index invalid or out of range

 57 Bad function or array

 58 Unrecognized command in a command response (i.e._TPQ)

 59 Mismatched parentheses

 60 Download error - line too long or too many lines

61 Duplicate or bad label

62 Too many labels

 65 IN command must have a comma

 66 Array space full

 67 Too many arrays or variables

 71 IN only valid in task #0

 80 Record mode already running

 81 No array or source specified

 82 Undefined array

 83 Not a valid number

 84 Too many elements

90 Only X,Y,Z,W or A,B,C,D,E,F,G,H valid operand

96 SM jumper needs to be installed for stepper motor operation

100 Not valid when running ECAM

101 Improper index to ET (must be 0-256)

102 No master axis for ECAM

103 Master axis modulus greater than 256*EP value

104 Not valid when axis performing ECAM

105 EB1 command must be given first

114 Absolute Encoder option not installed

115 Motor must be in MO for this comment

116 Absolute Encoder responded with an alarm

117 Absolute Encoder did not respond

118 Controller has GL1600, not GL1800

Note: TC0 or TC will return the error code only without the text message.

Example:

#A Program Label

PR1000 Position Relative 1000

BGX Begin

PR5000 Position Relative 5000

EN End

6 •••• Application Programming SMC-2000 User’s Guide

:XQ #A Execute #A

?003 PR5000 Error on Line 3

:TC1 Tell Error Code

AMX;PR5000;BGX Add After Motion Done

:XQ #A Execute #A

Program Flow Commands
The SMC-2000 provides several instructions that control program flow. Normally, the SMC-2000 program
sequencer executes instructions in a program sequentially. Program Flow commands, however, may be used to
redirect program flow. A summary of these commands is given below and they are detailed in the following
sections.

Program Flow Command Summary

JP Conditional Jump

JS Conditional Jump to Subroutine

AD After Distance Trigger

AI After Input Trigger

AM After Motion Complete Trigger

AP After Absolute Position Trigger

AR Relative Distance Trigger

AS After Speed Trigger

AT Wait for time with respect to reference

AV After Vector Distance Trigger

MC Trigger "In position" trigger (TW x,y,z,w sets timeout for
in-position)

MF Trigger Forward motion

MR Trigger Reverse motion

WC Wait for Contour Data

WT Wait for time to elapse

Event Triggers & Trippoints
To function independently from the host computer, the SMC-2000 can be programmed to make decisions based
on the occurrence of an event. Such events include waiting for motion to be complete, waiting for a specified
amount of time to elapse, or waiting for an input to change logic levels.

The SMC-2000 provides several event triggers that cause the program sequencer to halt until the specified event
occurs. Normally, a program is automatically executed sequentially one line at a time. When an event trigger
instruction is decoded, however, the actual program sequence is halted. The program sequence does not
continue until the event trigger is "tripped". For example, the motion complete trigger can be used to separate
two move sequences in a program. The commands for the second move sequence will not be executed until the
motion is complete on the first motion sequence. In this way, the SMC-2000 can make decisions based on its
own status or external events without intervention from a host computer.

SMC-2000 Event Triggers
Command Function
AM X Y Z W or S
(A B C D E F G H)

Halts program execution until motion is complete on the
specified axes or motion sequence(s). AM with no
parameter tests for motion complete on all axes. This
command is useful for separating motion sequences in a
program.

AD X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until position command has
reached the specified relative distance from the start of the
move. Only one axis may be specified at a time.

AR X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until after specified distance from
the last AR or AD command has elapsed. Only one axis
may be specified at a time.

AP X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until after absolute position
occurs. Only one axis may be specified at a time.

AI +/-n Halts program execution until after specified input is at
specified logic level. n specifies input line. Positive is
high logic level, negative is low level.

AS X Y Z W S
(A B C D E F G H)

Halts program execution until specified axis has reached its
slew speed.

AT +/-n Halts program execution until n msec from reference time.
AT 0 sets reference. AT n waits n msec from reference.
AT -n waits n msec from reference and sets new reference
after elapsed time.

AV n Halts program execution until specified distance along a
coordinated path has occurred.

MC X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halt program execution until after the motion profile has
been completed and the encoder has entered or passed the
specified position. TW x,y,z,w sets timeout to declare an
error if not in position. If timeout occurs, then the
trippoint will clear and the stop code will be set to 99. An
application program will jump to label #MCTIME.

MF X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halt program execution until after forward motion reached
absolute position. Only one axis may be specified. If
position is already past the point, then MF will trip
immediately.

MR X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halt program execution until after reverse motion reached
absolute position. Only one axis may be specified. If
position is already past the point, then MR will trip
immediately.

WT n Halts program execution until specified time in msec has
elapsed.

Event Trigger Examples:

Event Trigger - Multiple Move Sequence
The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for the
second PR command because a new PR cannot be given until motion is complete.

#TWOMOVE Label

8 •••• Application Programming SMC-2000 User’s Guide

PR 2000 Position Command

BGX Begin Motion

AMX Wait for Motion Complete

PR 4000 Next Position Move

BGX Begin 2nd move

EN End program

In the above example, the AM trippoint is used to separate the two PR moves. If AM is not used, the controller
returns a ? for the second PR command because a new PR cannot be given until motion is complete.

Event Trigger - Set Output after Distance
Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint is the
speed multiplied by the sample period.

#SETBIT Label

SP 10000 Speed is 10000

PA 20000 Specify Absolute position

BGX Begin motion

AD 1000 Wait until 1000 counts

SB1 Set output bit 1

EN End program

The above example sets output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of
the trippoint is the speed multiplied by the sample period.

Event Trigger - Repetitive Position Trigger
To set the output bit every 10000 counts during a move, the AR trippoint is used as shown in the next example.

#TRIP Label

JG 50000 Specify Jog Speed

BGX;N=0 Begin Motion

#REPEAT # Repeat Loop

AR 10000 Wait 10000 counts

TPX Tell Position

SB1 Set output 1

WT50 Wait 50 msec

CB1 Clear output 1

N=N+1 Increment counter

JP #REPEAT,N<5 Repeat 5 times

STX Stop

EN End

Event Trigger - Start Motion on Input
This example waits for input 1 to go low and then starts motion. Note: The AI command actually halts
execution of the program until the input occurs. If you do not want to halt the program sequences, you can use
the Input Interrupt function (II) or use a conditional jump on an input, such as JP #GO,@IN[1] = 0.

#INPUT Program Label

AI-1 Wait for input 1 low

PR 10000 Position command

BGX Begin motion

EN End program

Event Trigger - Set output when At speed

#ATSPEED Program Label

JG 50000 Specify jog speed

AC 10000 Acceleration rate

BGX Begin motion

ASX Wait for at slew speed 50000

SB1 Set output 1

EN End program

Event Trigger - Change Speed along Vector Path
The following program changes the feed rate or vector speed at the specified distance along the vector. The
vector distance is measured from the start of the move or from the last AV command.

#VECTOR Label

VMXY;VS 5000 Coordinated path

VP 10000,20000 Vector position

VP 20000,30000 Vector position

VE End vector

BGS Begin sequence

AV 5000 After vector distance

VS 1000 Reduce speed

EN End

Event Trigger - Multiple move with wait
#MOVES Label

PR 12000 Distance

SP 20000 Speed

AC 100000 Acceleration

BGX Start Motion

AD 10000 Wait a distance of 10,000 counts

SP 5000 New Speed

AMX Wait until motion is completed

WT 200 Wait 200 ms

PR -10000 New Position

SP 30000 New Speed

AC 150000 New Acceleration

10 •••• Application Programming SMC-2000 User’s Guide

BGX Start Motion

EN End

Define Output Waveform Using AT
The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats every 50
msec.

#OUTPUT Program label

AT0 Initialize time reference

SB1 Set Output 1

#LOOP Loop

AT 10 After 10 msec from reference,

CB1 Clear Output 1

AT -40 Wait 40 msec from reference and reset reference

SB1 Set Output 1

JP #LOOP Loop

EN

Conditional Jumps
The SMC-2000 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for
branching to a new program location based on a specified condition. Unlike event triggers, the conditional jump
instruction does not halt the program sequence. Instead, it tests to see if a condition is satisfied and then
branches to a new location or subroutine. (A subroutine is a group of commands defined by a label and EN
command. After all the commands in the subroutine are executed, a return is made to the main program). If the
condition is not satisfied, the program sequence continues to the next program line.

The JP and JS instructions have the following format:

Format: Meaning
JS destination, logical condition Jump to subroutine if logical condition is satisfied

JP destination, logical condition Jump to location if logical condition is satisfied

The destination is a program line number or label. The destination is where the program sequencer jumps to if
the specified condition is satisfied. The comma designates "IF". The logical condition tests two operands with
logical operators. The operands can be any valid SMC-2000 numeric operand, including variables, array
elements, numeric values, functions, keywords, and arithmetic expressions.

Logical operators:
< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal

Operands:

Type Examples

Number V1=6

Numeric Expression V1=V7*6

 @ABS[V1]>10

Array Element V1<Count[2]

Variable V1<V2

Internal Variable _TPX=0

 _TVX>500

I/O V1>@AN[2]

 @IN[1]=0

The jump statement may also be used without a condition.

Example conditional jump statements are given below:

Conditional Meaning
JP #LOOP,COUNT<10 Jump to #LOOP if the variable, COUNT, is less than 10

JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high.
After the subroutine MOVE2 is executed, the program
sequencer returns to the main program location where the
subroutine was called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is
greater than 2

JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal
to the value of V8*V2

JP#A Jump to #A

Conditional jumps are useful for testing events in real-time. They allow the SMC-2000 to make decisions
without a host computer. For example, the SMC-2000 can decide between two motion profiles based on the
state of an input line. Or, the SMC-2000 can keep track of how many times a motion profile is executed.

NOTE: Conditions may NOT be grouped using the AND (&) or OR (|) operators.

Example:
Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between moves.

#BEGIN Begin Program

COUNT=10 Initialize loop counter

#LOOP Begin loop

PA 1000 Position absolute 1000

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

PA 0 Position absolute 0

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

COUNT=COUNT-1 Decrement loop counter

JP #LOOP,COUNT>0 Test for 10 times through loop

12 •••• Application Programming SMC-2000 User’s Guide

EN End Program

Subroutines
A subroutine is a group of instructions beginning with a label and ending with an END (EN). Subroutines are
called from the main program with the jump subroutine instruction JS, followed by a label or line number, and
conditional statement. Up to 16 subroutines can be nested. After the subroutine is executed, the program
sequencer returns to the program location where the subroutine was called unless the subroutine stack is
manipulated as described in the following section.

Example:
An example of a subroutine to draw a square 500 counts per side is given below. The square is drawn at vector
position 1000,1000.

#M Begin Main Program

CB1 Clear Output Bit 1 (pick up pen)

VP 1000,1000;LE;BGS;AMS Define vector position; move pen

SB1 Set Output Bit 1 (put down pen)

JS #SQUARE;CB1 Jump to square subroutine

EN End Main Program

#SQUARE Square subroutine

V1=500;JS #L Define length of side

V1=-V1;JS #L Switch direction

EN End subroutine

#L;PR V1,V1;BGX Define X,Y; Begin X

AMX;BGY;AMY After motion on X, Begin Y

EN End subroutine

Stack Manipulation
It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS instruction,
interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine stack is incremented
by 1. Normally the stack is restored with an EN instruction. Occasionally it is desirable not to return back to
the program line where the subroutine or interrupt was called. The ZS1 command clears 1 level of the stack.
This allows the program sequencer to continue to the next line. The ZS0 command resets the stack to its initial
value. For example, if a limit occurs and the #LIMSWI routine is executed, it is often desirable to restart the
program sequence instead of returning to the location where the limit occurred. To do this, give a ZS command
at the end of the #LIMSWI routine.

Automatic Subroutines for Monitoring Conditions
Often it is desirable to monitor certain conditions continuously without tying up the host or SMC-2000 program
sequences. The SMC-2000 can monitor several important conditions in the background. These conditions
include checking for the occurrence of a limit switch, a defined input, position error, or a command error.
Automatic monitoring is enabled by inserting a special, predefined label in the applications program. The pre-
defined labels are:

#LIMSWI Limit switch on any axis goes low

#POSERR Position error exceeds limit specified by ER

#ININT Input specified by II goes low

#CMDERR Bad command given

#COMINT Communication interrupt occurred

#MCTIME Timeout for In-position trippoint, MC

#AUTO Auto start program on power-up

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position error
limit. The commands in the #POSERR subroutine could decode which axis is in error and take the appropriate
action. In another example, the #ININT label could be used to designate an input interrupt subroutine. When
the specified input occurs, the program will be executed automatically.

Note: An application program must be running for automatic monitoring to function.

Example - Limit Switch:
This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine to
function, the SMC-2000 must be executing an applications program from memory. This can be a very simple
program that does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion commands, such as
JG 5000 can still be sent from the PC even while the "dummy" applications program is being executed.

#LOOP Dummy Program

JP #LOOP;EN Jump to Loop

#LIMSWI Limit Switch Label

MG "LIMIT OCCURRED" Print Message

RE Return to main program

:XQ #LOOP Execute Dummy Program

:JG 5000 Jog

:BGX Begin Motion

Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

Note: The RE command is used to return from the #LIMSWI subroutine.

Note: The #LIMSWI will continue to be executed until the limit switch is cleared (goes high).

Example - Position Error

#LOOP Dummy Program

JP #LOOP;EN Loop

#POSERR Position Error Routine

V1=_TEX Read Position Error

MG "EXCESS POSITION ERROR" Print Message

MG "ERROR=",V1= Print Error

RE Return from Error

:XQ #LOOP Execute Dummy Program

:JG 100000 Jog at High Speed

:BGX Begin Motion

14 •••• Application Programming SMC-2000 User’s Guide

Now, if the position error on the X axis exceeds that specified by the ER command, the #POSERR routine will
execute.

Note: The RE command is used to return from the #POSERR subroutine

Note: The #POSERR routine will continue to be executed until the position error is cleared (is less than the ER
limit).

Input Interrupt Example:
#A Label

II1 Input Interrupt on 1

JG 30000,,,60000 Jog

BGXW Begin Motion

#LOOP;JP#LOOP;EN Loop

#ININT Input Interrupt

ST;AM Stop Motion

#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low

BGXW;RI Begin motion and Return to Main Program

EN

NOTE: Use the RI command to return from #ININT subroutine.

Bad Command Example
#BEGIN Begin main program

IN "ENTER SPEED", SPEED Prompt for speed

JG SPEED;BGX; Begin motion

JP #BEGIN Repeat

EN End main program

#CMDERR Command error utility

JP#DONE,_TC<>6 Check if out of range

MG "SPEED TOO HIGH" Send message

MG "TRY AGAIN" Send message

ZS1 Adjust stack

JP #BEGIN Return to main program

#DONE End program if other error

ZS0 Zero stack

EN End program

The above program prompts the operator to enter a jog speed. If the operator enters a number out of range
(greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter a new number.

Mathematical and Functional Expressions
For manipulation of data, the SMC-2000 provides the use of the following mathematical operators:

Operator Function
+ Addition

- Subtraction

* Multiplication

/ Division

& Logical And (Bit-wise)

| Logical Or (On some computers, a solid vertical line
appears as a broken line)

() Parenthesis

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999. The
precision for division is 1/65,000.

Mathematical operations are executed from left to right. Parentheses can be used and nested four deep.
Calculations within a parentheses have precedence.

16 •••• Application Programming SMC-2000 User’s Guide

Examples:
SPEED=7.5*V1/2 The variable, SPEED, is equal to 7.5 multiplied by V1 and

divided by 2

COUNT=COUNT+2 The variable, COUNT, is equal to the current value plus 2.

RESULT=_TPX-(@COS[45]*40) Puts the position of X - 28.28 in RESULT. 40 * cosine of
45° is 28.28

TEMP=@IN[1]&@IN[2] TEMP is equal to 1 only if Input 1 and Input 2 are high

The SMC-2000 also provides the following functions:

Function Command Meaning
@ABS Absolute Value

@SIN Sine

@COS Cosine

@COM 2's Complement

@FRAC Fraction

@INT Integer

@RND Rounds number .5 and up to next integer

@IN[n] Read digital input n

@AN[n] Read analog input n

@SQR[n] Square Root Function; Accuracy is +/-.0004

Functions may be combined with mathematical expressions. The order of execution is from left to right. The
units of the SIN and COS functions are in degrees with resolution of 1/128 degrees. The values can be up to +/-
4 billion degrees.

Example:

V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable
V7.

V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the
variable, POS.

V3=@IN[1] The variable, V3, is equal to the digital value of input 1.

V4=@AN[5] The variable, V4, is equal to the digital value of analog
input 5.

Variables
Many motion applications include parameters that are variable. For example, a cut-to-length application often
requires that the cut length be variable. The motion process is the same, however the length is changing.

To accommodate these applications, the SMC-2000 provides for the use of both numeric and string variables. A
program can be written in which certain parameters, such as position or speed, are defined as variables. The
variables can later be assigned by the operator or determined by the program calculations.

Example:

PR POSX Assigns variable POSX to PR command

JG RPMY*70 Assigns variable RPMY multiplied by 70 to JG command.

Programmable Variables
The SMC-2000 allows the user to create up to 254 variables. Each variable is defined by a name which can be
up to eight characters. The name must start with an alphabetic character, however, numbers are permitted in the
rest of the name. Spaces are not permitted. Examples of valid and invalid variable names are:

Valid Variable Names

POSX

POS1

SPEEDZ

Invalid Variable Names

1POS

123

SPEED Z

It is recommended that variable names not be the same as SMC-2000 instructions. For example, PR is not a
good choice for a variable name.

The range for numeric variable values is 4 bytes of integer followed by two bytes of fraction (+/-
2,147,483,647.9999).

String variables can contain up to six characters which must be in quotation. Example: VAR="STRING".

Numeric values can be assigned to programmable variables using the equal sign. Assigned values can be
numbers, internal variables and keywords, and functions. String values can be assigned to variables using
quotations.

Any valid SMC-2000 function can be used to return a value such as V1=@ABS[V2] or V2=@IN[1].
Arithmetic operations are also permitted.

Example:

POSX=_TPX Assigns returned value from TPX command to variable
POSX.

SPEED=5.75 Assigns value 5.75 to variable SPEED

INPUT=@IN[2] Assigns logical value of input 2 to variable INPUT

V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable
V2.

VAR="CAT" Assign the string, CAT, to VAR

Variable values may be assigned to controller parameters such as GN or PR. Here, an equal is not used. For
example:

 PR V1 Assign V1 to PR command

 SP VS*2000 Assign VS*2000 to SP command

Example - Using Variables for Joystick
The example below reads the voltage of an X-Y joystick and assigns it to variables VX and VY to drive the
motors at proportional velocities, where

 10 Volts = 8191 counts --> 3000 rpm = 200000 c/sec

 Speed/Analog input = 200000/8191 = 24.4

18 •••• Application Programming SMC-2000 User’s Guide

#JOYSTICK Label

JG 0,0 Set in Jog mode

BGXY Begin Motion

#LOOP Loop

VX=@AN[1]*24.4 Read joystick X

VY=@AN[2]*24.4 Read joystick Y

JG VX,VY Jog at variable VX,VY

JP#LOOP Repeat

EN End

Internal Variables & Keywords
Internal variables allow motion or status parameters from SMC-2000 commands to be incorporated into
programmable variables and expressions. Internal variables are designated by adding an underscore (_) prior to
the SMC-2000 command. SMC-2000 commands which can be used as internal variables are listed in the
Command Reference as "Used as an Operand".

Most SMC-2000 commands can be used as internal variables. Status commands such as Tell Position return
actual values, whereas action commands such as GN or SP return the values in the SMC-2000 registers. The
X,Y,Z or W or A,B,C,D,E,F,G,H for the SMC-2000-8, axis designation is required following the command.

Examples:

POSX=_TPX Assigns value from Tell Position X to the variable POSX.

GAIN=_GNZ*2 Assigns value from GNZ multiplied by two to variable,
GAIN.

JP #LOOP,_TEX>5 Jump to #LOOP if the position error of X is greater than 5

JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1.

Internal variables can be used in an expression and assigned to a programmable variable, but they cannot be
assigned a value. For example: _GNX=2 is invalid.

The SMC-2000 also provides a few keywords which give access to internal variables that are not accessible by
standard SMC-2000 commands.

Keyword Function
_BGX or _BGY or _BGW Motion Done if 1. Moving if 0.

_LFX or _LFY or _LFZ or_LFW Forward Limit (equals 0 or 1)

_LRX or _LRY or _LRZ or LRW Reverse Limit (equals 0 or 1)

TIME Free-Running Real Time Clock* (off by 2.4% - Reset on
power-on). Note: TIME does not use _.

_HMX or _HMY or _HMZ or HMW Home Switch (equals 0 or 1)

Examples:
V1=_LFX Assign V1 the logical state of the Forward Limit Switch on

the X-axis

V3=TIME Assign V3 the current value of the time clock

V4=_HMW Assign V4 the logical state of the Home input on the W-
axis

Example Program:

#TIMER Timer

INITIME=TIME Initialize time variable

PR50000;BGX Begin move

AMX After move

ELAPSED=TIME-INTIME Compute elapsed time

EN End program

#LIMSWI Limit Switch Routine

JP #FORWARD,_LFX=0 Jump if Forward Limit

AMX Wait for Motion Done

PR 1000;BGX;AMX Move Away from Reverse Limit

JP #END Exit

#FORWARD Forward Label

PR -1000;BGX;AMX Move Away from Forward Limit

#END Exit

RE Return to Main Program

Arrays
For storing and collecting numerical data, the SMC-2000 provides array space for 8000 elements in up to 30
arrays. Arrays can be used to capture real-time data, such as position, torque and analog input values. In the
contouring mode, arrays are convenient for learning a position trajectory and later playing it back.

Defining Arrays
An array is defined by a name and number of entries using the DM command. The name can contain up to eight
characters, starting with an uppercase alphabetic character.

The number of entries in the defined array is enclosed in [].

Up to 30 different arrays may be defined. The arrays are one dimensional.

Example:
DM POSX[7] Defines an array named POSX with seven entries

DM SPEED[100] Defines an array named speed with 100 entries

DM POSX[0] Frees array space

Each array element has a numeric range of 4 bytes of integer (231)followed by two bytes of fraction (+/-
2,147,483,647.9999).

Array space may be de-allocated using the DA command followed by the array name. DA*[0] de-allocates all
the arrays.

Assignment of Array Entries
Like variables, each array element can be assigned a value. Assigned values can be numbers or returned values
from instructions, functions and keywords.

20 •••• Application Programming SMC-2000 User’s Guide

Values are assigned to array entries using the equal sign. Assignments are made one element at a time by
specifying the element number with the associated array name.

NOTE: Remember to define arrays using the DM command before assigning entry values.

Examples:

DM SPEED[10] Dimension Speed Array

SPEED[1]=7650.2 Assigns the first element of the array, SPEED the value
7650.2

SPEED[1]= Returns array element value

POSX[10]=_TPX Assigns the 10th element of the array POSX the returned
value from the tell position command.

CON[2]=@COS[POS]*2 Assigns the second element of the array CON the cosine of
the variable POS multiplied by 2.

TIMER[1]=TIME Assigns the first element of the array timer the returned
value of the TIME keyword.

An array element number can also be a variable. This allows array entries to be assigned sequentially using a
counter.

For example:

#A Begin Program

COUNT=0;DM POS[10] Initialize counter and define array

#LOOP Begin loop

WT 10 Wait 10 msec

POS[COUNT]=_TPX Record position into array element

POS[COUNT]= Report position

COUNT=COUNT+1 Increment counter

JP #LOOP,COUNT<10 Loop until 10 elements have been stored

EN End Program

The above example records 10 position values at a rate of one value per 10 msec. The values are stored in an
array named POS. The variable, COUNT, is used to increment the array element counter. The above example
can also be executed with the automatic data capture feature described below.

Arrays may be uploaded and downloaded using the QU and QD commands.

QU array[],start,end,comma

QD array[],start,end

where array is an array name such as A[].

Start is the first element of array (default=0)

End is the last element of array (default=last element)

Comma -- if comma is a 1, then the array elements are separated by a comma. If not a 1, then the elements are
separated by a carriage return.

The file is terminated using <control>Z, <control>Q, <control>D or \.

Automatic Data Capture into Arrays
The SMC-2000 provides a special feature for automatic capture of data such as position, position error, inputs
or torque. This is useful for teaching motion trajectories or observing system performance. Up to eight types of
data can be captured and stored in eight arrays. The capture rate or time interval may be specified.

Commands used:

RA n[],m[],o[],p[] Selects up to four arrays (eight arrays for SMC-2000-8) for
data capture. The arrays must be defined with the DM
command.

RD_TI,_TPX,_SCZ,_TSY Selects the type of data to be recorded. See the table below
for the various types of data. The order of data type is
important and corresponds with the order of n,m,o,p arrays
in the RA command. In this example, the _TI input data is
stored in the first array selected by the RA command.

RC n,m The RC command begins data collection. Sets data capture
time interval where n is an integer between 1 and 8 and
designates 2n msec between data. m is optional and
specifies the number of elements to be captured. If m is not
defined, the number of elements defaults to the smallest
array defined by DM. n=0 stops recording.

RC? or V=_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies
recording in progress

Data Types for Recording

_DEX 2nd encoder position (dual encoder)

_TPX Encoder position

_TEX Position error

_RPX Commanded position

_RLX Latched position

_TI Inputs

_OP Output

_TSX Switches (only bit 0-4 valid)

_SCX Stop code

_TBX Status bits

_TTX Torque (reports digital value +/-32703)

Note: X may be replaced by Y,Z or W for capturing data on other axes, or A,B,C,D,E,F,G,H for SMC-2000-8.

Example - Recording into An Array
During a position move, store the X and Y positions and position error every 2 msec.

#RECORD Begin program

DM XPOS[300],YPOS[300] Define X,Y position arrays

DM XERR[300],YERR[300] Define X,Y error arrays

RA XPOS[],XERR[],YPOS[],YERR[] Select arrays for capture

RD _TPX,_TEX,_TPY,_TEY Select data types

22 •••• Application Programming SMC-2000 User’s Guide

PR 10000,20000 Specify move distance

RC1 Start recording now, at rate of 2 msec

BG XY Begin motion

#A;JP #A,RC=1 Loop until done

MG "DONE" Print message

EN End program

#PLAY Play back

N=0 Initial Counter

JP# DONE,N>300 Exit if done

N= Print Counter

X POS[N]= Print X position

Y POS[N]= Print Y position

XERR[N]= Print X error

YERR[N]= Print Y error

N=N+1 Increment Counter

#DONE Done

Input and Output of Data

Sending Messages
Messages may be sent to the bus using the message command, MG. This command sends specified text and
numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the variable or array.
For formatting string variables, the {Sn} specifier is required where n is the number of characters, 1 through 6.
Example:

MG STR {S3}

The above statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the completed MG statement. {$n.m}
formats data in HEX instead of decimal. Example:

MG "The Final Value is", RESULT {F5.2}

The above statement sends the message:

The Final Value is xxxxx.xx

The actual numerical value for the variable, RESULT, is substituted with the format of 5 digits to the left of the
decimal and 2 to the right.

In addition to variables, functions and commands, responses can be used in the message command. For
example:

MG "Analog input is", @AN[1]

MG "The Gain of X is", _GNX

The message command normally sends a carriage return and line feed following the statement. The carriage
return and the line feed may be suppressed by sending {N} at the end of the statement. This is useful when a
text string needs to surround a numeric value.

Example:

#A Label

JG 50000;BGX;ASX Jog, Begin, After Speed

MG "The Speed is", _TVX {F5.1} {N} Message

MG "counts/sec" Message

EN End Program

When #A is executed, the above example will appear on the screen as:

The speed is 50000 counts/sec

The MG command can also be used to configure terminals. Here, any character can be sent by using {^n}
where n is any integer between 1 and 255.

Example:

MG {^07} {^255}

sends the ASCII characters represented by 7 and 255 to the bus.

Summary of Message Functions:

MG Message command

" " Surrounds text string

{Fn.m} Formats numeric values in decimal n digits to the right of
the decimal point and m digits to the left

{$n.m} Formats numeric values in hexadecimal

{^n} Sends ASCII character specified by integer n

{N} Suppresses carriage return/line feed

{Sn} Sends the first n characters of a string variable, where n is 1
through 6.

Variables may also be sent to the screen using the variable= format. Variable Name= returns the variable value.
For example, V1= , returns the value of the variable V1.

Example - Printing a Variable

#DISPLAY Label

PR 1000 Position Command

BGX Begin

AMX After Motion

V1=_TPX Assign Variable V1

V1= Print V1

Input of Data
The IN command is used to prompt the user to input numeric or string data. The input data is assigned to the
specified variable or array element.

24 •••• Application Programming SMC-2000 User’s Guide

A message prompt may be sent to the user by specifying the message characters in quotes.

Example:

#A

IN "Enter Length", LENX

EN

The above program sends the message:

Enter Length

to the PC screen and waits for the operator to enter a value. The operator enters the numeric value which is
assigned to the variable, LENX. String variables with up to six characters may also be input using the {S}
specifier. For example, IN "Enter X,Y or Z", V{S} specifies a string variable to be input.

Cut-to-Length Example
In this example, a length of material is to be advanced a specified distance. When the motion is complete, a
cutting head is activated to cut the material. The length is variable, and the operator is prompted to input it in
inches. Motion starts with a start button which is connected to input 1.

The load is coupled with a 2 pitch lead screw. A 2000 count/rev encoder is on the motor, resulting in a
resolution of 4000 counts/inch. The program below uses the variable LEN, to length. The IN command is used
to prompt the operator to enter the length, and the entered value is assigned to the variable LEN.

#BEGIN Label

AC 800000 Acceleration

DC 800000 Deceleration

SP 5000 Speed

LEN=3.4 Initial length in inches

#CUT Cut routine

AI1 Wait for start signal

IN "enter Length(IN)", LEN Prompt operator for length in inches

PR LEN *4000 Specify position in counts

BGX Begin motion to move material

AMX Wait for motion done

SB1 Set output to cut

WT100;CB1 Wait 100 msec, then turn off cutter

JP #CUT Repeat process

EN End program

Operator Data Entry Mode
The Operator Data Entry Mode permits data to be entered at anytime and it is not interpreted as a standard
SMC-2000 command. This mode may only be used when executing an applications program. Normal SMC-
2000 commands such as ST or JG will not be responded to in this mode. The mode may be exited with the <\>
or <ESCAPE> key. The Operator Data Entry Mode may be specified for either Port 1 or Port 2 or both.

Note: This is not used for high rate data transfer.

For Port 1:

Use the third field of the CI command to set the Data Mode. A 1 specifies Operator Data Mode, a 0 disables the
Data Mode.

For Port 2:

Use the third field of the CC command to set the Data Mode. A 0 configures P2 as a general port for the
Operator Data Mode.

In the Operator Data Mode, the SMC-2000 provides a buffer for receiving characters.

To decode characters in the Operator Data Mode, the SMC-2000 provides four special keywords for Port 1 (P1)
and Port (P2).

Keyword Function
P1CH or P2CH Contains the last character received

P1ST or P2ST Contains the received string

P1NM or P2NM Contains the received number

P1CD or P2CD -1 - mode disabled
0 - nothing received
1 -received character, but NOT <ENTER>.
2 -received string, but NOT a number
3 -received number

Note: The value of P1CD and P2CD returns to zero after the corresponding string or number is read.

These keywords may be used in an applications program to decode data. They may be used in conditional
statements with logical operators.

Examples:
JP #LOOP,P2CD<>3 Checks to see if status code is 3 (number received

JP #P,P1CH=“V” Checks if last character received was a V

PR P2NM Assigns received number to position

JS #XAXIS,P1ST=“X" Checks to see if received string is X

The SMC-2000 provides a special interrupt for communication. The interrupt is enabled using the CI command,
where CI n,m,o

n=0 Don’t interrupt Port 1

1 Interrupt on <ENTER> Port 1

2 Interrupt on any character Port 1

-1 Clear any characters in buffer

26 •••• Application Programming SMC-2000 User’s Guide

m=0 Don’t interrupt Port 2

1 Interrupt on <ENTER> Port 2

2 Interrupt on any character Port 2

-1 Clear any characters in buffer

o=0 Disable operator data mode for Port 1

1 Enable operator data mode for Port 1

Formatting Data
Returned numeric values may be formatted in decimal or hexadecimal* with a specified number of digits to the
right and left of the decimal point using the PF command.

The Position Format (PF) command formats motion values such as those returned by the Tell Position (TP),
Speed? (SP?) and Tell Error (TE) commands.

Position Format is specified by:

PF m.n

where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of digits to
the right of the decimal point (0 through 4) A negative sign for m specifies hexadecimal format.

Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as signed 2's
complement, where negative numbers have a negative sign. The default format is PF 10.0.

Examples:

:DP21 Define position

:TPX Tell position

0000000021 Default format

:PF4 Change format to 4 places

:TPX Tell position

0021 New format

:PF-4 Change to hexadecimal format

:TPX Tell Position

$0015 Hexadecimal value

The following interrogation commands are affected by the PF command:

DP

ER

PA

PR

TE

TP

If the number of decimal places specified by PF is less than the actual value, a nine appears in all the decimal
places.

Example:

:PF2 Format 2 places

:TPX Tell position

99 Returns 99 if actual position is more than allowed format

The Variable Format (VF) command is used to format variables and array elements. The VF command is
specified by:

 VF m.n

where m is the number of digits to the left of the decimal point (0 through 10) and n is the number of digits to
the right of the decimal point (0 through 4).

A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4

Hex values are returned preceded by a $ and in 2's complement.

:V1=10 Assign V1

:V1= Return V1

0000000010.0000 Default format

:VF2.2 Change format

:V1= Return V1

10.00 New format

:VF-2.2 Specify hex format

:V1= Return V1

$0A.00 Hex value

:VF1 Change format

:V1= Return V1

9 Overflow

The variable format also affects returned values from internal variables such as _GNX.

PF and VF commands are global format commands. Parameters may also be formatted locally by using the
{Fn.m} or {$n.m} specification following the variable = . For example:

V1={F4.2} Specifies the variable V1 to be returned in a format of 4
digits to left of decimal and 2 to the right.

F specifies decimal and $ specifies hexadecimal. n is the number of digits to the left of the decimal, and m is the
number of digits to the right of the decimal. The local format is also used with the MG* command.

Examples:

:V1=10 Assign V1

:V1= Return V1

0000000010.0000 Default Format

:V1={F4.2} Specify local format

0010.00 New format

:V1={$4.2} Specify hex format

$000A.00 Hex value

:V1="ALPHA" Assign string "ALPHA" to V1

:V1={S4} Specify string format first 4 characters

28 •••• Application Programming SMC-2000 User’s Guide

ALPH

User Units
Variables and arithmetic operations make it easy to input data in desired user units such as inches or RPM.

For example, an operator can be prompted to input a number in revolutions. The input number is converted into
counts by multiplying it by the number of counts/revolution.

The SMC-2000 position parameters such as PR, PA and VP have units of quadrature counts. Speed parameters
such as SP, JG and VS have units of counts/sec. Acceleration parameters such as AC, DC, VA and VD have
units of counts/sec2. All input parameters must be converted into these units.

Example:

#RUN Label

IN "ENTER # OF REVOLUTIONS",N1 Prompt for revs

PR N1*2000 Convert to counts

IN "ENTER SPEED IN RPM",S1 Prompt for RPMs

SP S1*2000/60 Convert to counts/sec

IN "ENTER ACCEL IN RAD/SEC2",A1 Prompt for ACCEL

AC A1*2000/(2*3.14) Convert to counts/sec2

BG Begin motion

EN End program

Programmable I/O

Digital Outputs
The SMC-2000-4 has an 8-bit uncommitted output port (I/O 1, pins 10-17) for controlling external events. The
SMC-2000-8 has an additional eight output bits available at (I/O 2, pins 10-17). Each bit on the output port may
be set and cleared with the software instructions SB (Set Bit) and CB(Clear Bit), or OB (define output bit).

For example:

Instruction Function
SB6 Sets bit 6 of output port

CB4 Clears bit 4 of output port

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a variable,
array, input or expression. Any non-zero value results in a set bit.

Instruction Function
OB1, POS Set Output 1 if the variable POS is non-zero. Clear Output

1 if POS equals 0.

OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear
Output 2.

OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.

OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

The output port may also be written to as an 8-bit word using the instruction

OP (Output Port). This instruction allows a single command to define the state of the entire 8-bit output port,
where 20 is output 1, 21 is output 2 and so on. A 1 designates that output is on.

For example:

Instruction Function
OP6 Sets outputs 2 and 3 of output port to high. All other bits

are 0. (21 + 22 = 6)

OP0 Clears all bits of output port to zero

OP 255 Sets all bits of output port to one.
(20 + 21 + 22 + 23 + 24 + 25

 + 26 + 27)

The output port is useful for firing relays or controlling external switches and events during a motion sequence.

Example - Turn on output after move

#OUTPUT Label

PR 2000 Position Command

BG Begin

AM After move

SB1 Set Output 1

WT 1000 Wait 1000 msec

CB1 Clear Output 1

EN End

Digital Inputs
The SMC-2000 has eight digital inputs (I/O 1, pins 18-25) for controlling motion by local switches. The
@IN[n] function returns the logic level of the specified input 1 through 8. For example, a Jump on Condition
instruction can be used to execute a sequence if a high condition is noted on an input 3. To halt program
execution, the After Input (AI) instruction waits until the specified input has occurred.

Example:
JP #A,@IN[1]=0 Jump to A if input 1 is low

JP #B,@IN[2]=1 Jump to B if input 2 is high

AI 7 Wait until input 7 is high

AI -6 Wait until input 6 is low

The SMC-2000-8 provides an additional 16 inputs at I/O 2, pins 18-25, and pins 1-7 , and on D2, pin 24. These
are returned with the function @IN[n] where n=9 through 24. Inputs 17 through 24 are TTL level. Inputs 9
through 16 are isolated.

Example - Start Motion on Switch
Motor X must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is turned to
off position, motor X must stop turning.

30 •••• Application Programming SMC-2000 User’s Guide

Solution: Connect panel switch to input 1 of SMC-2000. High on input 1 means switch is in on position.

Instruction Function
#S;JG 4000 Set speed

AI 1;BGX Begin after input 1 goes high

AI -1;STX Stop after input 1 goes low

AMX;JP #S After motion, repeat

EN;

Input Interrupt Function
The SMC-2000 provides an input interrupt function which causes the program to automatically execute the
instructions following the #ININT label. This function is enabled using the II m,n,o command. The m specifies
the beginning input and n specifies the final input in the range. The parameter o is an interrupt mask. If m and n
are unused, o contains a number with the mask. A 1 designates that input to be enabled for an interrupt, where
20 is bit 1, 21 is bit 2 and so on. For example, II,,5 enables inputs 1 and 3 (20 + 22 = 5).

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine. The Return
from Interrupt (RI) command is used to return from this subroutine to the place in the program where the
interrupt had occurred. If it is desired to return to somewhere else in the program after the execution of the
#ININT subroutine, the Zero Stack (ZS) command is used followed by unconditional jump statements.

 Important: Use the RI instruction (not EN) to return from the #ININT subroutine.

Examples - Input Interrupt

#A Label #A

II 1 Enable input 1 for interrupt function

JG 30000,-20000 Set speeds on X and Y axes

BG XY Begin motion on X and Y axes

#B Label #B

TP XY Report X and Y axes positions

WT 1000 Wait 1000 milliseconds

JP #B Jump to #B

EN End of program

#ININT Interrupt subroutine

MG "Interrupt has occurred" Displays the message

ST XY Stops motion on X and Y axes

#LOOP;JP #LOOP,@IN[1]=0 Loop until Interrupt cleared

JG 15000,10000 Specify new speeds

WT 300 Wait 300 milliseconds

BG XY Begin motion on X and Y axes

RI Return from Interrupt subroutine

Analog Inputs
The SMC-2000 provides seven analog inputs. The value of these inputs in volts may be read using the @AN[n]
function where n is the analog input 1 through 7. The resolution of the Analog-to-Digital conversion is 14 bits.
Analog inputs are useful for reading special sensors such as temperature, tension or pressure.

The following examples show programs which cause the motor to follow an analog signal. The first example is
a point-to-point move. The second example shows a continuous move.

Example - Position Follower (Point-to-Point)
Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor must move
10000 counts.

Method: Read the analog input and command X to move to that point.

Instruction Interpretation
#POINTS Label

SP 7000 Speed

AC 80000;DC 80000 Acceleration

#LOOP Label

COMPP=@AN[1]*1000 Read analog input, and compute position

PA COMPP Command position

BGX Start motion

AMX After completion

JP #LOOP Repeat

EN End

Example - Position Follower (Continuous Move)
Method: Read the analog input, compute the commanded position and the position error. Command the motor
to run at a speed in proportions to the position error.

Instruction Interpretation
#CONT Label

AC 80000;DC 80000 Acceleration rate

JG 0 Start job mode

BGX Start motion

#LOOP

COMPP=@AN[1]*1000 Compute desired position

VE=COMPP-_TPX Find position error

PVEL=VE*20 Compute velocity

JG PVEL Change velocity

JP #LOOP Repeat

EN End

32 •••• Application Programming SMC-2000 User’s Guide

Example Applications

Wire Cutter
An operator activates a start switch. This causes a motor to advance the wire a distance of 10". When the
motion stops, the controller generates an output signal which activates the cutter. Allowing 100 ms for the
cutting completes the cycle.

Suppose that the motor drives the wire by a roller with a 2" diameter. Also assume that the encoder resolution is
1000 lines per revolution. Since the circumference of the roller equals 2π inches, and it corresponds to 4000
quadrature, one inch of travel equals:

4000/2π = 637 count/inch

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second, for
example, equals 3185 count/sec.

The input signal may be applied to I1, for example, and the output signal is chosen as output 1. The motor
velocity profile and the related input and output signals are shown in Fig. 7.1.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1. As soon
as the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an additional 80
ms before returning to #A for a new cycle.

Instruction Function
#A Label

AI1 Wait for input 1

PR 6370 Distance

SP 3185 Speed

BGX Start Motion

AMX After motion is complete

SB1 Set output bit 1

WT 20 Wait 20 ms

CB1 Clear output bit 1

WT 80 Wait 80 ms

JP #A Repeat the process

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS
move

output

wait ready move
Figure 7.1 - Motor Velocity and the Associated Input/Output signals

X-Y Table Controller
An X-Y-Z system must cut the pattern shown in Fig. 7.2. The X-Y table moves the plate while the Z-axis raises
and lowers the cutting tool.

The solid curves in Fig. 7.2 indicate sections where cutting takes place. Those must be performed at a feed rate
of 1 inch per second. The dashed line corresponds to non-cutting moves and should be performed at 5 inch per
second. The acceleration rate is 0.1 g.

The motion starts at point A, with the Z-axis raised. An X-Y motion to point B is followed by lowering the Z-
axis and performing a cut along the circle. Once the circular motion is completed, the Z-axis is raised, and the
motion continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-inch pitch. Also assume encoder
resolution of 1000 lines per revolution. This results in the relationship:

1 inch = 40,000 counts

and the speeds of

1 in/sec = 40,000 count/sec

5 in/sec = 200,000 count/sec

an acceleration rate of 0.1g equals

0.1g = 38.6 in/s2 = 1,544,000 count/s2

Note that the circular path has a radius of 2" or 80000 counts, and the motion starts at the angle of 270° and
traverses 360° in the CW (negative) direction. Such a path is specified with the instruction

CR 80000,270,-360

34 •••• Application Programming SMC-2000 User’s Guide

Further assume that the Z must move 2" at a linear speed of 2" per second. The required motion is performed by
the following instructions:

Instruction Function
#A Label

VM XY Circular interpolation for XY

VP 160000,160000 Positions

VE End Vector Motion

VS 200000 Vector Speed

VA 1544000 Vector Acceleration

BGS Start Motion

AMS When motion is complete

PR,,-80000 Move Z down

SP,,80000 Z speed

BGZ Start Z motion

AMZ Wait for completion of Z motion

CR 80000,270,-360 Circle

VE

VS 40000 Feed rate

BGS Start circular move

AMS Wait for completion

PR,,80000 Move Z up

BGZ Start Z move

AMZ Wait for Z completion

PR -21600 Move X

SP 20000 Speed X

BGX Start X

AMX Wait for X completion

PR,,-80000 Lower Z

BGZ

AMZ

CR 80000,270,-360 Z second circle move

VE

VS 40000

BGS

AMS

PR,,80000 Raise Z

BGZ

AMZ

VP -37600,-16000 Return XY to start

VE

VS 200000

BGS

AMS

EN

R=2

B C

A
0 4 9.3

4

Y

X

Figure 7.2 -The Required Path. All dimensions in inches.

Speed Control by Joystick
The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between -10V and
+10V. The objective is to drive the motor at a speed proportional to the input voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder resolution of
1000 lines or 4000 count/rev. This speed equals:

3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the variable VIN. To get a speed of
200,000 ct/sec for 10 volts, we select the speed as

Speed = 20000 x VIN

The corresponding velocity for the motor is assigned to the VEL variable.

36 •••• Application Programming SMC-2000 User’s Guide

Instruction Function
#A Label

JG0 Set motor in jog mode speed zero

BGX Start motion

#B Label

VIN=@AN[1] Read analog input

VEL=VIN*20000 Compute the desired velocity

JG VEL Change the jog speed

JP #B Repeat the process

EN End

Position Control by Joystick
This system requires the position of the motor to be proportional to the joystick angle. Furthermore, the ratio
between the two positions must be programmable. For example, if the control ratio is 5:1, it implies that when
the joystick voltage is 5 Volts, corresponding to 4095 counts, the required motor position must be 20475 counts.
The variable V3 changes the position ratio.

Instruction Function
#A Label

V3=5 Initial position ratio

DP0 Define the starting position

JG0 Set motor in jog mode as zero

BGX Start

#B

V1=@AN[1] Read analog input

V2=V1*V3 Compute the desired position

V4=V2-_TPX-_TEX Find the following error

V5=V4*20 Compute a proportional speed

JG V5 Change the speed

JP #B Repeat the process

EN End

Backlash Compensation by Dual-Loop
This design example addresses the basic problems of backlash in motion control systems. The objective is to
control the position of a linear slide precisely. The slide is to be controlled by a rotary motor, which is coupled
to the slide by a leadscrew. Such a leadscrew has a backlash of 4 micron, and the required position accuracy is
for 0.5 micron.

The basic dilemma is where to mount the sensor. If you use a rotary sensor, you get a 4-micron backlash error.
On the other hand, if you use a linear encoder, the backlash in the feedback loop will cause oscillations due to
instability.

An alternative approach is the dual-loop, where we use two sensors, rotary and linear. The rotary sensor assures
stability (because the position loop is closed before the backlash) whereas the linear sensor provides accurate
load position information. The operation principle is to drive the motor to a given rotary position near the final

point. Once there, the load position is read to find the position error and the controller commands the motor to
move to a new rotary position which eliminates the position error.

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice finer. A
linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of the linear
system. Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch), a rotary encoder
of 2500 lines per turn or 10,000 count per revolution results in a rotary resolution of 0.25 micron. This results
in equal resolution on both linear and rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis, and that the
linear sensor is read and stored in the variable LINPOS. Further assume that at the start, both the position of X
and the value of LINPOS are equal to zero. Now assume that the objective is to move the linear load to the
position of 1000.

The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we check the
position of the load. If, for example, the load position is 980 counts, it implies that a correction of 20 counts
must be made. However, when the X-axis is commanded to be at the position of 1000, suppose that the actual
position is only 995, implying that X has a position error of 5 counts, which will be eliminated once the motor
settles. This implies that the correction needs to be only 15 counts, since 5 counts out of the 20 would be
corrected by the X-axis. Accordingly, the motion correction should be:

Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-2 counts. Often, this is performed in
one correction cycle.

Example motion program:

Instruction Function
#A Label

DP0 Define starting positions as zero

LINPOS=0

PR 1000 Required distance

BGX Start motion

#B

AMX Wait for completion

WT 50 Wait 50 msec

LIN POS = _DEX Read linear position

ER=1000-LINPOS-_TEX Find the correction

JP #C,@ABS[ER]<2 Exit if error is small

PR ER Command correction

BGX

JP #B Repeat the process

#C

EN

Error Handling

Introduction
The SMC-2000 provides several hardware and software features to check for error conditions and to inhibit the
motor on error. These features help protect the various system components from damage.

Warning: Machinery in motion can be dangerous! It is the responsibility of the user to design effective error
handling and safety protection as part of the machine. Since the SMC-2000 is an integral part of the machine,
the engineer should design his overall system with protection against a possible component failure on the SMC-
2000. Yaskawa shall not be liable or responsible for any incidental or consequential damages.

Hardware Protection
The SMC-2000 includes hardware input and output protection lines for various error and mechanical limit
conditions. These include:

Output Protection Lines
Amp Enable - This signal goes low when the motor off command is given (MO), or when off-on-error condition
is enabled (OE1) and, either the position error exceeds the value specified by the Error Limit (ER) or the abort
command (AB) is given. Each axis amplifier has separate amplifier enable lines. This signal also goes low
when the watch-dog timer is activated, or upon reset.

Input Protection Lines
Abort - A low input stops motion instantly without a controlled deceleration. Also aborts motion program.

Forward Limit Switch - Low input inhibits motion in forward direction. Also causes execution of limit switch
subroutine, #LIMSWI, if the motor for that axis is moving in a forward direction.

Reverse Limit Switch - Low input inhibits motion in reverse direction. Also causes execution of limit switch
subroutine, #LIMSWI, if the motor for that axis is moving in a reverse direction.

Note: The CN command can be used to change the polarity of the limit switches.

Software Protection
The SMC-2000 provides a programmable error limit. The error limit can be set for any number between 0 and
32767 using the ER n command. The default value for ER is 16384, and a value of 0 disables error monitoring.

Example:

ER 200,300,400,500 Set X-axis error limit for 200, Y-axis error limit to 300, Z-
axis error limit to 400 counts, W-axis error limit to 500
counts

ER,1,,10 Set Y-axis error limit to 1 count, set W-axis error limit to
10 counts.

The units of the error limit are quadrature counts. The error is the difference between the command position and
actual encoder position. If the absolute value of the error exceeds the value specified by ER, the SMC-2000 will
generate several signals to warn the host system of the error condition. These signals include:

Signal or Function State if Error Occurs
#POSERR Jumps to automatic excess position error subroutine

Error Light Turns on

OE Function Shuts motor off if OE1

AEN Output Line Goes low

The Jump on Condition statement is useful for branching on a given error within a program. The position error
of X,Y,Z and W can be monitored during execution using the TE command.

Programmable Position Limits
The SMC-2000 provides programmable forward and reverse position limits. These are set by the BL and FL
software commands. Once a position limit is specified, the SMC-2000 will not accept position commands
beyond the limit. Motion beyond the limit is also prevented.

Example:

DP0,0,0 Define Position

BL -2000,-4000,-8000 Set Reverse position limit

FL 2000,4000,8000 Set Forward position limit

JG 2000,2000,2000 Jog

BG XYZ Begin

(motion stops at forward limits)

Off-On-Error
The software command, Off-on-Error (OE1), turns the motor off when the position error exceeds the limit set by
the ER command. To activate the OE function for each axis, specify 1 for X,Y,Z and W axis. 0 disables off-on-
error.

Examples:

OE 1,1,1,1 Enable off-on-error for X,Y,Z and W

OE 0,1,0,1 Enable off-on-error for Y and W axes and disable off-on-
error for W and Z axes

Automatic Error Routine
The #POSERR label causes the statements following to be automatically executed if error on any axis exceeds
the error limit specified by ER. The error routine must be closed with the RE command. The RE command
returns from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition is gone.

Example:
#A;JP #A;EN "Dummy" program

#POSERR Start error routine on error

MG "error" Send message

SB 1 Fire relay

STX Stop motor

AMX After motor stops

SHX Servo motor here to clear error

RE Return to main program

Note: An applications program must be executing for the #POSERR routine to function.

Limit Switch Routine
The SMC-2000 provides forward and reverse limit switches which inhibit motion in the respective direction.
There is also a special label for automatic execution of a limit switch subroutine. The #LIMSWI label specifies
the start of the limit switch subroutine. This label causes the statements following to be automatically executed
if any limit switch is activated and that axis motor is moving in that direction. The RE command ends the
subroutine.

The state of the forward and reverse limit switches may also be tested during the jump-on-condition statement.
The _LR condition specifies the reverse limit and _LF specifies the forward limit. X,Y,Z, or W following LR or
LF specifies the axis.

Limit Switch Example:

#A;JP #A;EN Dummy Program

#LIMSWI Limit Switch Utility

V1=_LFX Check if forward limit

V2=_LRX Check if reverse limit

JP#LF,V1=0 Jump to #LF if forward

JP#LR,V2=0 Jump to #RF if reverse

JP#END Jump to end

#LF #LF

MG "FORWARD LIMIT" Send message

STX;AMX Stop motion

PR-1000;BGX;AMX Move in reverse

JP#END End

#LR #LR

MG "REVERSE LIMIT" Send message

STX;AMX Stop motion

PR1000;BGX;AMX Move forward

#END End

RE Return to main program

Note: An application program must be executing for #LIMSWI to function.

DMC-1415,16,25 Chapter 9 Troubleshooting 9 •••• 135

Chapter 9 Troubleshooting

Overview
The following discussion may help you get your system running if a problem is encountered.

Potential problems have been divided into groups as follows:

1. Installation

2. Communication

3. Stability and Compensation

4. Operation

The various symptoms along with the cause and the remedy are described in the following tables.

Installation

Symptom Cause Remedy

Motor runs away when connected to amplifier with
no additional inputs.

Amplifier offset too
large.

Adjust amplifier offset

Same as above, but offset adjustment does not stop
the motor.

Damaged amplifier. Replace amplifier.

Controller does not read changes in encoder position. Wrong encoder
connections.

Check encoder wiring.

Same as above Bad encoder Check the encoder signals.
Replace encoder if necessary.

Same as above Bad controller Connect the encoder to
different axis input. If it works,
controller failure. Repair or
replace.

 Chapter 9 Troubleshooting 9 •••• 136 DMC-1415,16,25

Communication

Symptom Cause Remedy

Using DMCWIN, DMCDOS, or
WSDK cannot communicate with
the controller.

Plug and Play installation did not
proceed properly

Check first that Dmc1802.INF was
used to install the controller. Next
check the controller registry to see
if the controller was automatically
added and an address selected.

Stability

Symptom Cause Remedy

Motor runs away when the loop is
closed.

Wrong feedback polarity.
(Positive Feedback)

Invert the polarity of the loop by
inverting the motor leads (brush type)
or the encoder (channel A+, B+ if
single ended; channel A+, A- and B+,
B- if differential)

Motor oscillates. Too high gain or too little
damping.

Decrease KI and KP. Increase KD.

Operation

Symptom Cause Remedy

Controller rejects command.
Responded with a ?

Anything. Interrogate the cause with TC or
TC1.

Motor does not start or complete a
move.

Noise on limit switches stops the
motor. Noise on the abort line
aborts the motion.

To check the cause, interrogate the
stop code (SC). If caused by limit
switch or abort line noise, reduce
noise.

During a periodic operation, motor
drifts slowly.

Encoder noise Interrogate the position
periodically. If controller states
that the position is the same at
different locations it implies
encoder noise. Also use a scope to
see the noise. Reduce noise. Use
differential encoder inputs.

Same as above. Programming error. Avoid resetting position error at
end of move with SH command.

DMC-1415,16,25 Chapter 9 Troubleshooting 9 •••• 137

THIS PAGE LEFT BLANK INTENTIONALLY

 Chapter 9 Troubleshooting 9 •••• 138 DMC-1415,16,25

THIS PAGE LEFT BLANK INTENTIONALLY

Theory of Operation

Overview
The following discussion covers the operation of motion control systems. A typical motion control system
consists of the elements shown in Fig 10.1.

COMPUTER CONTROLLER DRIVER

MOTORENCODER

Figure 10.1 - Elements of Servo Systems

The operation of such a system can be divided into three levels, as illustrated in Fig. 10.2. The levels are:

1. Closing the Loop

2. Motion Profiling

3. Motion Programming

The first level, the closing of the loop, assures that the motor follows the commanded position. Closing the
position loop using a sensor does this. The operation at the basic level of closing the loop involves the subjects
of modeling, analysis, and design. These subjects will be covered in the following discussions.

The motion profiling is the generation of the desired position function. this function, R(t), describes where the
motor should be at every sampling period. Note that the profiling and the closing of the loop are independent
functions. The profiling function determines where the motor should be and the closing of the loop forces the
motor to follow the commanded position

The highest level of control is the motion program. This can be stored in the host computer or in the controller.
This program describes the tasks in terms of the motors that need to be controlled, the distances and the speed.

110 •••• Theory of Operation SMC-2000 User's Guide

MOTION
PROGRAMMING

MOTION
PROFILING

CLOSED-LOOP
CONTROL

LEVEL

3

2

1

Figure 10.2 - Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the motion
program, may specify the following instruction, for example.

PR 6000,4000

SP 20000,20000

AC 200000,300000

BG X

AD 2000

BG Y

EN

This program corresponds to the velocity profiles shown in Fig. 10.3. Note that the profiled positions show
where the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by closing the
servo loop.

The operation of the servo system is done in two manners. First, it is explained qualitatively, in the following
section. Later, the explanation is repeated using analytical tools for those who are more theoretically inclined.

Y POSITION

X POSITION

Y VELOCITY

X VELOCITY

TIME
Figure 10.3 - Velocity and Position Profiles

Operation of Closed-Loop Systems
To understand the operation of a servo system, we may compare it to a familiar closed-loop operation, adjusting
the water temperature in the shower. One control objective is to keep the temperature at a comfortable level, say
90 degrees F. To achieve that, our skin serves as a temperature sensor and reports to the brain (controller). The
brain compares the actual temperature, which is called the feedback signal, with the desired level of 90 degrees
F. The difference between the two levels is called the error signal. If the feedback temperature is too low, the
error is positive, and it triggers an action which raises the water temperature until the temperature error is
reduced sufficiently.

The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90 degrees. A
position sensor, often an encoder, measures the motor position and the position feedback is sent to the
controller. Like the brain, the controller determines the position error, which is the difference between the
commanded position of 90 degrees and the position feedback. The controller then outputs a signal that is
proportional to the position error. This signal produces a proportional current in the motor, which causes a
motion until the error is reduced. Once the error becomes small, the resulting current will be too small to
overcome the friction, causing the motor to stop.

The analogy between adjusting the water temperature and closing the position loop carries further. We have all
learned the hard way, that the hot water faucet should be turned at the "right" rate. If you turn it too slowly, the
temperature response will be slow, causing discomfort. Such a slow reaction is called overdamped response.

The results may be worse if we turn the faucet too fast. The overreaction results in temperature oscillations.
When the response of the system oscillates, we say that the system is unstable. Clearly, unstable responses are
bad when we want a constant level.

What causes the oscillations? The basic cause for the instability is a combination of delayed reaction and high
gain. In the case of the temperature control, the delay is due to the water flowing in the pipes. When the human
reaction is too strong, the response becomes unstable.

112 •••• Theory of Operation SMC-2000 User's Guide

Servo systems also become unstable if their gain is too high. The delay in servo systems is between the
application of the current and its effect on the position. Note that the current must be applied long enough to
cause a significant effect on the velocity, and the velocity change must last long enough to cause a position
change. This delay, when coupled with high gain, causes instability.

This motion controller includes a special filter that is designed to help the stability and accuracy. Typically,
such a filter produces, in addition to the proportional gain, damping and integrator. The combination of the
three functions is referred to as a PID filter.

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the
proportional, integral and derivative term respectively.

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the motor
response.

The integrator function, represented by the parameter KI, improves the system accuracy. With the KI
parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level of friction
or opposing torque.

The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable and has a
high gain.

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in the
range between +10 and -10 Volts is then applied to the amplifier and the motor.

The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called position
feedback, is returned to the controller for closing the loop.

The following section describes the operation in a detailed mathematical form, including modeling, analysis and
design.

System Modeling
The elements of a servo system include the motor, driver, encoder and the controller. These elements are shown
in Fig. 10.4. The mathematical model of the various components is given below.

DIGITAL
FILTERΣ ZOH DAC

ENCODER

AMP MOTOR

CONTROLLER

R

C

X Y V E

P

Figure 10.4 - Functional Elements of a Motion Control System

Motor-Amplifier
The motor amplifier may be configured in two modes:

1. Current Drive

2. Velocity Loop

The operation and modeling in the two modes is as follows:

Current Drive
The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka, a torque
constant of Kt, and inertia J. The resulting transfer function in this case is

P/V = Ka Kt / Js2

For example, a current amplifier with Ka = 2 A/V with the motor described by the previous example will have
the transfer function:

P/V = 1000/s2 [rad/V]

If the motor is a DC Brushless motor, an amplifier that performs the commutation drives it. The combined
transfer function of motor amplifier combination is the same as that of a similar brush motor, as described by the
previous equations.

Velocity Loop
The motor driver system may include a velocity loop where the motor velocity is sensed by a tachometer and is
fed back to the amplifier. Such a system is illustrated in Fig. 10.5. Note that the transfer function between the
input voltage V and the velocity ω is:

ω /V = [Ka Kt/Js]/[1+Ka Kt Kg/Js] = 1/[Kg(sT1+1)]

where the velocity time constant, T1, equals

T1 = J/Ka Kt Kg

This leads to the transfer function

P/V = 1/[Kg s(sT1+1)]

Σ Ka Kt/Js

Kg

V

Figure 10.5 - Elements of velocity loops

The resulting functions derived above are illustrated by the block diagram of Fig. 10.6.

114 •••• Theory of Operation SMC-2000 User's Guide

Ka
Kt
JS

1
S

V I W P

CURRENT SOURCE

1
S

V W P

VELOCITY LOOP

1
Kg(ST1+1)

Figure 10.6 - Mathematical model of the motor and amplifier in two operational modes

Encoder
The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in
quadrature. Due to the quadrature relationship between the encoder channels, the position resolution is
increased to 4N quadrature counts/rev.

The model of the encoder can be represented by a gain of

Kf = 4N/2π [count/rad]

For example, a 1000 lines/rev encoder is modeled as

Kf = 638

DAC
The DAC or D-to-A converter converts a 14-bit number to an analog voltage. The input range of the numbers is
16384 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the DAC is

K= 20/16384 = 0.0012 [V/count]

Digital Filter
The digital filter has a transfer function of D(z) = K(z-A)/z + Cz/z-1 and a sampling time of T.

The filter parameters, K, A and C are selected by the instructions KP, KD, KI or by GN, ZR and KI,
respectively. The relationship between the filter coefficients and the instructions are:

K = KP + KD or K = GN

A = KD/(KP + KD) or A = ZR

C = KI/8

This filter includes a lead compensation and an integrator. It is equivalent to a continuous PID filter with a
transfer function G(s).

G(s) = P + sD + I/s

P = K(1-A) = KP

D = T.K.A = T.KD

I = C/T = KI/8T

For example, if the filter parameters are KP = 4

KD = 36

KI = 2

T = 0.001 s

the digital filter coefficients are

K = 40

A = 0.9

C = 0.25

and the equivalent continuous filter, G(s), is

G(s) = 4 + 0.036s + 250/s

ZOH
The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command is
updated once per sampling period. The effect of the ZOH can be modeled by the transfer function

H(s) = 1/(1+sT/2)

If the sampling period is T = 0.001, for example, H(s) becomes:

H(s) = 2000/(s+2000)

However, in most applications, H(s) may be approximated as one.

This completes the modeling of the system elements. Next, we discuss the system analysis.

System Analysis
To analyze the system, we start with a block diagram model of the system elements. The analysis procedure is
illustrated in terms of the following example.

Consider a position control system with the SMC-2000 controller and the following parameters:

Kt = 0.1 Nm/A Torque constant

J = 2.10-4 kg.m2 System moment of inertia

R = 2 Ω Motor resistance

Ka = 4 Amp/Volt Current amplifier gain

KP = 12.5 Digital filter gain

KD = 245 Digital filter zero

116 •••• Theory of Operation SMC-2000 User's Guide

KI = 0 No integrator

N = 500 Counts/rev Encoder line density

T = 1 ms Sample period

The transfer function of the system elements are:

Motor

M(s) = P/I = Kt/Js2 = 500/s2 [rad/A]

Amp

Ka = 4 [Amp/V]

DAC

Kd = 0.0012 [V/count]

Encoder

Kf = 4N/2π = 318 [count/rad]

ZOH

2000/(s+2000)

Digital Filter

KP = 12.5, KD = 245, T = 0.001

Therefore,

D(z) = 12.5 + 245 (1-z-1)

Accordingly, the coefficients of the continuous filter are:

P = 12.5

D = 0.245

The filter equation may be written in the continuous equivalent form:

G(s) = 12.5 + 0.245s = 0.245(s+51)

The system elements are shown in Fig. 10.7.

Σ 0.245(S+51)

318

V

ENCODER

500
S2

FILTER

2000
S+2000

0.0012 4

ZOH DAC AMP MOTOR

Figure 10.7 - Mathematical model of the control system

The open loop transfer function, A(s), is the product of all the elements in the loop.

A = 390,000 (s+51)/[s2(s+2000)]

To analyze the system stability, determine the crossover frequency, ωc at which A(j ωc) equals one. This can be
done by the Bode plot of A(j ωc), as shown in Fig. 10.8.

1

4

0.1

50 200 2000 W (rad/s)

Magnitude

Figure 10.8 - Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.

Next, we determine the phase of A(s) at the crossover frequency.

A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)]

α = Arg[A(j200)] = tan-1(200/51)-180° -tan-1(200/2000)

α = 76° - 180° - 6° = -110°

Finally, the phase margin, PM, equals

PM = 180° + α = 70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be between 30
degrees and 45 degrees. The phase margin of 70 degrees given above indicated overdamped response.

Next, we discuss the design of control systems.

118 •••• Theory of Operation SMC-2000 User's Guide

System Design and Compensation
The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the SMC-2000
controller. The filter parameters can be selected by the user for the best compensation. The following
discussion presents an analytical design method.

The Analytical Method
The analytical design method is aimed at closing the loop at a crossover frequency, ωc, with a phase margin PM.
The system parameters are assumed known. The design procedure is best illustrated by a design example.

Consider a system with the following parameters:

Kt Nm/A Torque constant

J = 2.10-4 kg.m2 System moment of inertia

R = 2 Ω Motor resistance

Ka = 2 Amp/Volt Current amplifier gain

N = 1000 Counts/rev Encoder line density

The DAC of the SMC-2000 outputs +/-10V for a 14-bit command of +/-8192 counts.

The design objective is to select the filter parameters in order to close a position loop with a crossover frequency
of ωc = 500 rad/s and a phase margin of 45 degrees.

The first step is to develop a mathematical model of the system, as discussed in the previous system.

Motor

M(s) = P/I = Kt/Js2 = 1000/s2

Amp

Ka = 2 [Amp/V]

DAC

Kd = 10/8192

Encoder

Kf = 4N/2π = 636

ZOH

H(s) = 2000/(s+2000)

Compensation Filter

G(s) = P + sD

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s).

L(s) = M(s) Ka Kd Kf H(s) = 1.27*107/[s2(s+2000)]

Then the open loop transfer function, A(s), is

A(s) = L(s) G(s)

Now, determine the magnitude and phase of L(s) at the frequency ωc = 500.

L(j500) = 1.27*107/[(j500)2 (j500+2000)]

This function has a magnitude of

|L(j500)| = 0.025

and a phase

Arg[L(j500)] = -180° - tan-1(500/2000) = -194°

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees. This
requires that

|A(j500)| = 1

Arg [A(j500)] = -135°

However, since

A(s) = L(s) G(s)

then it follows that G(s) must have magnitude of

|G(j500)| = |A(j500)/L(j500)| = 40

and a phase

arg [G(j500)] = arg [A(j500)] - arg [L(j500)] = -135° + 194° = 59°

In other words, we need to select a filter function G(s) of the form

G(s) = P + sD

so that at the frequency ωc =500, the function would have a magnitude of 40 and a phase lead of 59 degrees.

These requirements may be expressed as:

|G(j500)| = |P + (j500D)| = 40

and

arg [G(j500)] = tan-1[500D/P] = 59°

The solution of these equations leads to:

P = 40cos 59° = 20.6

500D = 40sin 59° = 34.3

Therefore,

D = 0.0686

and

G = 20.6 + 0.0686s

The function G is equivalent to a digital filter of the form:

D(z) = KP + KD(1-z-1)

where

KP = P

and

KD = D/T

Assuming a sampling period of T=1ms, the parameters of the digital filter are:

KP = 20.6

120 •••• Theory of Operation SMC-2000 User's Guide

KD = 68.6

The SMC-2000 can be programmed with the instruction:

KP 20.6

KD 68.6

In a similar manner, other filters can be programmed. The procedure is simplified by the following table, which
summarizes the relationship between the various filters.

Digital D(z) = K(z-A/z) + Cz/z-1

Digital D(z) = KP + KD(1-z-1) + KI/8(1-z-1)

KP, KD, KI K = KP + KD
A = KD/(KP+KD)
C = KI/8

Digital D(z) = GN(z-ZR)/z + KI z/8(z-1)

GN, ZR, KI K = GN
A = ZR
C = KI/8

Continuous G(s) = P + Ds + I/s

PID, T P = K(1-A) = KP
D = K.A.T = T.KD
I = C/T = KI/8T

SMC-2000 User’s Guide Command Reference •••• 1

Command Reference

 Command Syntax

COMMAND REFERENCE 1

COMMAND SYNTAX 1
AB (ABORT) 6
@ABS (ABSOLUTE VALUE FUNCTION) 7
AC (ACCELERATION) 8
@ACOS (ARC COSINE FUNCTION) 9
AD (AFTER DISTANCE) 10
AE (ABSOLUTE ENCODER) 11
AF (ANALOG FEEDBACK) 12
AI (AFTER INPUT) 13
AL (ARM LATCH) 14
AM (AFTER MOTION) 15
@AN (READ ANALOG INPUT) 17
AP (AFTER ABSOLUTE POSITION) 18
AR (AFTER RELATIVE DISTANCE) 19
AS (AT SPEED) 20
@ASIN (ARC SINE FUNCTION) 21
AT (AT TIME) 22
AV (AFTER VECTOR DISTANCE) 23
BG (BEGIN MOTION) 24
BL (REVERSE SOFTWARE LIMIT) 25
BN (BURN) 26
BP (BURN PROGRAM) 28
BV (BURN VARIABLES) 29
CB (CLEAR BIT) 30
CC (CONFIGURE COMMUNICATIONS PORT 2) 31
CD (CONTOUR DATA) 32
CE (CONFIGURE ENCODER) 33
CM (CONTOUR MODE) 35
CN (CONFIGURE) 36
@COM (2’S COMPLEMENT FUNCTION) 37

2 •••• Command Reference SMC-2000 User's Guide

@COS (COSINE FUNCTION) 38
CR (CIRCLE) 39
CS (CLEAR SEQUENCE) 40
CW (COPYRIGHT INFORMATION / DATA ADJUSTMENT BIT ON/OFF) 41
DA (DE-ALLOCATE THE VARIABLES & ARRAYS) 42
DC (DECELERATION) 43
DE (DUAL (AUXILIARY) ENCODER POSITION) 44
DL (DOWNLOAD) 45
DM (DIMENSION) 46
DP (DEFINE POSITION) 47
DT (DELTA TIME) 48
DV (DUAL VELOCITY (DUAL LOOP)) 49
EA (ECAM MASTER AXIS) 50
EB (ENABLE ECAM MODE) 51
EG (ECAM ENGAGE) 52
EM (ECAM CYCLE) 53
EN (END) 54
EO (ECHO) 55
EP (CAM TABLE INTERVALS AND STARTING POINT) 56
EQ (ECAM QUIT (DISENGAGE)) 57
ER (ERROR LIMIT) 58
ES (ELLIPSE SCALE) 59
ET (ELECTRIC CAM TABLE) 60
FA (ACCELERATION FEED FORWARD) 61
FE (FIND EDGE) 62
FI (FIND INDEX) 63
FL (FORWARD SOFTWARE LIMIT) 64
@FRAC (FRACTION FUNCTION) 65
FV (VELOCITY FEED FORWARD) 66
GA (MASTER AXIS FOR GEARING) 67
GN (GAIN) 68
GR (GEAR RATIO) 69
HM (HOME) 70
HX (HALT EXECUTION) 71
II (INPUT INTERRUPT) 72
IL (INTEGRATOR LIMIT) 74
IN (INPUT VARIABLE) 75
@IN (STATUS OF DIGITAL INPUT FUNCTION) 76
@INT (INTEGER FUNCTION) 77
IP (INCREMENT POSITION) 78
IT (INDEPENDENT TIME CONSTANT - SMOOTHING FUNCTION) 79
JG (JOG) 80
JP (JUMP TO PROGRAM LOCATION) 81
JS (JUMP TO SUBROUTINE) 82
KD (DERIVATIVE CONSTANT) 83
KI (INTEGRATOR) 84
KP (PROPORTIONAL CONSTANT) 85
KS (STEPPER MOTOR SMOOTHING) 86
LA (LIST ARRAYS) 87
LC (LOCK CONTROLLER) 88
LE (LINEAR INTERPOLATION END) 89

SMC-2000 User’s Guide Command Reference •••• 3

LF (FORWARD LIMIT) 90
LI (LINEAR INTERPOLATION DISTANCE) 91
LL (LIST LABELS) 92
LM (LINEAR INTERPOLATION MODE) 93
LR (REVERSE LIMIT) 94
LS (LIST PROGRAM) 95
LT (LATCH TARGET) 96
LV (LIST VARIABLES) 97
LZ (LEADING ZERO) 98
MC (MOTION COMPLETE - “IN POSITION”) 99
MF (FORWARD MOTION TO POSITION) 101
MG (MESSAGE) 102
MM (MASTER'S MODULUS) 103
MO (MOTOR OFF) 104
MR (REVERSE MOTION TO POSITION) 105
MT (MOTOR TYPE) 106
NO (NO OPERATION) 107
OB (OUTPUT BIT) 108
OE (OFF ON ERROR) 109
OF (OFFSET) 110
OP (OUTPUT PORT) 111
@OUT (STATUS OF DIGITAL OUTPUT FUNCTION) 112
PA (POSITION ABSOLUTE) 113
PF (POSITION FORMAT) 114
PR (POSITION RELATIVE) 115
PW (PASSWORD) 116
QD (DOWNLOAD ARRAY) 117
QU (UPLOAD ARRAY) 118
QY (QUERY YASKAWA ABSOLUTE ENCODER ALARM) 119
RA (RECORD ARRAY) 120
RC (RECORD) 121
RD (RECORD DATA) 122
RE (RETURN FROM ERROR ROUTINE) 123
RI (RETURN FROM INTERRUPT ROUTINE) 124
RL (REPORT LATCHED POSITION) 125
@RND (ROUND FUNCTION) 126
RP (REFERENCE POSITION) 127
RS (RESET) 128
<CONTROL>R <CONTROL>S (MASTER RESET) 129
SB (SET BIT) 130
SC (STOP CODE) 131
SH (SERVO HERE) 132
@SIN (SIN FUNCTION) 133
SP (SPEED) 134
@SQR (SQUARE ROOT FUNCTION) 135
ST (STOP) 136
TB (TELL STATUS BYTE) 137
TC (TELL ERROR CODE) 138
TD (TELL DUAL ENCODER) 141
TE (TELL ERROR) 142
TI (TELL INPUTS) 143

4 •••• Command Reference SMC-2000 User's Guide

TIME 144
TL (TORQUE LIMIT) 145
TM (TIME COMMAND) 146
TN (TANGENT) 147
TP (TELL POSITION) 148
TR (TRACE) 149
TS (TELL SWITCHES) 150
TT (TELL TORQUE) 151
TV (TELL VELOCITY) 152
TW (TIMEOUT FOR IN POSITION (MC)) 153
TY (TELL YASKAWA ABSOLUTE ENCODER) 154
UL (UPLOAD) 155
VA (VECTOR ACCELERATION) 156
VD (VECTOR DECELERATION) 157
VE (VECTOR SEQUENCE END) 158
VF (VARIABLE FORMAT) 159
VM (COORDINATED MOTION MODE) 160
VP (VECTOR POSITION) 161
VR (VECTOR SPEED RATIO) 162
VS (VECTOR SPEED) 163
VT (VECTOR TIME CONSTANT - S CURVE) 164
WC (WAIT FOR CONTOUR DATA) 165
WT (WAIT) 166
XQ (EXECUTE PROGRAM) 167
ZR (ZERO) 168
ZS (ZERO SUBROUTINE STACK) 169

Each executable instruction is listed in the following section in alphabetical order.

The two letter op-code for each instruction is placed in the upper left corner. Below the op-code is a description
of‘ the command and required arguments. As arguments, some commands require actual values to be specified
following the instruction. These commands are followed by lower case x, y, z, and w. Values may be specified
for any axis separately or any combination of axes. Axis values are separated by commas. Examples of valid x
,y, z, w syntax are listed below. For the SMC-2000-8, the axis designators a,b,c,d,e,f,g,h are used where x,y,z,w
can be used interchangeably with a,b,c,d.

Valid x,y,z,w syntax
AC x Specify x only

AC x,y Specify x and y only

AC x,,z Specify x and z only

AC x,y,z,w Specify x,y,z,w

AC ,y Specify y only

AC ,y,z Specify y and z

AC ,,z Specify z only

AC ,,,w Specify w only

AC x,,,w Specify x and w only

AC a,,,d,,f Specify a,d and f only (SMC-2000-8)

Where x, y, z and w are replaced by actual values.

A ? returns the specified value for that axis. For example, AC ?,?,?,?, returns the acceleration of the X,Y,Z and
W axes.

SMC-2000 User’s Guide Command Reference •••• 5

Other commands require action on the X,Y,Z or W axis to be specified. These commands are followed by
uppercase X,Y,Z or W. Action for a particular axis or any combination is specified by writing X,Y,Z or W. No
commas are needed. Valid XYZW syntax is listed below. The SMC-2000-8 uses ABCDEFGH axis designators
where XYZW can be used interchangeably with ABCD.

Valid XYZW syntax
SH X Servo Here, X only

SH XYW Servo Here, X,Y and W axes

SH XZW Servo Here, X,Z and W axes

SH XYZW Servo Here, X,Y,Z and W axes

SH Y Servo Here, Y only

SH YZW Servo Here, Y,Z and W axes

SH Z Servo Here, Z only

SH Servo Here, all axes

SH W Servo Here, W only

SH ZW Servo Here, Z and W axes

SH ABFG Servo Here, A,B,F,G axes

Where X,Y,Z and W specify axes.

The usage “Description:” specifies the restrictions on allowable execution. “While Moving” states whether or
not the command is valid while the controller is performing a previously defined motion. “In a program” states
whether the command may be used as part of a user-defined program. “Not in a program” states whether the
command may be used from the serial port.

“Can be Interrogated” states whether or not the command can be interrogated by using ? to return the specified
value. “Used as an Operand” states whether a command can be used to generate a value for another command or
variable (i.e. V=_TTX). “Default Format” defines the format of the value with number of digits before and
after the decimal point. Finally, “Default Value” defines the values the instruction’s parameters will have after a
Master Reset.

6 •••• Command Reference SMC-2000 User's Guide

AB (Abort)
DESCRIPTION:

AB (Abort) stops a motion instantly without a controlled deceleration. If there is a program executing, AB also
aborts the program unless a 1 argument is specified. If the command Off-on-Error (OE1) has been activated,
AB will shut off the motor enable signal (MO). On firmware 2.0g or 19n and higher, MG_AB returns the state
of the abort input; 0=aborted, 1=not aborted (by input).

ARGUMENTS: AB n

where n = no argument or 1

1 aborts motion without aborting program, 0 aborts motion and program

AB aborts motion on all axes in motion and cannot stop individual axes.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

OPERAND USAGE:

If the controller has standard firmware 2.0g or higher, or special firmware d150N19n or greater, _AB
returns the state of the abort input. Zero indicates aborted condition and one indicates a non aborted
condition.

RELATED COMMANDS:
“SH” Turns servos back on if they were shut-off by Abort and

OE1.

EXAMPLES:
AB Stops motion

OE 1,1,1,1 Enable off-on-error

AB Shuts off motor command and stops motion

#A Label - Start of program

JG 20000 Specify jog speed on X-axis

BGX Begin jog on X-axis

WT 5000 Wait 5000 msec

AB1 Stop motion without aborting program

WT 5000 Wait 5000 milliseconds

SH Servo Here

JP #A Jump to Label A

EN End of the routine

Hint: Remember to use the parameter 1 following AB if you only want the motion to be aborted. Otherwise,
your application program will also be aborted.

SMC-2000 User’s Guide Command Reference •••• 7

@ABS (Absolute value function)
DESCRIPTION:

The Absolute Value (@ABS[n]) function returns the absolute value of a number or variable given in square
brackets. Note that the @ABS command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @ABS [n]

where n is a number in the range of –2147483647.9999 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=-45.6 Set a variable equal to -45.6

MG @ABS[VAR1] Display the absolute value of VAR1

VAR2=@ABS[VAR]+100.404 Perform calculation

EN End of Program

8 •••• Command Reference SMC-2000 User's Guide

AC (Acceleration)
DESCRIPTION:

The Acceleration (AC) command sets the linear acceleration rate of the motors for independent moves, such as
PR, PA and JG moves. The parameters input will be rounded down to the nearest factor of 1024. The units of
the parameters are counts per second squared. The acceleration rate may be changed during motion. The DC
command is used to specify the deceleration rate.

ARGUMENTS: AC x,y,z,w AC a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range in the range 1024 to 67107840

?,?,?,? returns the value

USAGE:
While Moving Yes Default Value 256000

In a Program Yes Default Format 8.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

OPERAND USAGE:

 _ACn returns the acceleration rate for an axis where n is the axis letter.

RELATED COMMANDS:
“DC” Specifies deceleration rate.

“FA” Feed forward Acceleration.

“IT” Smoothing constant - S-curve

EXAMPLES:
AC 150000,200000,300000,400000 Set X-axis acceleration to 150000, Y-axis to 200000 , the

Z-axis to 300000, and the W-axis to 400000 count/sec2.

AC ?,?,?,? Request the Acceleration

0149504,0199680,0299008,0399360 Return Acceleration (resolution, 1024)

V=_ACY Assigns the Y acceleration to the variable V

Hints: Specify realistic acceleration rates based on your physical system such as motor torque rating, loads, and
amplifier current rating. Specifying an excessive acceleration will cause large following error during
acceleration and the motor may not be able to follow the commanded profile. The Acceleration Feed forward
(FA) command can help minimize following error during acceleration and deceleration.

SMC-2000 User’s Guide Command Reference •••• 9

@ACOS (Arc Cosine Function)
DESCRIPTION:

The Arc Cosine (@ACOS[n]) function returns the arc cosine, in degrees, of a number or variable which is
inserted in square brackets. Note that the @ACOS command is a function, which means that it does not follow
the convention of other commands, and does not require the underscore when used as an operand. This function
is available on firmware d15ON19L and higher

ARGUMENTS: @ACOS [n]

where n is a number in the range of –1 to 1.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=.707 Set variable

MG @ACOS[VAR1] Display the arc cosine of .707

VAR2=@ACOS[VAR1]+5 Perform calculation

EN End of Program

10 •••• Command Reference SMC-2000 User's Guide

AD (After Distance)
DESCRIPTION:

The After Distance (AD) command is a trip-point used to control the timing of events. This command will hold
up the execution of the following command until the position command has reached the specified relative
distance from the start of the move. The units of the command are quadrature counts. Only one axis may be specified at a
time.

ARGUMENTS: AD x or AD,y or AD,,z or AD,,,w ADX=x AD a,b,c,d,e,f,g,h

Where x,y,z,and w are unsigned integers in the range -2147483648 to 2147483647 decimal.

Only one axis may be specified at a time

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“AR” After relative distance for repetitive triggering

“AV” After distance for vector moves

EXAMPLES:
#A;DP0,0,0,0 Begin Program

PR 10000,20000,30000,40000 Specify positions

BG Begin motion

AD 5000 After X reaches 5000

MG “Halfway to X”;TPX Send message

AD ,10000 After Y reaches 10000

MG “Halfway to Y”;TPY Send message

AD ,,15000 After Z reaches 15000

MG “Halfway to Z”;TPZ Send message

AD ,,,20000 After W reaches 20000

MG “Halfway to W”;TPW Send message

EN End Program

Hints: the AD command is accurate to the number of counts that occur in 2 msec. Multiply your speed by 2
msec to obtain the maximum position error in counts. Remember AD measures incremental distance from start
of move on one axis.

SMC-2000 User’s Guide Command Reference •••• 11

AE (Absolute Encoder)
DESCRIPTION

The Absolute Encoder (AE) command reads the encoder data from a Yaskawa absolute encoder. The command
automatically enters the absolute position received into the axes’ position register. The motor must be off (MO)
before using this command. This command is only valid for firmware version d150N19i and greater.

ARGUMENTS: AEX=32768 AE x,y,z,w AE a,b,c,d,e,f,g,h

where x,y,z,and w are signed numbers (encoder resolution, post quadrature) in the range +/- 1 to
100,000 decimal.

 These values are the number of encoder pulses per revolution after quadrature.

TIP: If the rotation direction bit in the servo amplifier is set for reverse rotation, you will need to use a
negative number with this command.

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

OPERAND USAGE:

_AE returns the number of the last encoder that was read, 0=X axis, 1=Y axis,…

RELATED COMMANDS:
TY Tell Yaskawa Encoder

QY Report Alarm code from Yaskawa encoder

EXAMPLES:
MOX Motor Off

AEX=4096 Read X absolute encoder

DPX=_TPX+XhmOfs Add offset variable to current absolute position

TPX Tell position of X axis

SHX Enable X servo amplifier

Hints: If an absolute encoder fails to respond, a command error will be generated. If you use the #CMDERR
special label, you can write a routine to display the type of encoder problem using the “QY” and “_AE”
commands. See the absolute encoder section in the options chapter for more information.

12 •••• Command Reference SMC-2000 User's Guide

AF (Analog Feedback)
DESCRIPTION:

The Analog Feedback (AF) command is used to set an axis with analog feedback instead of digital feedback
(quadrature/pulse dir.). Analog feedback uses analog inputs 1-7 as +/- 10 volt signals converted to +/- 2048
which can be read as position when examining _TPn.

ARGUMENTS: AF x, y, z, w, AFX=x AF a, b, c, d, e, f, g, h

 where x, y, z, w or a, b, c, d, e, f, g, h are integers

 1 = Enables analog feedback

 0 = Disables analog feedback and switches to digital feedback

USAGE:

While Moving No Default Value 0,0,0,0

In a Program Yes

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

OPERAND USAGE:

 _AFn returns the feedback type where n is the axis in question.

RELATED COMMANDS:
“CE” Configure Encoder

“MT” Motor Type

EXAMPLES:
AF 1, 0, 0, 1 Analog feedback on X and W axis

V1 = _AFX Assign feedback type to variable

AF ?,?,? Interrogate feedback types

NOTE: Selecting H-axis for analog feedback requires a small modification from the factory.

SMC-2000 User’s Guide Command Reference •••• 13

AI (After Input)
DESCRIPTION:

The After Input (AI) command is used to wait until after the specified input has occurred. If n is positive, it
waits for the input to be high. If n is negative, it waits for n to be low. If you want to wait for a rising edge or
falling edge, put two commands together as follows: AI –3; AI 3. This will cause the program to wait for a
rising edge.

ARGUMENTS: AI +/-n

where n is an integer in the range 1 to 8 decimal

where n is an integer in the range 1 to 24 decimal for SMC-20008

where n is an integer in the range 1 to 64 decimal for SMC-2000xI (extended I/O or Network I/O
options)

USAGE:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
@IN[n] Function to read input n

“II” Input interrupt

#ININT Special Label for input interrupt

EXAMPLES:
#A Begin Program

AI 8 Wait until input 8 is high

SP 10000 Speed is 10000 counts/sec

AC 20000 Acceleration is 20000 counts/sec2

PR 400 Specify position

BG X Begin motion

EN End Program

Hint: The AI command suspends execution of a program thread until the specified input is at the required logic
level. Use the conditional Jump command (JP) or input interrupt (II) if you do not want the program sequence to
suspend.

14 •••• Command Reference SMC-2000 User's Guide

AL (Arm Latch)
DESCRIPTION:

The Arm Latch (AL) command enables the latching function (high-speed position capture) of the controller.
When the ALXYZW command is used to arm the position latches, the encoder position will be captured upon a
high or low going signal on Input 1 (X axis), Input 2 (Y axis), Input 3 (Z axis), Input 4 (W axis), Input 9 (E
axis), Input 10 (F axis), Input 11 (G axis) and Input 12 (H axis). The RL command returns the captured position
for the specified axes. When interrogated or used as an operand, the AL command will return a 1 if the latch for
that axis is armed, or a zero after the latch has occurred. Use the CN command to change the active state of the
latch.

ARGUMENTS: AL XYZW AL ABCDEFGH

 where X,Y,Z,W specifies the X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

OPERAND USAGE:

 _AL returns the state of the latch, one means still armed, zero if the latch has been tripped.

RELATED COMMANDS:
“RL” Report Latch

“LT” Latch Target

EXAMPLES:
#START Start program

ALY Arm Y-axis latch

JG,50 Set up jog at 50000 counts/sec

BGY Begin the move

#LOOP Loop until latch has occurred

JP #LOOP,_ALY=1

RLY Transmit the latched position

EN End of program

Note: The Latch function will occur within 25 µSec only when used in the active low mode.

SMC-2000 User’s Guide Command Reference •••• 15

AM (After Motion)
 DESCRIPTION:

The After Motion (AM) command is a trip-point used to control the timing of events. This command will hold
up execution of the following commands until the current move on the specified axis or axes is completed. Any
combination of axes or a motion sequence may be specified with the AM command. For example, AM XY waits
for motion on both the X and Y axis to be complete. AM with no parameter specifies that motion on all axes is
complete. AMS waits for a vector motion path to complete.

ARGUMENTS: AM XYZWS AM ABCDEFGH

where X,Y,Z,W,S specifies X,Y,Z or W axis or sequence. No argument specifies that motion on all
axes is complete.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“BG” (_BG returns a 0 if motion complete)

“MC” Motion Complete – when encoder crosses the target
position

EXAMPLES:
#MOVE Program MOVE

PR 5000,5000,5000,5000 Position relative moves

BG X Start the X-axis

AM X After the move is complete on X,

BG Y Start the Y-axis

AM Y After the move is complete on Y,

BG Z Start the Z-axis

AM Z After the move is complete on Z

BG W Start the W-axis

AM W After the move is complete on W

EN End of Program

#F;DP 0,0,0,0 Program F

PR 5000,6000,7000,8000 Position relative moves

BG Start X,Y,Z and W axes

AM After motion complete on all axes

MG “DONE”;TP Print message

EN End of Program

Hint: AM is a very important command for controlling the timing between multiple move sequences. For
example, if the X-axis is in the middle of a position relative move (PR) you cannot make a position absolute
move (PAX; BGX) until the first move is complete. Use AMX to suspend the program sequences until the first
motion is complete. AM tests for profile completion. The actual motor may still be moving, trying to settle on

16 •••• Command Reference SMC-2000 User's Guide

the target position. Another method for testing if motion is complete is to check for the internal variable, _BG
being equal to zero. To be sure the encoder actually crossed the final target, use the MC command.

SMC-2000 User’s Guide Command Reference •••• 17

@AN (Read Analog Input)
DESCRIPTION:

The Read Analog (@AN[n]) function returns the value of an analog input as a voltage (+/- 10 volt.) Note that
the @AN command is a function, which means that it does not follow the convention of other commands, and
does not require the underscore when used as an operand. The resolution is 14 bit, or 1.2 mV per bit.

ARGUMENTS: @AN[n]

where n is an unsigned integer in the range 1 to 7 decimal

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

MG @AN[2] Display the value of analog input #2 as a voltage

JGX=@AN[2]*10000 Set jog speed according to analog input

BG X Begin move

EN End of Program

18 •••• Command Reference SMC-2000 User's Guide

AP (After Absolute Position)
DESCRIPTION:

The AP command is a trip-point used to control the timing of events. This command will hold up the execution
of the following command until one of the following conditions have been met:

1) The commanded position crosses the absolute position specified.

2) The motor profiling on that axis is complete.

3) The commanded motion moves is in the direction which moves away from the specified absolute
position.

The units of the command are in quadrature counts. Only one axis may be specified at a time. The motion
profiler must be on or the trip-point will automatically be cleared..

ARGUMENTS: APx or AP,y or AP,,z or AP,,,w APX=X AP abcdefgh

where x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
AD After distance for relative distances

MF Motion forward for general motion

MR Motion reverse for general motion

EXAMPLES:
#TEST Program TEST

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG X Begin move

AP 2000 After passing the position 2000

V1=_TPX Assign V1 X position

MG “Position is”,V1= Print Message

ST Stop

EN End of Program

Hint: The accuracy of the AP command is the number of counts that occur in 2 msec. Multiply the speed by 2
msec to obtain the maximum error. AP tests for absolute position. Use the AD command to measure incremental
distances. Use the MF and MR commands for axes that are not under controlled motion.

SMC-2000 User’s Guide Command Reference •••• 19

AR (After Relative Distance)
DESCRIPTION:

The After Relative Distance command is a trip-point used to control the timing of events. This command will
hold up the execution of the following command until one of the following conditions have been met:

1) The commanded position crosses the specified relative distance from either the start of the move of the last
AR or AD command.

2) The motor profiling on that axis is complete.

3) The commanded motion moves is in the direction which moves away from the specified absolute position.

The units of the command are in quadrature counts. Only one axis may be specified at a time. The motion
profiler must be on or the trip-point will automatically be cleared.

ARGUMENTS: ARx or AR,y or AR,,z or AR,,,w ARX=x AR abcdefgh

where x,y,z,w are unsigned integers in the range 0 to 2147483647 decimal.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“AV” After vector position for coordinated moves

“AP” After absolute position

EXAMPLES:
#A;DP 0,0,0,0 Begin Program

JG 50000,,,7000 Specify speeds

BG XW Begin motion

#B Label

AR 25000 After passing 25000 counts of relative distance on X-axis

MG “Passed X”;TPX Send message on X-axis

JP #B Jump to Label #B

EN End Program

Hint: AR is used to specify incremental distance from last AR or AD command. Use AR if multiple position
trip-points are needed in a single motion sequence.

20 •••• Command Reference SMC-2000 User's Guide

AS (At Speed)
DESCRIPTION:

The AS command is a trip-point that occurs when the generated motion profile has reached the specified speed.
This command will operate after either accelerating or decelerating. If the speed is not reached, the trip-point
will be triggered after the motion is stopped (after deceleration).

ARGUMENTS: AS X or AS Y or AS Z or AS W or AS S AS ABCDEFGH

where XYZWS specifies X,Y,Z,W axis or sequence

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
#SPEED Program SPEED

PR 100000 Specify position

SP 10000 Specify speed

BG X Begin X

ASX After speed is reached

MG “At Speed” Print Message

EN End of Program

Warning: The AS command applies to a trapezoidal velocity profile only with linear acceleration. AS used
with S-curve profiling will be inaccurate.

SMC-2000 User’s Guide Command Reference •••• 21

@ASIN (Arc Sine Function)
DESCRIPTION:

The Arc Sine (@ASIN [n]) function returns the arc sine, in degrees, of a number or variable which is inserted in
square brackets. Note that the @ASIN command is a function, which means that it does not follow the
convention of other commands, and does not require the underscore when used as an operand. This function is
available only in firmware d15ON19L and higher

ARGUMENTS: @ASIN [n]

 where n is a number in the range of –1 to 1.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=.707 Set variable

MG @ASIN[VAR1] Display the arc sine of .707

VAR2=@ASIN[VAR1]+5 Perform calculation

EN End of Program

22 •••• Command Reference SMC-2000 User's Guide

AT (At Time)
DESCRIPTION:

The AT command is a trip-point that is used to hold up execution of the next command until after the specified
time has elapsed. The time is measured with respect to a defined reference time. AT 0 establishes the initial
reference. AT n specifies n msec from the reference. AT -n specifies n msec from the reference and establishes a
new reference after the elapsed time period.

ARGUMENTS: AT n

where n is a signed integer in the range 0 to 2147483647

n = 0 defines a reference time at current time

positive n waits n msec from reference

negative n waits n msec from reference and sets new reference after elapsed time period (AT -n is
equivalent to AT n; AT 0)

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:

The following commands are sent sequentially
AT 0 Establishes reference time 0 as current time

AT 50 Waits 50 msec from reference 0

AT 100 Waits 100 msec from reference 0

AT -150 Waits 150 msec from reference 0 and sets new reference at
150

AT 80 Waits 80 msec from new reference (total elapsed time is
230 msec)

SMC-2000 User’s Guide Command Reference •••• 23

AV (After Vector Distance)
DESCRIPTION:

The AV command is a trip-point that is used to hold up execution of the next command during coordinated
moves such as VP,CR or LI. This trip-point occurs when the path distance of a sequence reaches the specified
value. The distance is measured from the start of a coordinated move sequence or from the last AV command.
The units of the command are quadrature counts.

When used as an operand, _AV returns the vector distance from the start of the sequence. _AV is valid in the
linear mode, LM, and in the vector mode, VM

ARGUMENTS: AV n

where n is an unsigned integer in the range 0 to 2147483647 decimal

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#MOVE;DP 0,0 Label

LMXY Linear move for X,Y

LI 1000,2000 Specify distance

LI 2000,3000 Specify distance

LE

BGS Begin

AV 500 After path distance = 500,

MG “Path>500”;TPXY Print Message

EN End Program

Hint: Remember AV is the vector distance along the path where AV2=X2+Y2+Z2+W2

24 •••• Command Reference SMC-2000 User's Guide

BG (Begin Motion)
DESCRIPTION:

The BG command starts a motion on the specified axis or sequence. When used in an operand, the BG
command will return a 1 if the controller is performing a move of that axis.

ARGUMENTS: BG XYZWS BG ABCDEFGH

 where XYZW are X,Y,Z,W axes and S is coordinated sequence

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“After Motion (AM” After motion complete

“ST” Stop motion

EXAMPLES:
PR 2000,3000,,5000 Set up for a relative move

BG XYW Start the X,Y and W motors moving

HM Set up for the homing

BGX Start only the X-axis moving

JG 1000,4000 Set up for jog

BGY Start only the Y-axis moving

YSTATE=_BGY Assign a 1 to YSTATE if the Y-axis is performing a move

VP 1000,2000 Specify vector position

VS 20000 Specify vector velocity

BGS Begin coordinated sequence

VMXY Vector Mode

VP 4000,-1000 Specify vector position

VE Vector End

PR ,,8000,5000 Specify Z and W position

BGSZW Begin sequence and Z,W motion

Hint: You cannot give another BG command until current BG motion has been completed. Use the AM trip-
point to wait for motion complete between moves. Another method for checking motion complete is to test for
_BG being equal to 0.

SMC-2000 User’s Guide Command Reference •••• 25

BL (Reverse Software Limit)
DESCRIPTION:

The BL command sets the reverse software limit. If this limit is exceeded during motion, motion on that axis
will decelerate to a stop. Reverse motion beyond this limit is not permitted. The reverse limit is activated at X-1,
Y-1, Z-1, and W-1. To disable the reverse limit, set X,Y,Z,W to -2147483648. The units are in quadrature
counts.

ARGUMENTS: BL x,y,z,w BLX=x BL a,b,c,d,e,f,g,h

where x,y,z,and w are signed integers in the range -2147483648 to 2147483647.

The value -2147483648 disables the reverse software limit.

USAGE:
While Moving Yes Default Value -2147483648

In a Program Yes Default Format Position format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“FL” Forward Limit

EXAMPLES:
#TEST Test Program

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

BL -15000 Set Reverse Limit

JG -5000 Jog Reverse

BGX Begin Motion

AMX After Motion (limit occurred)

TPX Tell Position

EN End Program

26 •••• Command Reference SMC-2000 User's Guide

BN (Burn)
DESCRIPTION:

The BN command saves specific controller parameters shown below in non-volatile EEPROM memory.
Programs are not saved by this command, use the BP command to burn programs. This command typically takes
1 second to execute and must not be interrupted. The controller returns a : when the Burn is complete.

Controller Parameters Saved During Burn:
AC IT

AF KD (ZR converted to KD)

BL KI

CB KP (GN converted to KP)

CC LZ

CE MO

CN MOTOR State (Servo here or motor off)

CW MT

DC OE

DV OF

EA OP

EM PF

EO SB

EP SP

ER TL

ES TM

ET[n] (Electronic Cam Table) TR

FA VA

FL VD

FV VF

GA VS

GR VT

IL

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#MAIN Label

II1 Enable input interrupt on input 1

PR 5000 Move relative position of 5000 counts

SP 10000 Set speed

SMC-2000 User’s Guide Command Reference •••• 27

AC 200000 Set acceleration

BGX Begin motion X-axis

AMX After motion complete

WT 1000 Wait 1000 msec

JP #MAIN Jump to MAIN label

#ININT Input interrupt routine

AM Wait for motion complete

WT 1000 Wait 1000 msec

BN Burn values; may take up to 15 seconds

RI 1 Return to main program and restore trip-point

NOTE: Does not burn programs, variables, or arrays.

28 •••• Command Reference SMC-2000 User's Guide

BP (Burn Program)
DESCRIPTION:

The BP command saves the application program in non-volatile EEPROM memory. This command typically
takes up to 10 seconds to execute and must not be interrupted. The controller returns a : when the Burn is
complete.

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program No

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

NOTE: Does not burn variables or arrays.

SMC-2000 User’s Guide Command Reference •••• 29

BV (Burn Variables)
DESCRIPTION:

The BV command saves variables in non-volatile EEPROM memory. This command typically takes up to 2
seconds to execute and must not be interrupted. The controller returns a : when the Burn is complete.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

NOTE: BV does not save any array data unless you have an SMC with an “M” option for larger memory.

30 •••• Command Reference SMC-2000 User's Guide

CB (Clear Bit)
DESCRIPTION:

The CB command clears an output bit. The CB and SB (Set Bit) instructions can be used to control the state of
output lines.

ARGUMENTS: CB n

 where n is an integer in the range 1 to 8 decimal for SMC-20001, SMC-20002, SMC-20004

 where n is an integer in the range 1 to 16 decimal for SMC-20008

 where n is an integer in the range 1 to 64 (Outputs 24,32,40,48, 56 and 64 do not physically exist)
 decimal for SMC-2000xI (extended I/O)

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“SB” Set Bit

“OP” Define all 16 outputs of an output port

EXAMPLES:
CB 1 Clear output bit 1

CB 7 Clear output bit 7

CB 16 Clear output bit 16 (SMC-2000-8 only)

CB 64 Reset a Network I/O option card

SMC-2000 User’s Guide Command Reference •••• 31

CC (Configure Communications Port 2)
DESCRIPTION:

The CC command allows the user to configure the RS232 port number 2. The m parameter specifies the baud
rate. The n parameter specifies whether it is in handshake or non-handshake mode. The r parameter configures
the port for either General port or for daisy chain. The p parameter specifies echo on or off; however, this
parameter is only valid if the port is configured for General port. Port 2 must be configured before used.

ARGUMENTS: CC m,n,r,p

m - Baud rate – 300, 1200, 4800, 9600, 19200 or 38400

n - Handshake - n=0 means no handshake, n=1 means handshake

r - Mode; r=0 for general port at Com2, r=1 for daisy-chain at Com2 Active only if r=0 (general port at
P2)

p - Echo; p=1 for echo on, p=0 for echo off

USAGE:
While Moving Yes Default Value 0,0,0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

32 •••• Command Reference SMC-2000 User's Guide

CD (Contour Data)
DESCRIPTION:

The CD command specifies the incremental position on X,Y,Z and W axes. The units of the command are in
quadrature counts. This command is used only in the Contour Mode (CM).

ARGUMENTS: CD x,y,z,w CDX=x CD a,b,c,d,e,f,g,h

 where x,y,z,w are integers in the range of +/-32762

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“CM” Contour Mode

“WC” Wait for Contour

“DT” Time Increment

“CS” _CS is the Segment Counter

EXAMPLES:
CM XYZW Specify Contour Mode

DT 4 Specify time increment for contour

CD 200,350,-150,500 Specify incremental positions on X,Y,Z and W axes X-
axis moves 200 counts Y-axis moves 350 counts Z-axis
moves -150 counts W-axis moves 500 counts

WC Wait for complete

CD 100,200,300,400 New position data

WC Wait for complete

DT0 Stop Contour

CD 0,0,0,0 Exit Mode

SMC-2000 User’s Guide Command Reference •••• 33

CE (Configure Encoder)
DESCRIPTION:

The CE command configures the encoder to quadrature type or to pulse and direction type. It also allows
inverting the polarity of the encoders. The configuration applies independently to the four main axis encoders
and the four auxiliary encoders.

ARGUMENTS: CE x,y,z,w CEX=x CE a,b,c,d,e,f,g,h

Where x,y,z,w are integers in the range of 0 to 15. Each integer is the sum of two integers n and m
which configure the main and the auxiliary encoders. The values of m and n are

m = Main encoder type n = Auxiliary encoder type

0 Normal quadrature 0 Normal quadrature

1 Normal pulse and direction 4 Normal pulse and direction

2 Reversed quadrature 8 Reversed quadrature

3 Reversed pulse and
direction

12 Reversed pulse and
direction

For example: x = 10 implies m = 2 and n = 8, both encoders are reversed quadrature.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 2.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
MT Motor Type

EXAMPLES:
CE 0, 3, 6, 2 Configure encoders

CE ?,?,?,? Interrogate configuration

V = _CEX Assign configuration to a variable

Note: When using pulse and direction encoders, the pulse signal is connected to the B channel and the direction
signal is connected to the A channel.

WARNING: This command works closely with the Motor Type (MT) command. Assuming your system is
operating normally, but in the wrong direction, you must change both the (MT) and the (CE) commands under
(MO) Motor Off conditions. Failure to perform this change correctly will lead to system run away!

34 •••• Command Reference SMC-2000 User's Guide

CI (Communication Interrupt)
DESCRIPTION:

The CI command configures communication interrupt based on characters received either from Port 1 or Port
2. An interrupt causes program flow to jump to the #COMINT subroutine label. If multiple program threads are
used, the #COMINT subroutine runs in thread zero, and threads one, two, and three continue to run without
interruption. The characters received on the serial port are stored in internal variables such as P2CH.

ARGUMENTS: CI m,n,o

where:
m = Port 1 n = Port 2

0 Do not interrupt 0 Do not interrupt

1 Interrupt on <enter> 1 Interrupt on <enter>

2 Interrupt on any character 2 Interrupt on any character

-1 Clear buffer -1 Clear buffer

o = 0 Disable live data for Port 1 o = 1 Enable live data for Port 1

USAGE:
While Moving Yes Default Value

In a Program Yes Default Format

Not in a Program No

Can be Interrogated No

Used in an Operand No

EXAMPLES:
CI 0,1,0 Set communications interrupt for Port 2 on <enter>

CI 1,2,0 Set Port 1 for interrupt on <enter>, interrupt Port 2 on any
character.

NOTE: When using this command to jump to the #COMINT label, you must re-issue the CI command at the
end of the #COMINT routine

SMC-2000 User’s Guide Command Reference •••• 35

CM (Contour Mode)
DESCRIPTION:

The Contour Mode is initiated by the instruction CM. This mode allows the generation of an arbitrary motion
trajectory with any of the axes. The CD command specifies the position increment, and the DT command
specifies the time interval. The CM? or _CM commands can be used to check the status of the Contour Buffer.

When CM? is sent and the returned value is 1, it indicates the Contour Buffer is full. If the returned value is 0, it
indicates the Contour Buffer is empty, and a new CD command can be issued.

ARGUMENTS: CM XYZW CM ABCDEFGH

 where XYZW specify the X,Y,Z,W axes

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“CD” Contour Data

“WC” Wait for Contour

“DT” Time Increment

EXAMPLES:
V=_CM;V= Return Contour Buffer Status

1 Contour Buffer is full

CM XZ Specify X,Z axes for Contour Mode

36 •••• Command Reference SMC-2000 User's Guide

CN (Configure)
DESCRIPTION:

The CN command configures the polarity of the limit switches, the home switch, and the latch input.

ARGUMENTS: CN m,n,o

 where m,n,o are integers with values 1 or -1.

 m = 1 Limit switches active high

 -1 Limit switches active low

 n = 1 Home switch active high

 -1 Home switch active low

 o = 1 Latch input active high

 -1 Latch input active low

USAGE:
While Moving Yes Default Value -1.-1.-1

In a Program Yes Default Format 2.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“MT” Motor Type

EXAMPLES:
CN 1,1 Sets limit and home switches to active high

CN,, -1 Sets input latch active low

SMC-2000 User’s Guide Command Reference •••• 37

@COM (2’s Complement Function)
DESCRIPTION:

The 2’s Complement (@COM[n]) function returns the complement of a number or variable given in square
brackets. Note that the @COM command is a function, which means that it does not follow the convention of
other commands, and does not require the underscore when used as an operand.

ARGUMENTS: @COM [n]

where n is a number in the range of –2147483647.9999 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=1234 Set variable

MG @COM[VAR1] Display the complement of 1234

VAR2=@COM[VAR1]+99 Perform calculation

EN End of Program

38 •••• Command Reference SMC-2000 User's Guide

@COS (Cosine Function)
DESCRIPTION:

The Cosine (@COS[n]) function returns the cosine of a number or variable which is inserted in square brackets
using units of degrees. Note that the @COS command is a function, which means that it does not follow the
convention of other commands, and does not require the underscore when used as an operand.

ARGUMENTS: @COS [n]

where n is a number in the range of –32768 to 32768

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=45 Set variable

MG @COS[VAR1] Display the cosine of 45

VAR2=@COS[VAR1]+99 Perform calculation

EN End of Program

SMC-2000 User’s Guide Command Reference •••• 39

CR (Circle)
DESCRIPTION:

The CR command specifies a two-dimensional arc segment of radius, r, starting at angle, θ, and traversing over
angle ∆θ. A positive ∆θ denotes counter-clockwise traverse, negative ∆θ denotes clockwise. The VE command
must be used to denote the end of the motion sequence after all CR and VP segments are specified. The BG
(Begin Sequence) command is used to start the motion sequence. All parameters, r, θ, ∆θ, must be specified.
Radius units are in quadrature counts. θ and ∆θ have units of degrees. The parameter n is optional and
describes the vector speed that is attached to the motion segment. (Used when multiple segments are
combined.)

ARGUMENTS: CR r,θ,∆θ <n

where r is an unsigned real number in the range 10 to 6000000 decimal

θ is an unsigned number in the range 0 to +/-32000 decimal

∆θ is a signed real number in the range 0.0001 to +/-32000 decimal

The product r * ∆θ must be limited to +/-4.5 E108

N is an unsigned number between 0 and 8000000.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“VP” Vector Position

“VS” Vector Speed

“VD” Vector Deceleration

“VA” Vector Acceleration

“VM” Vector Mode

“VE” End Vector

“BG” BGS - Begin Sequence

EXAMPLES:
VM XY Specify motion plane

CR 1000,0,360 Generate circle with radius of 1000 counts, start at 0
degrees and complete one circle in counterclockwise
direction.

VE End Sequence

BGS Start motion

40 •••• Command Reference SMC-2000 User's Guide

CS (Clear Sequence)
DESCRIPTION:

The CS command will remove VP, CR or LI commands stored in a motion sequence. Please note that after a
sequence has been run, the CS command is not necessary to enter a new sequence. This command is useful if
you have incorrectly specified VP, CR or LI commands.

When used as an operand, _CS returns the number of the segment in the sequence, starting at zero. The
instruction _CS is valid in the Linear Mode, LM, Vector Mode, VM, and Contour Mode, CM.

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#CLEAR Label

VP 1000,2000 Vector position

VP 4000,8000 Vector position

CS Clear vectors

VP 1000,5000 New vector

VP 8000,9000 New vector

VE End Sequence

BGS Begin Motion sequence

EN End of Program

SMC-2000 User’s Guide Command Reference •••• 41

 CW (Copyright information / Data Adjustment bit on/off)
FUNCTION: DESCRIPTION:

The CW command has a dual usage. The CW command will return the copyright information when the
argument, n is 0. Otherwise, the CW command is used as a communications enhancement. When turned on, the
communication routine sets the MSB of unsolicited, returned ASCII characters to 1. Unsolicited ASCII
characters are those characters which are returned from the controller without being directly queried from the
terminal. This is the case when a program has a command that requires the controller to return a value or string.

ARGUMENTS: CWn where

n is a number, either 0,1 or 2:

0 Causes the controller to return the copyright information

1 Causes the controller to set the MSB of unsolicited returned characters to 1

2 Causes the controller to not set the MSB of unsolicited characters.

CW ? returns the copyright information for the controller.

USAGE:
While Moving Yes Default Value 2

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _CW contains the value of the data adjustment bit. 2 = off, 1 = on

Note: The CW command can cause garbled characters to be returned by the controller. The default state of the
controller is to disable the CW command. The CW command status can be stored in EEPROM.

42 •••• Command Reference SMC-2000 User's Guide

DA (De-allocate the Variables & Arrays)
DESCRIPTION:

The DA command frees the memory occupied by an array or variable. In this command, more than one array or
variable can be specified for de-allocation of memories. A comma separates different arrays and variables when
specified in one command (up to 80 characters). The * argument de-allocates all the variables, and *[0] de-
allocates all the arrays.

ARGUMENTS: DA c[0],d, etc.

where c[0] - Defined array name

 d - Defined variable name

 * - De-allocates all the variables

 *[0] - De-allocates all the arrays

 _DA returns the number of available arrays

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“DM” Dimension Array

EXAMPLES: Cars and Salesmen are arrays and Total is a variable.
DM CARS[400],SALESMEN[50] Dimension 2 arrays

TOTAL=70 Assign 70 to the variable Total

DA CARS[0],SALESMEN[0],TOTAL De-allocate the 2 arrays & variable

DA*[0] De-allocate all arrays

DA *,*[0] De-allocate all variables and all arrays

NOTE: Since this command de-allocates the spaces and compacts the array spaces in the memory, it is possible
that execution of this command may take longer than 2 ms.

SMC-2000 User’s Guide Command Reference •••• 43

DC (Deceleration)
DESCRIPTION:

The Deceleration command (DC) sets the linear deceleration rate of the motors for independent moves such as
PR, PA and JG moves. The parameters will be rounded down to the nearest factor of 1024, and have units of
counts per second squared.

ARGUMENTS: DC x,y,z,w DCX=x DC a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 1024 to 67107840

 ?,?,?,? returns the value

USAGE:
While Moving Yes, only jog. Default Value 256000

In a Program Yes Default Format 8.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“AC” Acceleration

“PR” Position Relative

“PA” Position Absolute

“SP” Speed

“JG” Jog

“BG” Begin

“IT” Smoothing constant - S-curve

EXAMPLES:
PR 10000 Specify position

AC 2000000 Specify acceleration rate

DC 1000000 Specify deceleration rate

SP 5000 Specify slew speed

BG Begin motion

NOTE: The DC command may be changed during the move in JG mode, but not in PR or PA move.

44 •••• Command Reference SMC-2000 User's Guide

DE (Dual (Auxiliary) Encoder Position)
DESCRIPTION:

The DE x,y,z,w command defines the position of the auxiliary encoders. The auxiliary encoders may be used for
dual-loop applications. DE ? or _DEX returns the position of the auxiliary encoders.

The DE command defines the current motor position when used with stepper motors. DE? Returns the
commanded reference position of the motor. The units are in steps.

ARGUMENTS: DE x,y,z,w DEX=x DE a,b,c,d,e,f,g,h

where x,y,z,w are signed integers in the range -2147483647 to 2147483648 decimal

USAGE:
While Moving Yes Default Value 0,0,0,0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
DE 0,100,200,400 Set the current auxiliary encoder position

to 0,100,200,400 on X,Y,Z and W axes

DE?,?,?,? Return auxiliary encoder positions

DUALX=_DEX Assign auxiliary encoder position
of X-axis to the variable DUALX

Hint: Dual encoders are useful when encoders for both the motor and the load are needed. The encoder on the
load can be either the auxiliary encoder or main encoder and is used to verify the true load position. Any error in
load position is used to correct the motor position.

SMC-2000 User’s Guide Command Reference •••• 45

DL (Download)
DESCRIPTION:

The DL command allows transfer of a data file from the host computer to the SMC-2000. The file will be
accepted as a data stream (program listing) without line numbers. The file can be terminated using <control> Z,
<control> Q, <control> D, or \.

If no parameter is specified, downloading a data file will clear any programs in the SMC-2000 memory. The
data is entered beginning at line 0. If there are too many lines or too many characters per line, the SMC-2000
will return a ?. To begin the download following a label, that label may be specified following DL. Or, the #
argument may be used with DL to append a file at the end of the SMC-2000 program in memory. DO NOT
insert any spaces before each command.

When used as an operand, _DL gives the number of available labels. The total number of labels is 254 for the
SMC-2000.

ARGUMENTS: DL n

n = no argument Downloads program beginning at line 0. Overwrites existing programs.

n = #Label Begins download at line following #Label where label may be any
valid program label.

 n = # Begins download at end of program in memory.

USAGE:
While Moving Yes Default Value ---

In a Program No Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“UL” Upload

EXAMPLES:
DL; Begin download

#A;PR 4000;BGX Data

AMX;MG DONE Data

EN Data

<control> Z End download

46 •••• Command Reference SMC-2000 User's Guide

DM (Dimension)
DESCRIPTION:

The DM command defines a single dimensional array with a name and n total elements. The maximum number
of arrays, which the user can define, is limited to thirty. The maximum number of total elements within all arrays
is limited to 8000. The first element of the defined array starts with element number 0 and the last element is at
n-1.

ARGUMENTS: DM c[n]

where c is a name of up to eight characters, starting with an uppercase alphabetic character. n is the
number of entries from 1 to 8000.

 _DM returns the number of available arrays elements

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“DA” De-allocate Array

EXAMPLES:
DM PETS[5],DOGS[2],CATS[3] Define dimension of arrays, pets with 5 elements; Dogs

with 2 elements; Cats with 3 elements

DM TESTS[1600] Define dimension of array Tests with 1600 elements

SMC-2000 User’s Guide Command Reference •••• 47

DP (Define Position)
DESCRIPTION:

The DP command sets the current motor position and current command positions to a user specified value. If a ?
is used, the controller returns the current position of the motor. The units are in quadrature counts.

ARGUMENTS: DP x,y,z,w DPX=x DP a,b,c,d,e,f,g,h

where x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving No Default Value 0,0,0,0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
DP 0,100,200,400 Sets the current position of the X axis to 0, the Y axis to

100, the Z axis to 200, and the W axis to 400

DP ,-50000 Sets the current position of Y-axis to -50000. The Y,Z and
W axes remain unchanged.

DP ?,?,?,? Returns all the motor positions

0000000,-0050000,0000200,0000400

DP ? Returns the X-axis motor position

0000000

Hint: The DP command is useful to redefine the absolute position. For example, you can manually position the
motor by hand using the Motor Off command, MO. Turn the servo motors back on with SH and then use DP0 to
redefine the new position as your absolute zero.

48 •••• Command Reference SMC-2000 User's Guide

DT (Delta Time)
DESCRIPTION:

The DT command sets the time interval for Contouring Mode. Sending the DT command once will set the time
interval for all following contour data until a new DT command is sent. 2n milliseconds is the time interval.
Sending DT0 followed by CD0 command terminates the Contour Mode.

ARGUMENTS: DT n

where n is an integer in the range 0 to 8. 0 terminates the Contour Mode. n=1 through 8 specifies the
time interval of 2n samples.

The default time interval is n=1 for a 2 msec sample period.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“CM” Contour Mode

“CD” Contour Data

“WC” Wait for next data

EXAMPLES:
DT 4 Specifies time interval to be 16 msec

DT 7 Specifies time interval to be 128 msec

#CONTOUR Begin

CMXY Enter Contour Mode

DT 4 Set time interval

CD 1000,2000 Specify data

WC Wait for contour

CD 2000,4000 New data

WC Wait

DT0 Stop contour

CD0 Exit Contour Mode

EN End

SMC-2000 User’s Guide Command Reference •••• 49

DV (Dual Velocity (Dual Loop))
DESCRIPTION:

The DV function changes the operation of the PID loop. It causes the KD (derivative) term to operate on the
dual encoder instead of the main encoder. This results in improved stability in the cases where there is a
backlash between the motor and the main encoder, and where the dual encoder is mounted on the load.

ARGUMENTS: DV x,y,z,w DVX=x DV a,b,c,d,e,f,g,h

where x,y,z,w may be 0 or 1. 0 disables the function. 1 enables the dual loop.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“KD” Damping constant

“FV” Velocity feed forward

EXAMPLES:
DV 1,1,1,1 Enables dual loop on all axes

DV 0 Disables DV on X axis

DV,,11 Enables dual loop on Z-axis and WX axis. Other axes
remain unchanged.

DV 1,0,1,0 Enables dual loop on X and Z-axis. Disables dual loop on
Y and W axis.

Hint: The DV command is useful in backlash and resonance compensation.

50 •••• Command Reference SMC-2000 User's Guide

EA (ECAM Master Axis)
DESCRIPTION:

The EA command selects the master axis for the Electric Cam mode. Any main axis may be chosen.

ARGUMENTS: EA p

 Where p is X,Y,Z,W,E,F,G, or H for main encoder as ECAM Master

 p is DX,DY,DZ,DW,DE,DF,DG,or DH for auxiliary encoder as ECAM Master.

USAGE:
 While Moving Yes
In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:
 “EM” Define CAM cycles for each axis
“EP” Define CAM Table intervals and start point

“ET” CAM Table entries for slave axes

“EB” Enable CAM mode

EXAMPLES:

EAY Select Y as the ECAM Master

EADX Select X Auxiliary Encoder as ECAM Master

SMC-2000 User’s Guide Command Reference •••• 51

EB (Enable ECAM Mode)
DESCRIPTION:

The EB function enables or disables the cam mode. In this mode, the starting position of the master is specified
within the cycle. When the EB command is given, the master axis is modularized.

ARGUMENTS: EB n

 Where n = 1 starts cam mode; n = 0 stops cam mode.

USAGE:
 While Moving Yes
In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used as an Operand Yes

RELATED COMMANDS:
 “EM” Define CAM cycles for each axis
“EP” Define CAM Table intervals and start point

EXAMPLES:
EB 1 Starts ECAM mode

EB 0 Stops ECAM mode

B = _EB Return status of cam mode

52 •••• Command Reference SMC-2000 User's Guide

 EG (ECAM Engage)
DESCRIPTION:

The EG command engages an ECAM slave axis at a specified position of the master. _EGX returns 1 if the X-
axis is engaged. If a value is specified outside of the master’s range, the slave will engage immediately. Once a
slave motor is engaged, its position is redefined to fit within the cycle.

ARGUMENTS: EG x,y,z,w EGX=x EG a,b,c,d,e,f,g,h

 Where x, y, z, w are the masters positions at which the X, Y, Z, W axis must be engaged.

USAGE:
 While Moving Yes
In a Program No

Can be Interrogated Yes

Not in a Program Yes

Used as an Operand Yes

RELATED COMMANDS:
 “EB” Enable CAM mode
“EQ” Stop CAM motion for slaves

EXAMPLES:
 EG 700, 1300 Engages the X and Y axes at the master

 position 700 and 1300 respectively.
B= _EGY Returns the status of Y axis, 1 if engaged.

NOTE: This command is not a trip-point. This command will not hold the execution of the program flow. If the
execution needs to be held until the master position is reached, use MF or MR command.

SMC-2000 User’s Guide Command Reference •••• 53

EM (ECAM Cycle)
DESCRIPTION:

The EM command is part of the ECAM mode. It is used to define the change in position over one complete
cycle of the master. The field for the master axis is the cycle of the master position. For the slaves, the field
defines the net change in one cycle. If a slave will return to its original position at the end of the cycle, the
change is zero. If the change is negative, specify the absolute position.

NOTE: This command is not valid for setting the master’s modulus if the controller has d150N19p or greater.
Refer to the MM command in this case.

ARGUMENTS: EM x,y,z,w EMX=x EM a,b,c,d,e,f,g,h

where the parameters are positive integers in the range between 1 and 8,388,607 for the master axis and
between 1 and 2,147,483,647 for the slave axis

USAGE:
 While Moving Yes Default Value ---
In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
 “EA” Select master CAM axis
“EP” Define CAM table intervals and start point

“ET” CAM Table entries for the slave axes

“EB” Enable CAM mode

EXAMPLES:
 EAZ Select Z axis as master for ECAM
EM 0,3000,2000 Define the changes in X and Y to be 0 and 3000

respectively. Define master cycle as 2000.

V=_EMX Return cycle of X

54 •••• Command Reference SMC-2000 User's Guide

EN (End)
DESCRIPTION:

The EN command is used to designate the end of a program or subroutine. If a subroutine has been called by the
JS instruction, the EN command ends the subroutine and returns program flow to the line just after the JS
command. The EN command is used to end the automatic subroutines #MCTIME, #CMDERR, and #COMINT.
When the EN command is used to terminate the #COMINT communications interrupt subroutine, there are two
arguments; the first determines whether trip-points will be restored upon completion of the subroutine and the
second determines whether the communication interrupt will be re-enabled.

ARGUMENTS: EN m, n

 m=0 Return from subroutine without restoring trip-point

 m=1 Return from subroutine and restore trip-point

 n=0 Return from #COMINT without re-enabling interrupt

 n=1 Return from #COMINT and re-enable interrupt

Note 1: The default values for the argument are 0. For example, EN,1 and EN0,1 have the same effect

Note 2: Trip-points cause a program to wait for a particular event. The AM command, for example, waits for
motion on all axes to complete. If the #COMINT subroutine is executed due to a communication interrupt while
the program is waiting for a trip-point, the #COMINT can end by continuing to wait for the trip-point as if
nothing happened, or clear the trip-point and continue executing the program at the command just after the trip-
point. The EN arguments will specify how the #COMINT routine handles trippoints.

Note 3: Use the RE command to return from the interrupt handling subroutines #LIMSWI and #POSERR. Use
the RI command to return from the #ININT subroutine.

USAGE:
 While Moving Yes Default Value n=0, m=0
In a Program Yes Default Format ---

Not in a Program No

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
 “RE” Return from error subroutine
“RI” Return from interrupt subroutine

EXAMPLES:
 #A Program A
PR 500 Relative position move

BGX Begin the move

AMX After the move is complete

PR 1000 Set another Position Relative move

BGX Begin the move

EN End of Program

NOTE: Instead of EN, use the RE command to end the #POSERR subroutine and #LIMSWI subroutine. Use
the RI command to end the input interrupt (#ININT) subroutine.

SMC-2000 User’s Guide Command Reference •••• 55

EO (Echo)
DESCRIPTION:

The EO command turns the echo ON or OFF. If the echo is OFF, characters input over the bus will not be
echoed back.

ARGUMENTS: EO n

 where n=0 or 1. 0 turns echo off, 1 turns echo on.

USAGE:
 While Moving Yes Default Value 1
In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
 EO 0 Turns echo off
EO 1 Turns echo on

56 •••• Command Reference SMC-2000 User's Guide

EP (Cam table intervals and starting point)
DESCRIPTION:

The EP command defines the ECAM table intervals and offset. The offset is the master position of the first
ECAM table entry. The interval is the difference of the master position between two consecutive table entries.
This command effectively defines the size of the ECAM table. The parameter m is the interval and n is the
starting point.

ARGUMENTS: EP m,n

Where m is a positive integer in the range between 1 and 32,767 and n is an integer between -
2,147,483,648 and 2,147,483,647.

USAGE:
 While Moving Yes
In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used as an Operand Yes (m only)

RELATED COMMANDS:
 “EM” Define CAM cycles for each axis
“ET” CAM Table entries for each axis

EXAMPLE:
 EP 20, 100 Sets the cam master points to 100, 120, 140....
D = _EP Returns the interval (m)

SMC-2000 User’s Guide Command Reference •••• 57

EQ (ECAM quit (disengage))
DESCRIPTION:

The EQ command disengages an electric cam slave axis at the specified master position. Separate points can be
specified for each axis. If a value is specified outside of the master’s range, the slave will disengage immediately.
_EQX returns 1 if axis is waiting to start, 2 if axis is waiting to stop, 3 if both waiting to start and stop and 0 if
ECAM engaged or already stopped.

ARGUMENTS: EQ x,y,z,w EQX=x EQ a,b,c,d,e,f,g,h

 Where x, y, z, w are the master positions at which the XYZW axes are to be disengaged.

USAGE:
 While Moving Yes
In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used as an Operand Yes

RELATED COMMANDS:
 “EG” Start CAM motion for slaves

EXAMPLES:
 EQ 300, 700 Disengages the X and Y motors at master positions 300 and

700, respectively

NOTE: This command is not a trip-point. This command will not hold the execution of the program flow. If the
execution needs to be held until master position is reached, use MF or MR command.

58 •••• Command Reference SMC-2000 User's Guide

ER (Error Limit)
DESCRIPTION:

The ER command sets the magnitude of the X,Y,Z and W-axis position errors that will trigger an error condition.
When the limit is exceeded, the alarm light will come on. If the Off On Error (OE1) command is active, the motors
will be disabled (MO). With firmware 2.0g or d15ON19n or greater, ER0 will disable the error limit for that axis.
The alarm light will not come on, the #POSERR will not execute, and the motor will not disable if the OE is set to
one. This can be useful if an encoder is not a servo, but an external master. The units of ER are quadrature
counts.

ARGUMENTS: ER x,y,z,w ERX=x ER a,b,c,d,e,f,g,h

x,y,z,w are unsigned numbers in the range 0 to 32767

USAGE:
 While Moving Yes Default Value 16384
In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“OE” Off-On Error

#POSERR Automatic Error Subroutine

EXAMPLES:
 ER 200,300,400,600 Set the X-axis error limit to 200, the Y-axis error limit to

300, the Z-axis error limit to 400, and the W-axis error limit
to 600.

ER ,1000 Sets the Y-axis error limit to 1000,
leave the X-axis error limit unchanged.

ER ?,?,?,? Return X,Y,Z and W values

00200,01000,00400,00600

ER ? Return X value

00200

V1=_ERX Assigns V1 value of ERX

V1= Returns V1

00200

Hint: The error limit specified by ER should be high enough as not to be reached during normal operation.
Examples of exceeding the error limit would be a mechanical jam, or a fault in a system component such as
encoder or amplifier.

SMC-2000 User’s Guide Command Reference •••• 59

ES (Ellipse Scale)
DESCRIPTION:

The ES command divides the resolution of one of the axes in a vector mode. This allows the generation of an
ellipse instead of a circle, or a circle path with ball screws of different pitch.

The command has two parameters, m and n, (ES m,n), and it applies to the axes designated by the VM command
(VMXY, for example). When m>n, the resolution of the first axis (X in the example), will be divided by the
ratio m/n. When m<n, the resolution of the second axis (Y in the example), will be divided by n/m. The
resolution change applies for the purpose of generating the VP and CR commands. Note that this command
results in one axis moving a distance specified by the CR and VP commands, while the other one moves a larger
distance.

ARGUMENTS: ES m,n

where m and n are positive integers in the range between 1 and 65,535.

USAGE:
 While Moving Yes Default Value 1,1
In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
 “VM” Vector Mode

“CR” Circle move

“VP” Vector position

EXAMPLES:
 VMXY;ES3,4 Divide Y resolution by 4/3

VMZX;ES3,2 Divide Z resolution by 3/2

Hint: The ES command is useful for generating “true” circles or vectors when using ballscrews with various
ratios.

60 •••• Command Reference SMC-2000 User's Guide

ET (Electric cam table)
DESCRIPTION:

The ET command sets the ECAM table entries for the slave axes. The values of the master axes are not required.
The slave entry (n) is the position of the slave axes when the master is at the point n * i + o, where i and o are
the interval and offset as determined by the EP command.

ARGUMENTS: ET [n] = x, y, z, w ET [n] = a,b,c,d,e,f,g,h

 where n is an integer between 0 and 256 and the parameters x, y, z, w are integers in the range between
 -2,147,438,648 and 2,147,438,647.

USAGE:
 While moving Yes
In a program Yes

Not in a program Yes

Can be interrogated No

Used as an operand No

RELATED COMMANDS:
 “EA” Select master CAM axis
“EM” Define CAM cycles for each axis

“EB” Enable CAM mode

“EP” Define CAM table intervals and start point

EXAMPLES:
 ET [7] = 1000,300,500 Specifies the position of the slave axes X, Y, and Z that

must be synchronized with the eighth increment of the master

NOTE: The table entry generated with the ET [n] command can be stored on the non-volatile memory of the
controller. The BN command stores this table into the EEPROM.

SMC-2000 User’s Guide Command Reference •••• 61

FA (Acceleration Feed Forward)
DESCRIPTION:

The FA command sets the acceleration feed forward coefficient, or returns the previously set value. This
coefficient, when scaled by the acceleration, adds a torque bias voltage during the acceleration phase and
subtracts the bias during the deceleration phase of a motion. FA will only be operational during independent
moves.

Acceleration Feed forward Bias = FA ⋅ AC ⋅ 1.5 ⋅ 10-7

Deceleration Feed forward Bias = FA ⋅ DC ⋅ 1.5 ⋅ 10-7

ARGUMENTS: FA x,y,z,w

where x,y,z,w are unsigned numbers in the range 0 to 4097 decimal

USAGE:
 While Moving Yes Default Value 0
In a Program Yes Default Format 4.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
 “FV” Velocity feed forward

EXAMPLES:
 AC 500000,1000000 Specify acceleration rates
FA 10,15 Set feed forward coefficient to 10 for the X-axis and 15 for

the Y-axis. The effective bias will be 0.75V for X and
2.25V for Y.

FA ?,? Return X and Y values

010,015

NOTE: If the feed forward coefficient is changed during a move, then the change will not take effect until the
next move.

Hint: This command is useful for systems that require high acceleration in short time periods.

62 •••• Command Reference SMC-2000 User's Guide

FE (Find Edge)
DESCRIPTION:

The FE command moves a motor until a transition is seen on the homing input for that axis. The direction of
motion depends on the initial state of the homing input (use the CN command to configure the polarity of the
home input). Once the transition is detected, the motor decelerates to a stop.

This command is useful for creating your own homing sequences.

ARGUMENTS: FE XYZW FE ABCDEFGH

where X,Y,Z,W specify XYZ or W axis. No argument specifies all axes.

USAGE:
 While Moving No Default Value ---
In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
 “FI” Find Index
“HM” Home

“BG” Begin

“AC” Acceleration Rate

“DC” Deceleration Rate

“SP” Speed for search

EXAMPLES:
 FE Set find edge mode
BG Begin all axes

FEX Only find edge on X

BGX

FEY Only find edge on Y

BGY

FEZW Find edge on Z and W

BGZW

Hint: Find Edge only searches for a change in state on the Home Input. Use FI (Find Index) to search for the
encoder index pulse. Use HM (Home) to search for both the Home input and the Index. Remember to specify
BG after each of these commands.

SMC-2000 User’s Guide Command Reference •••• 63

FI (Find Index)
DESCRIPTION:

The FI and BG commands move the motor until an encoder index pulse is detected. The controller looks for a
transition from low to high. When the transition is detected, motion stops and the position is defined as zero. To
improve accuracy, the speed during the search should be specified as 1000 counts/s or less. The FI command is
useful in custom homing sequences. The sign of the JG command specifies the direction of motion.

ARGUMENTS: FI XYZW FI ABCDEFGH

 where X,Y,Z,W specify XYZ or W axis. No argument specifies all axes.

USAGE:
While Moving No Default Value ---
In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“FE” Find Edge

“HM” Home

“BG” Begin

“AC” Acceleration Rate

“DC” Deceleration Rate

“SP” Search Speed

EXAMPLES:
#HOME Home Routine

JG 500 Set speed and forward direction

FIX Find index

BGX Begin motion

AMX After motion

MG “FOUND INDEX”

Hint: Find Index only searches for a change in state on the index pulse. Use FE to search for the Home input.
Use HM (Home) to search for both the Home input and the Index pulse. Remember to specify BG after each of
these commands.

64 •••• Command Reference SMC-2000 User's Guide

FL (Forward Software Limit)
DESCRIPTION:

The FL command sets the forward software position limit. When the command position exceeds the forward
limit, motion on that axis will decelerate to a stop. Forward motion beyond this limit is not permitted. The
forward limit is activated at x+1, y+1, z+1, w+1. The forward limit is disabled at 2147483647. The units are in
quadrature counts.

ARGUMENTS: FL x,y,z,w FLX=x FL a,b,c,d,e,f,g,h

where x,y,z,w are signed integers in the range -2147483648 to 2147483647

2147483647 turns off the forward limit

USAGE:
While Moving Yes Default Value 2147483647

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“BL” Reverse Limit

EXAMPLES:
FL 150000 Set forward limit to 150000 counts on the X-axis

#TEST Test Program

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

FL 15000 Forward Limit

JG 5000 Jog Forward

BGX Begin

AMX After Limit

TPX Tell Position

EN End

SMC-2000 User’s Guide Command Reference •••• 65

@FRAC (Fraction function)
DESCRIPTION:

The Fraction (@FRAC[n]) function returns only the decimal portion of a number or variable given in square
brackets. Note that the @FRAC command is a function, which means that it does not follow the convention of
the commands, and does not require the underscore when used as an operand.

ARGUMENTS: @FRAC [n]

where n is a number in the range of –2147483647.9999 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=123.456 Set variable

MG @FRAC[VAR1] Display only the fractional portion of VAR1

VAR2=@FRAC[VAR1]+.5 Perform calculation

EN End of Program

66 •••• Command Reference SMC-2000 User's Guide

FV (Velocity Feed Forward)
DESCRIPTION:

The FV command sets the velocity feed forward coefficient, or returns the previously set value. This coefficient,
generates an output bias signal in proportion to the commanded velocity.

Velocity feed forward bias = 1.22 ⋅ 10-6 ⋅ FV ⋅ Velocity [cts./sec.].

For example, if FV=10 and the velocity is 200,000 count/s, the velocity feed forward bias equals 2.44 volts.

ARGUMENTS: FV x,y,z,w FVX=x FV a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 8191 decimal

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“FA” Acceleration feed forward

EXAMPLES:
FV 10,20 Set feed forward coefficients to 10 and 20 for X and Y

respectively. This produces 0.366 volts for X and 1.95 volts
for Y.

JG 30000,80000 Set jog speeds

FV ?,? Return the x and y values.

010,020

SMC-2000 User’s Guide Command Reference •••• 67

GA (Master Axis for Gearing)
DESCRIPTION:

The GA command specifies the master axis for electronic gearing. Only one master may be specified. The
master may be the main encoder input, auxiliary encoder input, or the commanded position of any axis. The
master may also be the commanded vector move in a coordinated motion of LM or VM type. When the master
is a simple axis, it may move in any direction and the slave follows. When the master is a commanded vector
move, the vector move is considered positive and the slave will move forward if the gear ratio is positive, and
backward if the gear ratio is negative. The slave axes and ratios are specified with the GR command.

ARGUMENTS: GA n

where n = X or Y or Z or W or A,B,C,D,E,F,G,H for main encoder as axis master

n = CX or CY or CZ or CW or CA,CB,CC,CD,CE,CF,CG,CH for command position as master axis

n = S for vector motion as master

n = DX or DY or DZ or DW or DA,DB,DC,DD,DE,DF,DG,DH for auxiliary encoder as master

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“GR” Gear Ratio

EXAMPLES:
#GEAR Gear program

GAX Specify X axis as master

GR ,.5,-2.5 Specify Y and Z ratios

JG 5000 Specify master jog speed

BGX Begin motion

WT 10000 Wait 10000 msec

STX Stop

Hint: Using the commanded position as the master axis is useful for gantry applications. Using the vector
motion as master is useful in generating helical motion.

68 •••• Command Reference SMC-2000 User's Guide

GN (Gain)
DESCRIPTION:

The GN command sets the gain of the control loop or returns the previously set value. It fits in the z-transform
control equation as follows:

 D(z) = GN(z-ZR)/z

ARGUMENTS: GN x,y,z,w GNX=x GN a,b,c,d,e,f,g,h

where x,y,z,w are unsigned integers in the range 0 to 2047 decimal.

USAGE:
While Moving Yes Default Value 70

In a Program Yes Default Format 4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“ZR” Zero

“KI” Integrator

“KP” Proportional

“KD” Derivative

EXAMPLES:
GN 12,14,15,20 Set X-axis gain to 12 Set Y-axis gain to 14

Set Z-axis gain to 15 Set W-axis gain to 20

GN 6 Set X-axis gain to 6 Leave other gains unchanged

GN ,8 Set Y-axis gain to 8 Leave other gains unchanged

GN ?,?,?,? Returns X,Y,Z,W gains

0006,0008,0015,0020

GN ? Returns X gain

0006

GN ,? Returns Y gain

0008

SMC-2000 User’s Guide Command Reference •••• 69

GR (Gear Ratio)
DESCRIPTION:

GR specifies the Gear Ratios for the geared axes in the electronic gearing mode. The GAX, GAY, GAZ, or
GAW command defines the master axis. The gear ratio may be different for each geared axis and range between
+/-127.9999. The slave axis will be geared to the actual position of the master. The master can go in both
directions. GR 0,0,0,0 disables gearing for each axis. A limit switch also disables the gearing.

ARGUMENTS: GR x,y,z,w GRX=x GR a,b,c,d,e,f,g,h

where x,y,z,w are signed numbers in the range +/-127, with a fractional resolution of 1/65535.

0 disables the gearing

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 3.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“GA” Master Axis

EXAMPLES:
#GEAR

MOY Turn off servo to Y motor

GAY Specify master axis as Y

GR .25,,-5 Specify X and Z gear ratios

EN End program

When the Y motor is rotated by hand, the X will rotate at 1/4th the speed and Z will rotate 5 times the speed in
the opposite direction.

Note: More gearing resolution can be achieved by using a calculation such as GRY=1/3 rather than
GRY=0.3333. This is because there is actually a resolution of 1/65535 in the fraction portion of a number.

70 •••• Command Reference SMC-2000 User's Guide

HM (Home)
DESCRIPTION:

The HM command performs a three-stage homing sequence for servo systems and a two stage sequence for
stepper motor operation.

For servo motor operation:

 The first stage consists of the motor moving at the user-programmed speed until it sees a transition on the
homing input for that axis. The direction for this first stage is determined by the initial state of the Homing
Input. Once the homing input changes state, the motor decelerates to a stop. The state of the homing input can be
configured using the CN command.

The second state consists of the motor changing directions and slowly approaching the transition again. When it
detects the transition, it stops.

The third stage consists of the motor moving forward at 256 cts/sec until it detects an index pulse from the
encoder. It stops at this point and defines it as position 0.

For stepper motor operation:

The sequence consists only of the first two stages shown above. The frequency of the motion in stage 2 is 256
cts./sec.

ARGUMENTS: HM XYZW HM ABCDEFGH

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

When the HM command is used in an operand (_HMX), it returns the state of the home switch.

RELATED COMMANDS:
“CN” Configure Home

“FI” Find Index Only

“FE” Find Home Only

EXAMPLES:
HM Set Homing Mode for all axes

BG Home all axes

BGX Home only the X-axis

BGY Home only the Y-axis

BGZ Home only the Z-axis

BGW Home only the W-axis

It is possible to customize the speed of the FI command, so if the HM command is too slow, use the FE and FI
commands to make your own homing routines.

Hint: You can create your own custom homing sequence by using the FE (Find Home Sensor only) and FI
(Find Index only) commands.

Note: _HM = 0 Always indicates that the home switch is active regardless of the state of the CN command.

SMC-2000 User’s Guide Command Reference •••• 71

HX (Halt Execution)
DESCRIPTION:

The HX command halts the execution of any of the four programs that may be running independently in
multitasking. The parameter n specifies the program to be halted. If no parameter is specified, all threads will
halt. If an HX command is given while moving, the motion will not stop (use the Abort command (AB) to stop
motion).

When used as an operand, _HXn returns the running status of thread n with:

 0 Thread not running

 1 Thread is running

 2 Thread has stopped at trip-point

ARGUMENTS: HXn

where n is an integer in the range of 0 to 3 to indicate the thread number.

USAGE:
While Moving Yes Default Value n = 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“XQ” Execute program

EXAMPLES:
XQ #A Execute program #A, thread zero

XQ #B,3 Execute program #B, thread three

HX0 Halt thread zero

HX3 Halt thread three

72 •••• Command Reference SMC-2000 User's Guide

II (Input Interrupt)
DESCRIPTION:

The II command enables the interrupt function for the specified inputs. m specifies the beginning input and n
specifies the final input in the range. For example, II 2,4 specifies interrupts occurring for Input 2, Input 3 and
Input 4. m=0 disables the Input Interrupts. If only the m parameter is given, only that input will generate an
interrupt.

The parameter o is an interrupt mask for all eight inputs. If m and n are unused, o contains a number with the
mask. A 1 designates that input to be enabled for an interrupt.

Example: II,,5 enables inputs 1 and 3

If any of the specified inputs go low during program execution, the program will jump to the subroutine with
label #ININT. The RI command is used to return from the #ININT routine. The RI command also re-enables
input interrupts. To avoid returning to the main program on an interrupt, use the command ZS to zero the
subroutine stack.

ARGUMENTS: II m,n,o

where:

 m is an integer in the range 0 to 8 decimal

 n is an integer in the range 1 to 8 decimal

 o is an integer in the range 0 to 255 decimal

 with firmware type n19K or higher, the interrupts can be either active high or low:

 m is an integer in the range -8 to 8 decimal

 n is an integer in the range -8 to –1or 1 to 8 decimal

 o is an integer in the range -255 to 255 decimal

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 3.0 (mask only)

Not in a Program No

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“RI” Return from Interrupt

#ININT Interrupt Subroutine

“After Input (AI” After Input

EXAMPLES:
#A Program A

II 4 Specify interrupt on input 4

JG 5000 Specify jog speed

BGX Begin motion

#LOOP;JP #LOOP Loop

EN End Program

SMC-2000 User’s Guide Command Reference •••• 73

#ININT Interrupt subroutine

STX;MG “INTERRUPT” Stop X, print message

AMX After stopped

AI 4 Check for interrupt clear (input 4 goes high)

BGX Begin motion

RI Return to main program

74 •••• Command Reference SMC-2000 User's Guide

IL (Integrator Limit)
DESCRIPTION:

The IL command limits the effect of the integrator function in the filter to a certain voltage. For example, IL 2
limits the output of the integrator of the X-axis to the +/-2 Volt range.

A negative parameter also freezes the effect of the integrator during the move. For example, IL -3 limits the
integrator output to +/-3V. If, at the start of the motion, the integrator output is 1.6 Volts, that level will be
maintained through the move. Please note, however, that the KD and KP terms remain active in any case.

ARGUMENTS: IL x,y,z,w ILX=x IL a,b,c,d,e,f,g,h

where x,y,z,w are numbers in the range –9.9988 to 9.9988 Volts.

USAGE:
While Moving Yes Default Value 9.9988

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“KI” Integrator

EXAMPLES:
KI 2,3,5,8 Integrator constants

IL 3,2,7,2 Integrator limits

IL ? Returns the X-axis limit

3.0000

IL*=2 Set all axes

SMC-2000 User’s Guide Command Reference •••• 75

IN (Input Variable)
DESCRIPTION:

The IN command allows data to be input from a serial port. When the IN command is executed in a program,
the prompt message is displayed. The operator then enters the variable value followed by a carriage return. The
entered value is assigned to the specified variable name.

The IN command suspends execution of following commands in program thread zero until a carriage return or
semicolon is received. If no value is given prior to a semicolon or carriage return, the previous variable value is
kept. Input Interrupts, Error Interrupts and Limit Switch Interrupts will remain active.

ARGUMENTS: IN {P2}”m”,n

 where:

 m is an optional prompt message

 n is the variable name (n cannot be an array location)

 {P2} is only required when interfacing to port 2. The default is port 1

{So} specifies string data and o is the number of characters from 1 to 6.

Note 1: The limit on the number of characters for m is 60 characters or less per line.

Note 2: Configure Port 2 communications with the CC command before using IN command with Port 2.

Note 3: IN command can only be used in thread 0.

USAGE:
While Moving Yes Default Value {P1}

In a Program Yes Default Format Position Format

Not in a Program No

Can be Interrogated No

Used in an Operand No

EXAMPLES:

Operator specifies length of material to be cut in inches and speed in inches/sec (2-pitch lead screw, 2000
counts/rev encoder).

#A Program A

IN “Enter Speed(in/sec)”,V1 Prompt operator for speed

IN “Enter Length(in)”,V2 Prompt for length

V3=V1*4000 Convert units to counts/sec

V4=V2*4000 Convert units to counts

SP V3 Speed command

PR V4 Position command

BGX Begin motion

AMX Wait for motion complete

MG “MOVE DONE” Print Message

EN End Program

Note: It is good practice to clear the input buffer before executing the IN command.

76 •••• Command Reference SMC-2000 User's Guide

@IN (Status of Digital Input Function)
DESCRIPTION:

The Digital Input(@IN[n]) function returns the status of the digital input number or variable given in square
brackets. Note that the @IN command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @IN [n]

where n is an unsigned integer in the range 1 to 8 decimal

where n is an unsigned integer in the range 1 to 24 for SMC-20008

where n is an unsigned integer in the range 1 to 64 for an SMC-2000 with the “I”, “D”, “P”, or “S”
option.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=2 Set variable

MG @IN[VAR1] Display the status of digital input 2

VAR2=@IN[VAR1]+1 Perform calculation

EN End of Program

SMC-2000 User’s Guide Command Reference •••• 77

@INT (Integer function)
DESCRIPTION:

The Integer (@INT[n]) function returns only the whole number part of a number or variable given in square
brackets. Note that the @INT command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @INT [n]

where n is a number in the range of –2147483648.9999 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=123.456 Set variable

MG @INT[VAR1] Display only the whole number portion of VAR1

VAR2=@INT[VAR1]+25 Perform calculation

EN End of Program

78 •••• Command Reference SMC-2000 User's Guide

IP (Increment Position)
DESCRIPTION:

The IP command allows for a change in the command position while the motor is moving. This command does
not require a BG (Begin Command). The command has three effects depending on the motion being executed.
The units of this command are quadrature.

Case 1: Motor is standing still (no move profile in progress)

An IP x,y,z,w command is equivalent to a PR x,y,z,w and BG command. The motor will move to the
specified position at the requested slew speed and acceleration.

Case 2: Motor is moving towards specified position

An IP x,y,z,w command will cause the motor to move to a new position target, which is the old target
plus x,y,z,w.

x,y,z,w must be in the same direction as the existing motion, or a command error will result.

Case 3: Motor is in the Jog Mode

An IP x,y,z,w command will cause the motor to instantly try to servo to a position x,y,z,w from the
present instantaneous position. The SP and AC parameters have no effect. This command is useful
when synchronizing 2 axes in which one of the axis’ speed is indeterminate due to a variable diameter
pulley.

ARGUMENTS: IP x,y,z,w IPX = x IP a,b,c,d,e,f,g,h

x,y,z,w are signed numbers in the range -2147483648 to 2147483647 decimal.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 7.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
IP 50 50 counts with set acceleration and speed

#CORRECT Label

AC 100000 Set acceleration

JG 10000;BGX Jog at 10000 counts/sec rate

WT 1000 Wait 1000 msec

IP 10 Move the motor 10 counts instantaneously

STX Stop Motion

SMC-2000 User’s Guide Command Reference •••• 79

IT (Independent Time Constant - Smoothing Function)
DESCRIPTION:

The IT command filters the acceleration and deceleration functions in independent moves of JG, PR, PA type to
produce a smooth velocity profile. The resulting profile, known as S-curve, has continuous acceleration and
results in reduced mechanical vibrations. IT sets the bandwidth of the filter where 1 means no filtering and 0.004
means maximum filtering. NOTE that the filtering results in longer motion time.

ARGUMENTS: IT x,y,z,w ITX=x IT a,b,c,d,e,f,g,h

where x,y,z,w are positive numbers in the range between 0.004 and 1.0 with a resolution of 1/256

USAGE:
While Moving Yes Default Value 1.0

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VT” Vector Time Constant for smoothing vector moves

EXAMPLES:
IT 0.8, 0.6, 0.9, 0.1 Set independent time constants for x,y,z,w axes

IT ? Return independent time constant for X-axis

0.8

80 •••• Command Reference SMC-2000 User's Guide

JG (Jog)
DESCRIPTION:

The JG command sets the jog mode. The parameters following the JG set the slew speed of the axes. Use of the
question mark returns the previously entered value or default value. The units of this are counts per second.

ARGUMENTS: JG x,y,z,w JGX=x JG a,b,c,d,e,f,g,h

where: x,y,z,w are signed numbers in the range 0 to +/-8,000,000 decimal

USAGE:
While Moving Yes Default Value 25000

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“BG” Begin

“ST” Stop

“AC” Acceleration

“DC” Deceleration

“IP” Increment Position

“TV” Tell Velocity

EXAMPLES:
JG 100,500,2000,5000 Set for jog mode with a slew speed of 100 counts/sec for

the X-axis, 500 counts/sec for the Y-axis, 2000 counts/sec
for the Z-axis, and 5000 counts/sec for W-axis.

BG Begin Motion

JG ,,-2000 Change the Z-axis to slew in the
negative direction at -2000 counts/sec.

SMC-2000 User’s Guide Command Reference •••• 81

JP (Jump to Program Location)
DESCRIPTION:

The JP command causes a jump to a program location on a specified condition. The program location may be
any program line number or label. The condition is a conditional statement that uses a logical operator such as
equal to or less than. A jump occurs if the specified condition is true. WITH FIRMWARE VERSIONS 2.0C
AND HIGHER ONLY you may combine conditions with logical operators such as AND (&) , and OR (|) by
enclosing the individual conditions within parentheses.

Example JP #ERROR, (SPEED<0)|(SPEED>450)

ARGUMENTS: JP location, condition

where: location is a program line number or label

 condition is a conditional statement using a logical operator (optional)

The logical operators are:

 < less than

 > greater than

 = equal to

 <= less than or equal to

 >= greater than or equal to

 <> not equal to

USAGE:
While Moving Yes

In a Program Yes

Not in a Program No

Can be Interrogated No

Used in an Operand No

EXAMPLES:
JP #POS1,V1<5 Jump to label #POS1 if variable V1 is less than 5

JP #A,V7*V8=0 Jump to #A if V7 times V8 equals 0

JP #B Jump to #B (no condition)

Hint: JP is similar to an IF, THEN command. Text to the right of the comma is the condition that must be met
for a jump to occur. The destination is the specified label before the comma.

82 •••• Command Reference SMC-2000 User's Guide

JS (Jump to Subroutine)
DESCRIPTION:

The JS command will change the sequential order of execution of commands in a program. If the jump is taken,
program execution will continue at the line specified by the destination parameter, which can be either a line
number or label. The line number of the JS command is saved and after the next EN command is encountered
(End of subroutine), program execution will continue with the instruction following the JS command. There can
be a JS command within a subroutine. These can be nested 16 deep in the SMC-2000. WITH FIRMWARE
VERSIONS 2.0C AND HIGHER ONLY you may combine conditions with logical operators such as AND
(&) , and OR (|) by enclosing the individual conditions within parentheses.

A jump is taken if the specified condition is true. Conditions are tested with logical operators. The logical
operators are:

< less than or equal to

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal

ARGUMENTS: JS destination, condition

 where destination is a line number or label

 condition is a conditional statement using a logical operator (optional)

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program No

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“EN” End

EXAMPLES:
JS #SQUARE,V1<5 Jump to subroutine #SQUARE if V1 is less than 5

JS #LOOP,V1<>0 Jump to #LOOP if V1 is not equal to 0

JS #A Jump to subroutine #A (no condition)

SMC-2000 User’s Guide Command Reference •••• 83

KD (Derivative Constant)
DESCRIPTION:

KD designates the derivative constant in the controller filter. The filter transfer function is

 D(z) = KP + KD(z-1)/z + KI . z/(z-1)

 For further details on the filter see the section Theory of Operation.

ARGUMENTS: KD x,y,z,w KDX=x KD a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 4095.875 with a resolution of 1/8.

USAGE:
While Moving Yes Default Value 64

In a Program Yes Default Format 4.2

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“KP” Proportional Constant

“KI” Integral

EXAMPLES:
KD 100,200,300,400.25 Specify KD

KD ?,?,?,? Return KD

0100.00,0200.00,0300.00,0400.25

84 •••• Command Reference SMC-2000 User's Guide

KI (Integrator)
DESCRIPTION:

The KI command sets the integral gain of the control loop. It fits in the control equation as follows:

 D(z) = KP + KD(z-1)/z + KI z/(z-1)

 The integrator term will reduce the position error at rest to zero.

ARGUMENTS: KI x,y,z,w KIX=x KI a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 2047.875 with a resolution of 1/8

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 4.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“GN” Gain

“KP” Proportional Gain

“KD” Derivative

“ZR” Zero

“IL” Integrator Limit

EXAMPLES:
KI 12,14,16,20 Specify x,y,z,w-axis integral

KI 7 Specify x-axis only

KI ,,8 Specify z-axis only

KI ?,?,?,? Return X,Y,Z,W

0007,0014,0008,0020 KI values

SMC-2000 User’s Guide Command Reference •••• 85

KP (Proportional Constant)
DESCRIPTION:

KP designates the proportional constant in the controller filter. The filter transfer function is

 D(z) = KP + KD(z-1)/z + KIz/(z-1)

For further details see the section Theory of Operation.

ARGUMENTS: KP x,y,z,w KPX=x KP a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 1023.875 with a resolution of 1/8.

USAGE:
While Moving Yes Default Value 6

In a Program Yes Default Format 4.2

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“KP” Proportional Gain

“KI” Integral constant

86 •••• Command Reference SMC-2000 User's Guide

KS (Stepper Motor Smoothing)
DESCRITPION

KS parameter smoothes the frequency of the step motor pulses. Larger values of KS provide greater smoothness.
This parameter will also increase the motion time by 3*KS sampling periods. KS adds a single pole low pass
filter onto the output of the motion profiler. This function smoothes out the generation of step pulses and is
most useful when operating in full or half step mode.

Note: The KS function will cause the step output to be delayed.

ARGUMENTS: KS x,y,z,w, KSX=x KS a,b,c,d,e,f,g,h

 where x,y,z,w are positive integers in the range between 0.5 and 16 with a resolution of 1.

USAGE:
While Moving Yes Default Value 2

In a Program Yes Default Format 4.0

Command Line Yes

Can be Interrogated Yes KS ?,?,?,?

Used in an Operand Yes

OPERAND USAGE:

 _KSn contains the value of the step motor smoothing constant for the specified axis ‘n’.

RELATED COMMANDS:

“MT” Motor Type

EXAMPLES:
KS 2, 4, 8 Specify x,y,z axes

KS 5 Specify x-axis only

KS ,,15 Specify z-axis only

Note: KS is valid for step motors only

SMC-2000 User’s Guide Command Reference •••• 87

LA (List Arrays)
DESCRITPION

The LA command returns a list of all arrays in memory. The listing will be in alphabetical order. The size of
each array will be included next to each array name in square brackets. This command is valid only with
firmware 2.0g and higher, or d15ON19o and higher.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:

“LL” List Labels

“LS” List Program

“LV” List Variable

EXAMPLES:
:LA List Arrays

CA[10]

LA [5]

NY[25]

VA[17]

88 •••• Command Reference SMC-2000 User's Guide

LC (Lock Controller)

DESCRIPTION:

The (LC) Lock Controller command is used to prohibit the execution of certain commands from the serial port
by setting a security password. See the table below for a list of commands that are disabled in the "Locked"
mode.

ARGUMENTS: LC p,l

 where p is the password as previously established with the "PW" command.

"l" is the Lock setting, 0=Unlock, 1=Lock commands (see table), 2=Lock commands and prohibit
setting any commands from the serial port.

USAGE:
While Moving Yes Default Value 0

In a Program No Default Format 8.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand No

RELATED COMMANDS:
"PW" PassWord

COMMANDS DISABLED UNDER LOCK STATUS 1 & 2:
BN (Burn Parameters) TR (Trace Mode)

BP (Burn Program) DL (DownLoad)

BV (Burn Variables) LS (List Program)

UL (Upload)

EXAMPLES:
PW MOTION,MOTION Set a new password "MOTION"

LC MOTION,1 Lock controller

LC MOTION,0 Unlock controller

MG _LC Returns Lock State (0,1,2)

SMC-2000 User’s Guide Command Reference •••• 89

LE (Linear Interpolation End)
DESCRIPTION:

LE signifies the end of a linear interpolation sequence. It follows the last LI specification in a linear sequence.
The controller will calculate the linear move profile such that the motors will decelerate to a stop by the end of
the last LI segment before the LE. LE? or _LE returns the length of the vector in counts. The VE command is
interchangeable with the LE command.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“LI” Linear Distance

“BG” BGS - Begin Sequence

“LM” Linear Interpolation Mode

“VS” Vector Speed

“VA” Vector Acceleration

“VD” Vector Deceleration

EXAMPLES:
LM ZW Specify linear interpolation mode

LI ,,100,200 Specify linear distance

LE End linear move

BGS Begin motion

90 •••• Command Reference SMC-2000 User's Guide

LF (Forward Limit)
DESCRIPTION:

The _LF operand contains the state of the forward limit switch for the specified axis. A zero always means the
limit is activated no matter what setting (active low or active high). This is not a command, but a status bit.

ARGUMENTS: _LFn

 Where n is the axis letter

EXAMPLES:
MG _LFX Display the status of the X axis forward limit switch

JP#A,_LFZ=0 Jump to label #A if Z axis forward limit switch is activated

SMC-2000 User’s Guide Command Reference •••• 91

LI (Linear Interpolation Distance)
DESCRIPTION:

The LI x,y,z,w command specifies the incremental distance of travel for each axis in the Linear Interpolation
(LM) mode. LI parameters are relative distances given with respect to the current axis positions. Up to 511 LI
specifications may be given ahead of the Begin Sequence (BGS) command. Additional LI commands may be
sent during motion when the SMC-2000 sequence buffer frees additional spaces for new vector segments. The
Linear End (LE) command must be given after the last LI specification in a sequence. This command tells the
controller to decelerate to a stop at the last LI command.

It is the responsibility of the user to keep enough LI segments in the SMC-2000 sequence buffer to ensure
continuous motion. LM? or _LM returns the available spaces for LI segments that can be sent to the buffer. 511
returned means the buffer is empty and 511 LI segments can be sent. A zero means the buffer is full and no
additional segments can be sent. It should be noted that the SMC-2000 computes the vector speed based on the
axes specified in the LM mode. For example, LM XYZ designates linear interpolation for the X,Y and Z-axes.
The speed of these axes will be computed from VS2=XS2+YS2+ZS2 where XS, YS and ZS are the speed of the
X,Y and Z axes. If the LI command specifies only X and Y, the speed of Z will still be used in the vector
calculations. The controller always uses the axis specifications from LM, not LI, to compute the speed.

ARGUMENTS: LI x,y,z,w LI a,b,c,d,e,f,g,h

x,y,z,w are signed integers in the range -8,388,607 to 8,388,607 and represent incremental move
distance

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“BGS” BGS - Begin sequence

“LM” Linear Interpolation Mode

“LE” Linear end

“CS” Clear Sequence

“VS” Vector Speed

“VA” Vector Acceleration

“VD” Vector Deceleration

EXAMPLES:
LM XYZ Specify linear interpolation mode

LI 1000,2000,3000 Specify distance

LE Last segment

BGS Begin sequence

92 •••• Command Reference SMC-2000 User's Guide

LL (List Labels)
DESCRITPION

The LL command returns a list of all program labels in memory. The listing will be in alphabetical order. This
command is valid only with firmware 2.0g and higher, or d15ON19o and higher.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:

“LA” List Arrays

“LS” List Program

“LV” List Variable

EXAMPLES:
:LL List Labels

FIVE

FOUR

ONE

THREE

TWO

SMC-2000 User’s Guide Command Reference •••• 93

LM (Linear Interpolation Mode)
DESCRIPTION:

The LM XYZW command specifies the linear interpolation mode where XYZW denote the axes for linear
interpolation. Any set of axes may be used for linear interpolation. LI x,y,z,w commands are used to specify the
travel distances for linear interpolation. The LE command specifies the end of the linear interpolation sequence.
Several LI commands may be given as long as the SMC-2000 sequence buffer has room for additional segments.
_LM or LM? may be used to return the number of spaces available in the sequence buffer for additional LI
commands. Once the LM command has been given, it does not need to be given again unless the VM command
has been used.

It should be noted that the SMC-2000 computes the vector speed based on the axes specified in the LM mode.
For example, LM XYZ designates linear interpolation for the X,Y and Z-axes. The speed of these axes will be
computed from VS2=XS2+YS2+ZS2, where XS, YS and ZS are the speed of the X,Y and Z-axes. If the LI
command specifies only X and Y, the speed of Z will still be used in the vector calculations. The controller
always uses the axis specifications from LM, not LI, to compute the speed.

ARGUMENTS: LM XYZW LM ABCDEFGH

 XYZW denote X,Y,Z or W axes

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“LE” Linear end

“LI” Linear distances

“BG” BGS - Begin sequence

“VA” Vector acceleration

“VS” Vector Speed

“VD” Vector deceleration

“AV” Vector distance

“CS” _CS - Sequence counter

EXAMPLES:
LM XYZW Specify linear interpolation mode

VS 10000; VA 100000;VD 1000000 Specify vector speed, acceleration and deceleration

LI 100,200,300,400 Specify linear distance

LI 200,300,400,500 Specify linear distance

LE; BGS Last vector, then begin motion

94 •••• Command Reference SMC-2000 User's Guide

LR (Reverse Limit)
DESCRIPTION:

The _LR operand contains the state of the reverse limit switch for the specified axis. A zero always means the
limit is activated no matter what setting (active high or low). This is not a command, but a status bit.

ARGUMENTS: _LRn

 Where n is the axis letter

EXAMPLES:
MG _LRX Display the status of the X axis reverse limit switch

JP#A,_LRZ=0 Jump to label #A if Z axis reverse limit switch is activated

SMC-2000 User’s Guide Command Reference •••• 95

LS (List Program)
DESCRIPTION:

The LS command sends a listing of the programs in memory to the PC bus. The listing will start with the line
pointed to by the first parameter, which can be either a line number or a label. If no parameter is specified, it
will start with line 0. The listing will end with the line pointed to by the second parameter--either a line number
or label. If no parameter is specified, the listing will go to the last line of the program.

ARGUMENTS: LS n,m

where n,m are valid numbers from 0 to 999, or labels. n is the first line to be listed, m is the last.

USAGE:
While Moving Yes Default Value 0,Last Line

In a Program No Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
:LS #A,6 List program starting at #A through line 6

002 #A

003 PR 500

004 BGX

005 AM

006 WT 200

96 •••• Command Reference SMC-2000 User's Guide

LT (Latch Target)
DESCRIPTION

The LT command is used for stopping an axis a defined distance after a registration mark (latch) input. The
distance specified by the LT command is in encoder counts. The distance must be sufficiently large for the
controller to decelerate normally at the specified deceleration rate. A stop code will be generated if the distance
is too small to stop for the deceleration rate or if the speed is too high.

ARGUMENTS: LTX=x LTx,y,z,w LTa,b,c,d,e,f,g,h

POSSIBLE STOP CODES

 1 Motors stopped at commanded independent position (Latch input not received)

40 Stopped at Latch Target

41 Latched target overrun due to limit switch or stop comment

42 Latched target overrun due to insufficient distance

USAGE:
While Moving Yes Default Value 2,147,483,647

In a Program Yes Default Format 10.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:

AL Arm Latch

RL Report Latch

EXAMPLES:
 ALX Set latch function

 LTX=25000 Set Latch Target to stop 25000 counts after registration

PRX=100000 Position Relative Move

BGX Begin Motion

AMX After Motion Trip-point

JP #NOMARK_SCX=1 Jump to #NOMARK routine if did not receive a
registration mark

Note: The LT command must be issued before each move requiring a stop upon registration.

SMC-2000 User’s Guide Command Reference •••• 97

LV (List Variables)
DESCRITPION

The LV command returns a list of all program variables in memory. The listing will be in alphabetical order.
This command is valid only with firmware 2.0g and higher, or d15ON19o and higher.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:

“LA” List Arrays

“LS” List Program

“LL” List Labels

EXAMPLES:
:LV List Variables

APPLE = 60.0000

BOY = 25.0000

ZEBRA= 37.0000

98 •••• Command Reference SMC-2000 User's Guide

LZ (Leading Zero)
DESCRIPTION:

The LZ command is used for formatting the values returned from the interrogation commands or interrogation of
variables and arrays. By enabling the LZ function, all leading zeros of returned values will be removed.

ARGUMENTS: LZ n

where n=1 suppresses and n=0 does not.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

OPERAND USAGE:

 _LZ will report the current setting of the Leading Zero (LZ) command.

Note: LZ is only available for firmware versions 1.1h and higher, 2.0 or higher, and all D15ON19 versions.

SMC-2000 User’s Guide Command Reference •••• 99

MC (Motion Complete - “In Position”)
DESCRIPTION:

The MC command is a trip-point used to control the timing of events. This command will delay execution of the
following commands until the current move on the specified axis or axes is completed and the encoder reaches
or passes the specified position. Any combination of axes or a motion sequence may be specified with the MC
command. For example, MC XY waits for motion on both the X and Y-axis to be complete. MC with no
parameter specifies that motion on all axes is complete. TW x, y, z, w sets the timeout if the encoder is not in
position within the specified time. If a timeout occurs, the trip-point will clear and the stop code will be set to
99. The program will jump to the special label #MCTIME if it is included in the program.

When used in stepper mode, the controller will hold up execution of the proceeding commands until the
controller has generated the same number of steps as specified in the commanded position. The actual number
of steps that have been generated can be monitored by using the interrogation command TD. Note: the MC
command is useful when operating with stepper motors since the step pulses can be delayed from the
commanded position due to the stepper motor smoothing function, KS.

ARGUMENTS: MC XYZWS MC ABCDEFGH

 Where X, Y, Z, W are XYZW axes. No argument specifies that motion on all axis is complete.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
BG _BGx (returns a 0 if motion complete)

AM After Motion

TW Timeout for in Position

EXAMPLES:
#MOVE Program MOVE

PR 5000,5000,5000,5000 Position relative moves

BG X Start the X-axis

MC X After the move is complete on X

BG Y Start the Y-axis

MC Y After the move is complete on Y

BG Z Start the Z-Axis

MC Z After the move is complete on Z

BG W Start the W-Axis

MC W After the move is complete on W

EN End of Program

#F; DP 0,0,0,0 Program F Position

PR 5000,6000,7000,8000 Position relative moves

BG Start X, Y, Z, W axes

MC After motion complete on all axes

MG “DONE”; TP Print message

100 •••• Command Reference SMC-2000 User's Guide

EN End of Program

Hint: MC can be used to verify that the actual motion has been completed.

SMC-2000 User’s Guide Command Reference •••• 101

MF (Forward Motion to Position)
DESCRIPTION:

The MF command is a trip-point used to control the timing of events. This command will hold up the execution
of the following command until the specified motor moves forward and crosses the position specified. The units
of the command are in quadrature counts. Only one axis may be specified at a time. The MF command can also
be used when the encoder is the master and not under servo control.

ARGUMENTS: MFx or MF,y or MF,,z or MF,,,w MFX = X MF abcdefgh

Where x, y, z, w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
AD After Distance

AP After Absolute Position

MR Reverse Motion To Position

EXAMPLES:
#TEST Test Program

DP0 Define zero

JG 1000 Jog Mode (speed of 1000 counts/sec)

BG X Begin Move

MF 2000 Wait for forward position

V1=_TPX Assign V1 X position

MG “Position is”,V1 Print Message

ST Stop

EN End Program

Hint: The accuracy of the MF command is the number of counts that occur in 2 msec. Multiply the speed by 2
msec to obtain the maximum error. MF tests for absolute position. The MF command can also be used when the
specified motor is driven independently by an external device.

102 •••• Command Reference SMC-2000 User's Guide

MG (Message)
DESCRIPTION:

The MG command sends data out a serial port. This can be used to alert an operator, send data or return a
variable value.

ARGUMENTS: MG {P2}”m”,V{Fm.n} {N}

{P2} is only required when interfacing to port 2. The default is port 1

“m” is a text message including letters, numbers, symbols or <ctrl>G (up to76 characters).

V is a variable name.

{Fm.n} designates decimal format with m digits to left of decimal, and n to the right. Hex format is
specified by {$m.n}.

{N} suppresses carriage return line feed.

USAGE:
While Moving Yes Default Value {P2}

In a Program Yes Default Format Variable Format

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:

Case 1: Message command displays ASCII strings
MG “Good Morning” Displays the string

Case 2: Message command displays variables or arrays with specified format
MG “The Answer is”, Total {F4.2} Displays the string with the content of variable TOTAL in

local format of 4 digits before and 2 digits after the decimal
point.

Case 3: Message command sends any ASCII characters to the port.
MG {^13}, {^30}, {^37}, {N} Sends carriage return, characters 0 and 7 followed by no

carriage return line feed command to the port.

Hint: Message commands must be sent to an actual device. If an MG command is sent to a port with no device
attached, the program will stop execution when the message buffer is full (256 bytes).

SMC-2000 User’s Guide Command Reference •••• 103

MM (Master's Modulus)

DESCRIPTION:

The (MM) Master's Modulus command is part of the ECAM mode. It is used to define the change in position
over one complete cycle of the master. This command is only valid on firmware versions d150N19p and
greater. For this firmware, this command replaces the master moodulus setting with the EM command. This is
because the firmware was enhanced to allow camming with the auxiliary encoder as the master. In this case, it is
possible for the AUX X axis to be the master, and the MAIN X to be the slave.

ARGUMENTS: MM v

 where v is the value of the masters modulus.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 8.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
"EA" Select master cam axis

"EP" Define cam table intervals and start point

"ET" Cam table entries for the slave axes

"EB" Enable ECAM mode

EXAMPLES:
EADX Select Auxiliary X axis as ECAM master

MM 30500 Set master modulus

EM 20000 Set main X axis slave modulus
MG _MM Return master modulus

104 •••• Command Reference SMC-2000 User's Guide

MO (Motor Off)
DESCRIPTION:

The MO command shuts off the control algorithm and the servo enable signal. The controller will continue to
monitor the motor position. To turn the motor back on use the Servo Here command (SH).

ARGUMENTS: MO XYZW MO ABCDEFGH

 where X,Y,Z,W are XYZW axes

USAGE:
While Moving No Default Value 0

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

OPERAND USAGE:

 _MOX will report the current status of the servo enable signal. Zero means the axis is enabled and one
means the axis is disabled.

RELATED COMMANDS:
“SH” Servo Here

EXAMPLES:
MO Turn off all motors

MOX Turn off the X motor. Leave the other motors unchanged

MOY Turn off the Y motor. Leave the other motors unchanged

MOZX Turn off the Z and X motors. Leave the other motors
unchanged

SH Turn all motors on

BOB=_MOX Sets BOB equal to the X-axis servo status

BOB= Return value of BOB. If 1, in motor off mode, If 0, in servo
mode

SMC-2000 User’s Guide Command Reference •••• 105

MR (Reverse Motion to Position)
DESCRIPTION:

The MR command is a trip-point used to control the timing of events. This command will hold up the execution
of the following command until the specified motor moves backward and crosses the position specified. The
units of the command are in quadrature counts. Only one axis may be specified at a time. The MR command can
also be used when the encoder is the master and not under servo control.

ARGUMENTS: MRx or MR,y or MR,,z or MR,,,w MRX=X MR abcdefgh

 where x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“AD” After Distance

“AP” After Position

“MF” Forward motion to position

EXAMPLES:
#TEST Program TEST

DP0 Define zero

JG -1000 Jog mode (speed of -1000 counts/sec)

BG X Begin move

MR -3000 After passing the position -3000

V1=_TPX Assign V1 X position

MG “Position is”,V1 Print Message

ST Stop

EN End of Program

Hint: The accuracy of the MR command is the number of counts that occur in 2 msec. Multiply the speed by 2
msec to obtain the maximum error. MR tests for absolute position. The MR command can also be used when
the specified motor is driven independently by an external device.

106 •••• Command Reference SMC-2000 User's Guide

MT (Motor Type)
DESCRIPTION:

The MT command selects the type of the motor and the polarity of the drive signal. Motor type includes
standard servomotors that require a voltage in the range of +/- 10 Volts. The polarity reversal inverts the analog
signals for servomotors, and inverts logic level of the pulse train for stepper motors.

ARGUMENTS: MT x,y,z,w MTX=x MT a,b,c,d,e,f,g,h

where x,y,z,w are integers with

 1 - Servo motor

 -1 - Servomotor reversed polarity

2 - Stepper motor

 -2 - Stepper motor with active low pulses

 2.5 - Stepper motor with active low pulses and reversed polarity

 -2.5 – Stepper motor with active high pulses and reversed polarity

USAGE:
While Moving Yes Default Value 1,1,1,1

In a Program Yes Default Format 1

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

OPERAND USAGE:
 _MTx reports the value of the motor type setting.

EXAMPLES:
MT 1,-1 Configure X as servo, and Y as reverse servo

MT ?,? Interrogate motor type

V=_MTX Assign motor type to variable

WARNING: This command works closely with the Configure Encoder (CE) command. Assuming your system
is operating normally, but in the wrong direction, you must change both the (MT) and the (CE) commands under
(MO) conditions. Failure to perform this change correctly will lead to system run away!

SMC-2000 User’s Guide Command Reference •••• 107

NO (No Operation)
DESCRIPTION:

The NO command performs no action in a sequence, but can be used as a comment in a program. After the NO,
up to 78 characters can be given to form a program comment. This helps to document a program.

ARGUMENTS: NO m

where m is any group of letters, numbers, symbols or <control>G except the semicolon, ;. The
semicolon delimits commands, therefore, a NO command must be given prior to any commands that
are on the same line and are delimited by the semicolon.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
#A Program A

NO No Operation

NO This Program No Operation

NO Does Absolutely No Operation

NO Nothing No Operation

EN End of Program

108 •••• Command Reference SMC-2000 User's Guide

OB (Output Bit)
DESCRIPTION:

The (OB n, logical expression) command sets an output bit as either 0 or 1 depending on the result from the
logical expression. Any non-zero value of the expression results in a one on the output. WITH FIRMWARE
VERSIONS 2.0C AND HIGHER ONLY you may combine conditions with logical operators such as AND
(&) , and OR (|) by enclosing the individual conditions within parentheses.

Example OB2, (_TTX>0)&(_TTX<7)

ARGUMENTS: OB n, expression

where n is 1 through 8 for SMC-20004

where n is 1 through 16 for SMC-20008

where n is an integer in the range 1 to 64 (Outputs 24,32,40,48, 56 and 64 do not physically exist)
decimal for SMC-2000xI (extended I/O)

expression is any valid logical expression, variable or array element.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
OB 1, POS1 If POS1 is non-zero, Bit 1 is high.

 If POS1 is zero, Bit 1 is low

OB 2, @IN[1]&@IN[2] If Input 1 and Input 2 are both high, then

 Output 2 is set high

OB 3, COUNT[1] If the element 1 in the array is zero, clear bit 3, otherwise
set bit 3

OB N, COUNT[1] If element 1 in the array is zero, clear bit N

SMC-2000 User’s Guide Command Reference •••• 109

OE (Off on Error)
DESCRIPTION:

The OE command enables/disables the “Off-On-Error” function. When enabled, the SMC-2000 will shut off the
motor command under the following error conditions: if a position error exceeds the error limit specified by the
ER command. An Abort either from the Abort input or the Abort command will shut off the motor.

If a position error is detected on an axis, and the axis is currently making an independent move, only that axis
will be shut off. However, if the motion is a coordinated mode of the types VM, LM, or CM, all the
participating axes will be stopped.

ARGUMENTS: OE x,y,z,w

where x,y,z,w may be 0 or 1; 0 disables function, 1 enables “Off on Error.”

USAGE
While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“AB” Abort

“ER” Error limit

“SH” Servo Here

#POSERR Error Subroutine

EXAMPLES:
OE 1,1,1,1 Enable OE on all axes

OE 0 Disable OE on X-axis other axes remain unchanged

OE ,,1,1 Enable OE on Z-axis and W-axis other axes remain
unchanged

OE 1,0,1,0 Enable OE on X and Z-axis Disable OE on Y and W axis

Hint: The OE command is useful for preventing system damage on excessive error.

110 •••• Command Reference SMC-2000 User's Guide

OF (Offset)
DESCRIPTION:

The OF command sets a bias voltage in the motor command output or returns a previously set value. This can be
used to counteract gravity or an offset in an amplifier.

ARGUMENTS: OF x,y,z,w OFX=x OF a,b,c,d,e,f,g,h

where x,y,z,w are signed numbers in the range -9.998 to 9.998 volts with resolution of .001.

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
OF 1,-2,3,5 Set X-axis offset to 1, the Y-axis offset to -2, the Z-axis to

3, and the W-axis to 5

OF -3 Set X-axis offset to -3 Leave other axes unchanged

OF ,0 Set Y-axis offset to 0 Leave other axes unchanged

OF ?,?,?,? Return offsets

-3.0000,0.0000,3.0000,5.0000

OF ? Return X offset

-3.0000

OF ,? Return Y offset

0.0000

SMC-2000 User’s Guide Command Reference •••• 111

OP (Output Port)
DESCRIPTION:

The OP command sets an entire output port on the controller. The first field controls the standard output ports
and the remaining fields set the output bits for the Extended I/O [I], DeviceNet [D], Profibus [P], and Interbus-S
[S].

ARGUMENTS: OP m,n,o,p

where m is in the range 0 to 255 decimal, or $0 to $FF hexadecimal for SMC-20001, SMC-20002 or
SMC-20004 and in the range 0 to 65,535 decimal, or $0 to $FFFF hexadecimal for SMC-20008

where n,o, and p are in the range 0 to 65,535 decimal, or $0 to $FFFF hexadecimal for SMC-2000xI
(extended I/O)

NOTE : Outputs 24,32,40,48, 56 and 64 do not physically exist on the extended I/O option

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“SB” Set output bit

“CB” Clear output bit

EXAMPLES:
OP 0 Clear Output Port -- all bits

OP $85 Set outputs 1,3,8

OP $5 Set outputs 1,3

OP ,$05 Set Outputs 17 and 19

OP ,$F000 Set Outputs 29, 30 and 31 (32 does not exist)

MG _OP or MG _OP0 Return value of Outputs 1 through 16

MG _OP1 Return value of Outputs 17 through 32

112 •••• Command Reference SMC-2000 User's Guide

@OUT (Status of Digital Output Function)
DESCRIPTION:

The Digital Output (@OUT[n]) function returns the status of the digital output number or variable given in
square brackets. Note that the @OUT command is a function, which means that it does not follow the
convention of the commands, and does not require the underscore when used as an operand.

ARGUMENTS: @OUT [n]

where n is an unsigned integer in the range 1 to 8 decimal on SMC-20001, SMC-20002, and SMC-
20004

where n is an unsigned integer in the range 1 to 16 on SMC-20008

where n is an unsigned integer in the range 1 to 64 on SMC-2000 units with “I” (Extended I/O), “D”
(DeviceNet), “P” (Profibus), and “S” (Interbus-S) options.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=3 Set variable

MG @OUT[VAR1] Display the status of output 3

VAR2=@OUT[VAR1]+4 Perform calculation

EN End of Program

SMC-2000 User’s Guide Command Reference •••• 113

PA (Position Absolute)
DESCRIPTION:

The PA command will set the final destination of the next move. The position is referenced with respect to
absolute zero. If a ? is used, then the current destination (current command position if not moving, destination if
in a move) is returned. For each single move, the largest position move possible is +/-2147483647. Units are in
quadrature counts.

ARGUMENTS: PA x,y,z,w PAX=x PA a,b,c,d,e,f,g,h

where x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“PR” Position relative

“SP” Speed

“AC” Acceleration

“DC” Deceleration

“BG” Begin

EXAMPLES:
PA 400,-600,500,200 X-axis will go to 400 counts Y-axis will go to -600 counts

Z-axis will go to 500 counts W-axis will go to 200 counts

PA ?,?,?,? Returns the current commanded position

0000000,0000000,0000000,0000000

BG Start the move

PA 700 X-axis will go to 700 on the next move while the Y,Z and
W-axis will travel the previously set relative distance if the
preceding move was a PR move, or will not move if the
preceding move was a PA move.

BG Start the move

PA*=0 All axes to zero

PAY=10000 Absolute position of Y at 10000

114 •••• Command Reference SMC-2000 User's Guide

PF (Position Format)
DESCRIPTION:

The PF command allows the user to format the position numbers such as those returned by TP. The number of
integer digits and the number of fractional digits can be selected with this command. An extra digit for sign and
a digit for decimal point will be added to the total number of digits. If PF is minus, the format will be
hexadecimal and a dollar sign will precede the characters. Hex numbers are displayed as 2’s complement with
the first bit used to signify the sign.

If a number exceeds the format, the number will be displayed as the maximum possible positive or negative
number (i.e. 999.99, -999, $8000 or $7FF).

ARGUMENTS: PF m.n

 where m is an integer between -8 and 10

 n is an integer between 0 and 4

The negative sign for m specifies hexadecimal representation.

USAGE:
While Moving Yes Default Value 10.0

In a Program Yes Default Format 10.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
:TPX Tell position of X

0000000021 Default format

:PF 5.2 Change format to 5 digits of integers and 2 of fractions

:TPX Tell Position

00021.00

PF-5.2 New format Output changed to hexadecimal

:TPX Tell Position

$00015.00 Report in hex

SMC-2000 User’s Guide Command Reference •••• 115

PR (Position Relative)
DESCRIPTION:

The PR command sets the incremental distance and direction of the next move. The move is referenced with
respect to the current position. If a ? is used, then the current incremental distance is returned (even if it was set
by a PA command). Units are in quadrature counts.

ARGUMENTS: PR x,y,z,w PRX=x PR a,b,c,d,e,f,g,h

where x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE:
While Moving No Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“PA” Position Absolute

“BG” Begin

“AC” Acceleration

“DC” Deceleration

“SP” Speed

“IP” Increment Position

EXAMPLES:
PR 100,200,300,400 On the next move the X-axis will go 100 counts, the Y-axis

will go to 200 counts forward, Z-axis will go 300 counts
and the W-axis will go 400 counts.

BG Start the move

PR ?,?,?,? Return relative distances

0000000100,0000000200,0000000300,0000000400

PR 500

BGXY The X-axis will go 500 counts on the next move while the
Y-axis will go its previously set relative distance.

PRH=2000 Set H axis at 2000

PR*=10000 Specify all command positions at 10000

116 •••• Command Reference SMC-2000 User's Guide

PW (PassWord)

DESCRIPTION:

The (PW) PassWord command is used to set or change the controller's security password. The command
requires two parameters; p,p. Both parameters are the new password up to 8 characters in length. Both
parameters must be identical for the new password to be accepted. The password can only be set or changed
while the controller is in the "Unlocked" mode, (see the LC command) or a command error will result.

ARGUMENTS: PW p,p

 where p,p are identical passwords up to 8 characters in length.

 All characters can be alphabetic or numeric.

USAGE:
While Moving Yes Default Value 00000000

In a Program No Default Format 8.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
"LC" Lock Controller

EXAMPLES:
PW MOTION,MOTION Set a new password "MOTION"

LC MOTION,1 Lock controller

LC MOTION,0 Unlock controller

SMC-2000 User’s Guide Command Reference •••• 117

QD (Download Array)
DESCRIPTION:

The QD command transfers array data from the host computer to the SMC-2000. QD array[], start, end
requires that the array name be specified along with the first element of the array and last element of the array.
After the QD command is entered in the terminal window, data can be sequentially entered one element at a
time. The downloaded array is terminated by a <control>Z, <control>Q, <control>D or \.

ARGUMENTS: QD array[], start, end

array[] is any valid array name

start is first element of array (default=0)

end is last element of array (default = last element)

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“QU” Upload Array

 EXAMPLES

 (In Terminal mode)
:DM DATA[5] Define DATA array with 5 elements

:QD DATA[] Begin download to array

:5 Set DATA[0]=5

:4 Set DATA[1]=4

:3 Set DATA[2]=3

:2 Set DATA[3]=2

:1 Set DATA[4]=1

:<control> Z Terminate download to the array

118 •••• Command Reference SMC-2000 User's Guide

QU (Upload Array)
DESCRIPTION:

The QU command transfers array data from the SMC-2000 to a host computer. QU array[], start, end, comma
requires that the array name be specified along with the first element of the array and last element of the array.
If comma is 1, then a comma will separate the array elements. Otherwise, the elements will be separated by a
carriage return. A <control> Z as an end of text marker will follow the uploaded array.

ARGUMENTS: QU array[], start, end, comma

array[] is any valid array name

start is first element of array (default=0)

end is last element of array.(default=last element)

comma -- if it is a 1, then elements are separated by a comma, else a carriage return

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“QD” Download Array

SMC-2000 User’s Guide Command Reference •••• 119

QY (Query Yaskawa Absolute Encoder Alarm)
DESCRIPTION:

The Query Yaskawa Absolute Encoder Alarm (QY) displays the serial data that was received from an absolute
encoder when the position was requested using the (AE) command. Usually, the data in the QY command is the
number of revolutions of the servo from the absolute zero point. If there was an encoder alarm, one of the
following codes will be stored in the QY command:

ALMRMOA=Backup Alarm

ALARMOB=Checksum Error

ALARMOD=Battery Alarm

ALARMOE=Battery/Backup Combination Error

ALARMOH=Absolute Error

ALARMOP=Overspeed

ARGUMENTS: None

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand No

RELATED COMMANDS
AE Absolute Encoder

TY Tell Yaskawa absolute encoder position (when last read)

Hint: Read the Absolute Encoder (AE) section of this manual for a detailed example of the absolute encoder
commands. Also, see the Tell Error Code (TC) section of this manual or the Yaskawa SIGMA Servomotor
manual for a complete listing of absolute encoder alarms.

120 •••• Command Reference SMC-2000 User's Guide

RA (Record Array)
DESCRIPTION:

The Record Array (RA) command uses up to four arrays for automatic data capture. The arrays must be
dimensioned by the Dimension (DM) command. The data to be captured is specified by the Record Data (RD)
command and time interval by the Record (RC) command.

ARGUMENTS: RA n[],m[],o[],p[]

where n,m,o, and p are dimensioned arrays as defined by DM command. The [] contains nothing.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“DM” Dimension Array

“Record Data (RD” Record Data

“RC” Record Interval

EXAMPLES:
#RECORD Label

DM POS[100] Define array

RA POS[] Specify Record Mode

RD _TPX Specify data type for record

RC 1 Begin recording at 2 msec intervals

PR 1000;BG Start motion

EN End

Hint: The record array mode is useful for recording the real-time motor position during motion. The data is
automatically captured in the background and does not interrupt the program sequencer. The record mode can
also be used to teach or learn a motion path.

SMC-2000 User’s Guide Command Reference •••• 121

RC (Record)
DESCRIPTION:

The RC command begins recording for the Automatic Record Array Mode (RA).

ARGUMENTS: RC n,m

where n is an integer 1 through 8 and specifies 2n milliseconds between samples. RC 0 stops recording.

m is optional and specifies the number of records to be recorded. If m is not specified, the DM number
will be used.

RC? or V=_RC

 returns a 1 if recording

 returns a 0 if not recording

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“DM” Dimension Array

“Record Data (RD” Record Data

“Record Array (RA” Record Array Mode

EXAMPLES:
#RECORD Record

DM Torque[1000] Define Array

RA Torque[] Specify Record Mode

RD _TTX Specify Data Type

RC 2 Begin recording and set 4 msec between records

JG 1000;BG Begin motion

#A;JP #A,_RC=1 Loop until done

MG “DONE RECORDING” Print message

EN End program

122 •••• Command Reference SMC-2000 User's Guide

RD (Record Data)
DESCRIPTION:

The Record Data (RD) command specifies the data type to be captured for the Record Array (RA) mode. The
command type includes:

 _DEn 2nd encoder position (dual loop)

 _TPn Position

 _TEn Position error

 _SHn Commanded position

 _RLn Latched position

 _TI Inputs

 _OP Outputs

 _TSn Switches, only 0-4 bits valid

 _SCn Stop code

 _TTn Tell torque

 where X,Y,Z or W may be specified.

ARGUMENTS: RD x,x,x,x

where x specifies the data type to be captured. The order is important. Each of the four data types
correspond with the array specified in the RA command.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“Record Array (RA” Record Array

“RC” Record Interval

“DM” Dimension Array

EXAMPLES:
DM ERRORX[50],ERRORY[50] Define array

RA ERRORX[],ERRORY[] Specify record mode

RD _TEX,_TEY Specify data type

RC1 Begin record

JG 1000;BG Begin motion

SMC-2000 User’s Guide Command Reference •••• 123

RE (Return from Error Routine)
DESCRIPTION:

The Return from Error (RE) command is used to end a Special Label routine such as position error handling or
limit switch subroutine. The Position Error handling subroutine begins with the #POSERR label. The limit
switch handling subroutine begins with #LIMSWI. An RE at the end of these routines causes a return to the
command that was executing in the main program when the error was generated. Care should be taken to be sure
the error or limit switch conditions no longer occur to avoid re-entering the subroutines. If the program
sequencer was waiting for a trip-point to occur, prior to the error interrupt, the trip-point condition is preserved
on the return to the program if RE1 is used. RE0 clears the trip-point. To avoid returning to the main program
after handling a special label event, use the ZS command to zero the subroutine stack, then jump to the program
label of your choice.

ARGUMENTS: RE n

 where n = 0 or 1

 0 clears the interrupted trip-point

 1 restores state of trip-point

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program No

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
#LIMSWI Limit Subroutine

#POSERR Error Subroutine

EXAMPLES:
#A;JP #A;EN Label for main program

#POSERR Begin Error Handling Subroutine

MG “ERROR” Print message

SB1 Set output bit 1

RE Return to main program and clear trip-point

Hint: An applications program must be executing for the #LIMSWI and #POSERR subroutines to function.

124 •••• Command Reference SMC-2000 User's Guide

RI (Return from Interrupt Routine)
DESCRIPTION:

The RI command is used to end the interrupt subroutine beginning with the label #ININT. An RI at the end of
this routine causes a return to the main program. The RI command also re-enables input interrupts. If the
program sequencer was interrupted while waiting for a trip-point, such as WT, RI1 restores the trip-point on the
return to the program. RI0 clears the trip-point. To avoid returning to the main program on an interrupt, use the
command ZS to zero the subroutine stack. After doing this, reissue the II command and jump to the label of your
choice.

ARGUMENTS: RI n

 where n = 0 or 1

 0 clears interrupt trip-point

 1 restores trip-point

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
#ININT Input interrupt subroutine

“II” Enable input interrupts

EXAMPLES:
#A;II1;JP #A;EN Program label

#ININT Begin interrupt subroutine

MG “INPUT INTERRUPT” Print Message

SB 1 Set output line 1

RI 1 Return to the main program and restore trip-point

Hint: An applications program must be executing for the #ININT subroutine to function.

SMC-2000 User’s Guide Command Reference •••• 125

RL (Report Latched Position)
DESCRIPTION:

The RL command will return the last position captured by the latch. The latch must first be armed by the AL
command. The activated state of the latch can be configured using the CN command.

ARGUMENTS: RL XYZW RL ABCDEFGH

 where X,Y,Z,W are X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMAND:
“AL” Arm Latch

EXAMPLES:
JG ,5000 Set up to jog the Y-axis

BGY Begin jog

ALY Arm the Y latch; assume that after about 2 seconds, input
goes low

WT 2000 Wait 2 seconds

RLY Report the latch

10000

126 •••• Command Reference SMC-2000 User's Guide

@RND (Round Function)
DESCRIPTION:

The Round (@RND[n]) function rounds a number or variable given in square brackets to the nearest integer.
Note that the @RND command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @RND [n]

where n is a number in the range of –2147483648.9999 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=123.456 Set variable

MG @RND[VAR1] Display the value of VAR1 rounded to the nearest integer

VAR2=@RND[VAR1]+25 Perform calculation

EN End of Program

SMC-2000 User’s Guide Command Reference •••• 127

RP (Reference Position)
DESCRIPTION:

This command returns the commanded reference position of the motor(s).

ARGUMENTS: RP XYZW RP ABCDEFGH

 where XYZW are X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“TP” Tell Position

“TE” Tell Error

EXAMPLES: Assume that XYZ and W axes are commanded to be at the positions 200, -10, 0, -110
respectively. The returned units are in quadrature counts.

PF 7 Position format of 7

RP

0000200,-0000010,0000000,-0000110 Return X,Y,Z,W reference positions

RPX

0000200 Return the X motor reference position

RPY

-0000010 Return the Y motor reference position

PF-6.0 Change to hex format

RP

$0000C8,$FFFFF6,$000000,$FFFF93 Return X,Y,Z,W in hex

Position=_RPX Assign the variable, Position, the value of RPX

Note: The relationship between RP, TP and TE is that the position error, _TEX, equals the difference between
the reference position, _RPX and the actual position, _TPX. _TEX is a positive number when the servo position
is lagging behind the commanded position.

128 •••• Command Reference SMC-2000 User's Guide

RS (Reset)
DESCRIPTION:

The RS command resets the state of the processor to its power-on condition. The previously saved state of the
controller, along with parameter values, and saved sequences are restored. If the program has an #AUTO label,
it will begin execution at that label.

USAGE:
While Moving Yes Default Value ---

In a Program No Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES:
RS Reset the controller

RS1 Restore parameters only

RS2 Clear App program

SMC-2000 User’s Guide Command Reference •••• 129

<control>R <control>S (Master Reset)
DESCRIPTION:

The Master Reset command resets the SMC-2000 to factory default settings and erases EEPROM.
While Moving Yes Default Value ---

In a Program No Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

130 •••• Command Reference SMC-2000 User's Guide

SB (Set Bit)
DESCRIPTION:

The SB command sets one of the bits on an output port.

ARGUMENTS: SB n

where n is an integer in the range 1 to 8 for SMC-20001, SMC-20002, and SMC-20004.

where n is an integer in the range 1 to 16 for SMC-20008

where n is an integer in the range 1 to 64 for extended I/’O options “D”, “I”, “P”, and “S” (Outputs
24,32,40,48, 56 and 64 do not physically exist)

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS
“OP” Configure output port

“CB” Clear Bit

EXAMPLES:
SB 5 Set output line 5

SB 1 Set output line 1

SMC-2000 User’s Guide Command Reference •••• 131

SC (Stop Code)
DESCRIPTION:

The SC command allows the user to determine why a motor stopped. The controller responds with the stop code
as follows:

 CODE MEANING

 0 Motors are running, independent mode

 1 Motors stopped at commanded independent position

 2 Decelerating or stopped by FWD limit switches

 3 Decelerating or stopped by REV limit switches

 4 Decelerating or stopped by Stop Command (ST)

 6 Stopped by Abort input

 7 Stopped by Abort command (AB)

 8 Decelerating or stopped by Off-on-Error (OE1)

 9 Stopped after Finding Edge (FE)

10 Stopped after Homing (HM)

40 Stopped at Latched Target (LT)

41 Latched target overrun due to limit switch or stop command

42 Latched target overrun due to insufficient distance

 50 Contour running

51 Contour Stop

99 Timeout for in-position (MC)

 100 Motors are running, vector sequence

 101 Motors stopped at commanded vector

ARGUMENTS: SC XYZW SC ABCDEFGH

where XYZW or ABCDEFGH are the axes

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
TOM=_SCW Assign the Stop Code of W to variable Tom

132 •••• Command Reference SMC-2000 User's Guide

SH (Servo Here)
DESCRIPTION:

The SH command tells the controller to use the current motor position as the commanded position, and to enable
the amplifies.

ARGUMENTS: SH XYZW SH ABCDEFGH

 where XYZW are X,Y,Z,W axes

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“MO” Motor-off

EXAMPLES:
SH Servo X,Y,Z,W motors

SHX Only servo the X motor, the Y,Z and W motors remain in
its previous state.

SHY Servo the Y motor; leave the X,Z and W motors unchanged

SHZ Servo the Z motor; leave the X,Y and W motors unchanged

SHW Servo the W motor; leave the X,Y and Z motors unchanged

SMC-2000 User’s Guide Command Reference •••• 133

@SIN (Sin Function)
DESCRIPTION:

The Sine (@SIN[n]) function returns the sine of a number or variable which is inserted in square brackets using
units of degrees. Note that the @SIN command is a function, which means that it does not follow the
convention of the commands, and does not require the underscore when used as an operand.

ARGUMENTS: @SIN [n]

where n is a number in the range of –32768 to 32768

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=60 Set variable

MG @SIN[VAR1] Display the value of the sine of VAR1

VAR2=@SIN[VAR1]+9 Perform calculation

EN End of Program

134 •••• Command Reference SMC-2000 User's Guide

SP (Speed)
DESCRIPTION:

This command sets the slew speed of any or all axes for independent moves, or it will return the previously set
value. The parameters input will be rounded down to the nearest factor of 2. The units of the parameter are in
counts per second. The maximum value for speed in 2,000,000 cts./sec. when using stepper motors.

ARGUMENTS: SP x,y,z,w SPX=x SP a,b,c,d,e,f,g,h

where x, y, z, are unsigned numbers in the range 0 to 8,000,000

USAGE:
While Moving Yes Default Value 25000

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“AC” Acceleration

“DC” Deceleration

“PR” Position Relation

“PA” Position Absolute

“BG” Begin

EXAMPLES:
PR 2000,3000,4000,5000 Specify x,y,z,w parameter

SP 5000,6000,7000,8000 Specify x,y,z,w speeds

BG Begin motion of all axes

AM Z After Z motion is complete

SP*=5000 Set all speeds at 5000

SPH=10000 Set speed of H axis at 10000

NOTE: For vector moves, use the vector speed command (VS) to change the speed. SP is not a “mode” of
motion like JOG (JG).

SMC-2000 User’s Guide Command Reference •••• 135

@SQR (Square Root Function)
DESCRIPTION:

The Square Root (@SQR[n]) function returns the square root of a number or variable which is inserted in square
brackets. Note that the @SQR command is a function, which means that it does not follow the convention of the
commands, and does not require the underscore when used as an operand.

ARGUMENTS: @SQR [n]

where n is a number in the range of 0 to 2147483647.9999

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

EXAMPLES:
#TEST Program TEST

VAR1=49 Set variable

MG @SQR[VAR1] Display the square root of VAR1

VAR2=@SQR[VAR1]+7 Perform calculation

EN End of program

136 •••• Command Reference SMC-2000 User's Guide

ST (Stop)
DESCRIPTION:

The ST command stops motion on the specified axis. Motors will decelerate to a stop. If ST is given without an
axis specification (from serial port), program execution will stop in addition to XYZW. XYZW specification
will not halt program execution.

ARGUMENTS: ST XYZW ST ABCDEFGH

where XYZW are X,Y,Z,W axes. No parameters will stop motion on all axes and stop program.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“BG” Begin Motion

“AB” Abort Motion

“After Motion (AM” Wait for motion end

“DC” Deceleration rate

“HX” Halt program execution

EXAMPLES:
ST X Stop X-axis motion

ST S Stop coordinated sequence

ST XYZW Stop X,Y,Z,W motion

ST Stop program and XYZW motion

ST SZW Stop coordinated XY sequence, and Z and W motion

Hint: Use the after motion complete command, AM, to wait for motion to decelerate to a stop.

SMC-2000 User’s Guide Command Reference •••• 137

TB (Tell Status Byte)
DESCRIPTION:

The TB command returns status information from the controller.

 Bit Status when high

 Bit 7 Controller addressed

 Bit 6 Executing program

 Bit 5 Contouring

 Bit 4 Executing error or limit switch routine

 Bit 3 Input interrupt enabled

 Bit 2 Executing input interrupt routine

 Bit 1 0 (Reserved)

 Bit 0 Echo on

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 1.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
TB Tell status information from the controller

65 Executing program and echo on
(2

6
 + 2

0
 = 64 + 1 = 65)

138 •••• Command Reference SMC-2000 User's Guide

TC (Tell Error Code)
DESCRIPTION:

The TC command returns a number between 1 and 255. This number is a code that reflects why a command was
not accepted by the controller. This command is useful when the controller halts execution of a program at a
command or when the response to a command is a question mark. Entering the TC command will provide the
user with a code as to the reason. After TC has been read, it is set to zero. TC 1 returns the text message as well
as the numeric code.

Error Codes:

 1 Unrecognized command

 2 Command only valid from program

 3 Command not valid in program

 4 Operand error

 5 Input buffer full

 6 Number out of range

 7 Command not valid while running

 8 Command not valid while not running

 9 Variable error

 10 Empty program line or undefined label

 11 Invalid label or line number

 12 Subroutine more than 16 deep

 13 JG only valid when running in jog mode

 14 EEPROM check sum error

 15 EEPROM write error

 16 IP incorrect sign during position move or IP given during forced deceleration

 17 ED, BN and DL not valid while program running

18 Command not valid when contouring

19 Application program/strand already executed

 20 Begin not valid with motor off

 21 Begin not valid while running

 22 Begin not possible due to Limit Switch

 24 Begin not valid because no sequence defined

 25 Variable not given in IN command

 28 S operand not valid

 29 Not valid during coordinated move

 30 Sequence segment too short

 31 Total move distance in a sequence > 2 billion

 32 More than 511 segments in a sequence

 41 Contouring record range error

 42 Contour data being sent too slowly

SMC-2000 User’s Guide Command Reference •••• 139

 46 Gear axis both master and follower

 50 Not enough fields

 51 Question mark not valid

 52 Missing “ or string too long

 53 Error in {}

 54 Question mark part of string

 55 Missing [or []

 56 Array index invalid or out of range

 57 Bad function or array

 58 Unrecognized command in a command response (i.e._TPQ)

 59 Mismatched parentheses

 60 Download error - line too long or too many lines

61 Duplicate or bad label

62 Too many labels

 65 IN command must have a comma

 66 Array space full

 67 Too many arrays or variables

 71 IN only valid in task #0

 80 Record mode already running

 81 No array or source specified

 82 Undefined array

 83 Not a valid number

 84 Too many elements

90 Only X,Y,Z,W or A,B,C,D,E,F,G,H valid operand

96 SM jumper needs to be installed for stepper motor operation

100 Not valid when running ECAM

101 Improper index to ET (must be 0-256)

102 No master axis for ECAM

103 Master axis modulus greater than 256*EP value

104 Not valid when axis performing ECAM

105 EB1 command must be given first

114 Absolute Encoder option not installed

115 Motor must be in MO for this comment

116 Absolute Encoder responded with an alarm

117 Absolute Encoder did not respond

118 Controller has GL1600, not GL1800

ARGUMENTS: TC n

140 •••• Command Reference SMC-2000 User's Guide

 n=0 returns code only

 n=1 returns code and message

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:

MG _ED The last line that had an error

EXAMPLES:
GF32 Bad command

?TC Tell error code

001 Unrecognized command

SMC-2000 User’s Guide Command Reference •••• 141

TD (Tell Dual Encoder)
DESCRIPTION:

This command returns the current position of the dual (auxiliary) encoder(s). When operating with stepper
motors, the TD command returns the number of counts that have been output by the controller.

ARGUMENTS: TD XYZW TD ABCDEFGH

 where XYZW are X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“DE” Dual Encoder

EXAMPLES:
PF 7 Position format of 7

TD Return X,Y,Z,W Dual encoders

0000200,-0000010,0000000,-0000110

TDX Return the X motor Dual encoder

0000200

DUAL=_TDX Assign the variable, DUAL, the value of TDX

142 •••• Command Reference SMC-2000 User's Guide

TE (Tell Error)
DESCRIPTION:

This command returns the current position error of the motor(s). The range of possible error is –2147483648 to
2147483647. The Tell Error command is not valid for step motors since they operate open loop.

ARGUMENTS: TE XYZW TE ABCDEFGH

Where XYZW are X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“OE” Off On Error

“ER” Error Limit

#POSERR Error Subroutine

EXAMPLES:
TE Return all position errors

00005,-00002,00000,00006

TEX Return the X motor position error

00005

TEY Return the Y motor position error

-00002

ERROR=_TEX Sets the variable, ERROR, with the X-axis position error

Hint: Under normal operating conditions with servo control, the position error should be small. The position
error is typically largest during acceleration. The TE value is positive when the servo position is lagging the
commanded position.

SMC-2000 User’s Guide Command Reference •••• 143

TI (Tell Inputs)
DESCRIPTION:

This command returns the state of the general inputs. TI or TI0 return inputs I1 through I8, TI1 returns I9
through I16 and TI2 returns I17 through I24. For motion controllers with extended I/O 40 additional inputs are
available using TI3 through TI7.

 TI TI1 TI2 TI3 TI4 TI5 TI6 TI7

Bit 7 (MSB) Input 8 Input 16 Input 24 Input 32 Input 40 Input 48 Input 56 Input 64

Bit 6 Input 7 Input 15 Input 23 Input 31 Input 39 Input 47 Input 55 Input 63

Bit 5 Input 6 Input 14 Input 22 Input 30 Input 38 Input 46 Input 54 Input 62

Bit 4 Input 5 Input 13 Input 21 Input 29 Input 37 Input 45 Input 53 Input 61

Bit 3 Input 4 Input 12 Input 20 Input 28 Input 36 Input 44 Input 52 Input 60

Bit 2 Input 3 Input 11 Input 19 Input 27 Input 35 Input 43 Input 51 Input 59

Bit 1 Input 2 Input 10 Input 18 Input 26 Input 34 Input 42 Input 50 Input 58

Bit 0 (LSB) Input 1 Input 9 Input 17 Input 25 Input 33 Input 41 Input 49 Input 57

Shaded inputs available with extended I/O or a network option card

ARGUMENTS: TIn

where n equals 0 for SMC-20002 and SMC-20004

 n equals 0, 1 or 2 for SMC-20008

n equals 1 to 7 for SMC-2000xI (extended I/0)

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
TI

08 Input 4 is high, others low

TI

00 All inputs low

Input=_TI Sets the variable, Input, with the TI value

TI

255 All inputs high

TI1

04 Input 11 high, others low

144 •••• Command Reference SMC-2000 User's Guide

TIME
DESCRIPTION:

The TIME operand contains the value of the internal free running, real time clock. The returned value
represents the number of servo loop updates and is based on the TM command. The default value for the TM
command is 1000. With this update rate, the operand TIME will increase by one count every millisecond. Note
that a value of 1000 for the update rate (TM command) will actually set an update rate of 1/1024 seconds. Thus
the value returned by the time operand will be off by 2.4% of the actual time.

USAGE:
While Moving Default Value

In a Program Default Format TIME

Not in a Program

Can be Interrogated

Used in an Operand Yes

EXAMPLES:
MG TIME Display the value of the internal clock

START=TIME Set variable

PRX=10000 Position relative move

BGX Begin motion

AMX After Motion

DONE=TIME Set variable

MG”Complete in”,DONE-START,”mSec”

 Note: This is an operand, not a command

SMC-2000 User’s Guide Command Reference •••• 145

TL (Torque Limit)
DESCRIPTION:

The TL command sets the limit on the motor command output. For example, TL of 5 limits the motor command
output to 5 volts. Maximum output of the motor command is 9.998 volts.

ARGUMENTS: TL x,y,z,w TLX=x TL a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 9.998 volts with a resolution of .001 volt.

USAGE:
While Moving Yes Default Value 9.9988

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
TL 1,5,9,7.5 Limit X-axis to 1volt Limit Y-axis to 5 volts

Limit Z-axis to 9 volts Limit W-axis to 7.5 volts

TL ?,?,?,? Return limits

1.0000,5.0000,9.0000,7.5000

TL ? Return X-axis limit

1.0000

TLZ=5 Set torque limit of Z to 5 volts

TL*=9 Set all torque limits at 9 volts

146 •••• Command Reference SMC-2000 User's Guide

TM (Time Command)
DESCRIPTION:

The TM command sets the sampling period of the control loop. Changing the sampling period will uncalibrate
the speed and acceleration parameters (Actually, all time units are counts/servo cycle, etc.). A negative number
turns off the internal clock allowing for an external source to be used as the time base. The units of this
command are µsec.

ARGUMENTS: TM n

where n is an integer in the range 250 to 20000 decimal with resolution of 125 microseconds. The minimum
sample time for the SMC-2000-2 is 375 µsec; and 500 µsec for the SMC-2000-4.

USAGE:
While Moving Yes Default Value 1000

In a Program Yes Default Format 5.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
TM -1000 Turn off internal clock

TM 2000 Set sample rate to 2000 microseconds (This will cut
all speeds in half and all acceleration in fourths)

TM 1000 Return to default sample rate

SMC-2000 User’s Guide Command Reference •••• 147

TN (Tangent)
DESCRIPTION:

The TN m,n command describes the tangent axis to the coordinated motion path. m is the scale factor in
counts/degree of the tangent axis. n is the absolute position of the tangent axis, at which the resulting angle of
the tangent axis equals zero in the coordinated motion plane. The tangent axis is specified with the VM n,m,p
command where p is the tangent axis. _TN gives you the position of the first tangent point. Tangent is useful
for cutting applications where a cutting tool must remain tangent to the part.

ARGUMENTS: TN m,n

where m is the scale factor in counts/degree

n is the absolute position at which the tangent angle is zero

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VM” Vector mode

EXAMPLES:
VM X,Y,Z Specify coordinated mode for X and Y-axis;

Z-axis is tangent to the motion path

TN 100,50 Specify scale factor as 100 counts/degree and
50 counts at which tangent angle is zero

VP 1000,2000 Specify vector position X,Y

VE End Vector

BGS Begin coordinated motion with tangent axis

148 •••• Command Reference SMC-2000 User's Guide

TP (Tell Position)
DESCRIPTION:

This command returns the current position of the motor(s).

ARGUMENTS: TP XYZW TP ABCDEFGH

 where XYZW are X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:

Assume the X-axis is at the position 200 (decimal), the Y-axis is at the position -10 (decimal), the Z-axis is at
position 0, and the W-axis is at -110 (decimal). The returned parameter units are in quadrature counts.

PF 7 Position format of 7

TP Return X,Y,Z,W positions

0000200,-0000010,0000000,-0000110

TPX Return the X motor position

0000200

TPY Return the Y motor position

-0000010

PF-6.0 Change to hex format

TP Return X,Y,Z,W in hex

$0000C8,$FFFFF6,$000000,$FFFF93

POSITION=_TPX Assign the variable, POSITION, the value of TPX

SMC-2000 User’s Guide Command Reference •••• 149

TR (Trace)
DESCRIPTION:

The TR command causes each instruction in a program to be sent out the communications port prior to
execution. The trace command is useful in debugging programs.

ARGUMENTS: TR n

 where n=0 or 1

 0 disables function

 1 enables function

USAGE:
While Moving Yes Default Value TR0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

Note: It may be helpful to start the logging feature of YTERM before starting a trace. The logging feature writes
all information that is transmitted on the serial port to a file called SMCLOG.LOG.

150 •••• Command Reference SMC-2000 User's Guide

TS (Tell Switches)
DESCRIPTION:

TS returns the state of the Home, Forward Limit and Reverse Limits for each axis. TS also returns error, motion
and motor status.

 Bit Status if high

 Bit 7 Axis in motion

 Bit 6 Axis error exceeds error limit

 Bit 5 X motor off

 Bit 4 Undefined

 Bit 3 Forward Limit inactive

 Bit 2 Reverse Limit inactive

 Bit 1 Home X

 Bit 0 Latch not armed

ARGUMENTS: TS XYZW TS ABCDEFGH

 where XYZW designate X,Y,Z,W axes

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
V1=_TSY Assigns value of TSY to the variable V1

SMC-2000 User’s Guide Command Reference •••• 151

TT (Tell Torque)
DESCRIPTION:

The TT command reports the value of the analog output signal, which is a number between -9.998 and 9.998
volts.

ARGUMENTS: TT XYZW TT ABCDEFGH

 where XYZW specify X,Y,Z,W axes

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“TL” Torque Limit

EXAMPLES:
V1=_TTX Assigns value of TTX to variable, V1

TTX Report torque on X

-0.2843 Torque is -.2843 volts

152 •••• Command Reference SMC-2000 User's Guide

TV (Tell Velocity)
DESCRIPTION:

The TV command returns the actual velocity of the axes in units of quadrature count/s.

ARGUMENTS: TV XYZW TV ABCDEFGH

where XYZW specifies X,Y,Z,W axes

USAGE:
While Moving Yes Default Value 0

In a Program Yes Default Format 7.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
VELX=_TVX Assigns value of X-axis velocity to the variable VELX

TVY Returns the Y-axis velocity

0003420

NOTE: The TV command is computed using a special averaging filter (over approximately .25 sec).
Therefore, TV will return average velocity, not instantaneous velocity.

SMC-2000 User’s Guide Command Reference •••• 153

TW (Timeout for In Position (MC))
DESCRIPTION:

The TW x,y,z,w command sets the timeout in msec to declare an error if the MC command is active and the
motor is not at or beyond the actual position within n msec after the completion of the motion profile. If a
timeout occurs, then the MC trip-point will clear and the stop code will be set to 99. An application program
will jump to the special label #MCTIME, if it exists . The RE command should be used to return from the
#MCTIME subroutine.

ARGUMENTS: TW x,y,z,w TW a,b,c,d,e,f,g,h

 where x,y,z,w specifies timeout in msec range 0 to 32767 msec -1 disables the timeout

EXAMPLES:

USAGE:
While Moving Yes Default Value 32766

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“MC” Motion Complete

154 •••• Command Reference SMC-2000 User's Guide

TY (Tell Yaskawa Absolute Encoder)
DESCRIPTION

TY (Tell Yaskawa Absolute Encoder) reports the position that was read when the absolute encoder data was
requested using the AE command.

ARGUMENTS: TY XYZW TP ABCDEFGH

USAGE:
While Moving Yes Default Value -2,147,483,648

In a Program Yes Default Format 10.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“AE” Absolute

“QY” Report alarm code from Yaskawa encoder

EXAMPLES:
MOX Motor Off

AEX=4096 Read X absolute encoder

DPX=_TPX=XHmOfs Add offset variable to current absolute position

TPX Tell current defined Position

TYX Tell absolute encoder position (when it was read)

SHX Enable servo (Servo Here)

SMC-2000 User’s Guide Command Reference •••• 155

UL (Upload)
DESCRIPTION:

The UL command transfers data from the SMC-2000 to a host computer through port 1. Programs are sent
without line numbers. A <control> Z as an end of text marker will follow the Uploaded program. When used as
an operand, _UL gives the number of available variables. The total number of variables is 254 for the SMC-
2000.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program No Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMAND:
“DL” Download

EXAMPLES:
UL Begin upload

#A Line 0

NO This is an Example Line 1

NO Program Line 2

EN Line 3

<control>Z Terminator

156 •••• Command Reference SMC-2000 User's Guide

VA (Vector Acceleration)
DESCRIPTION:

This command sets the acceleration rate of the vector in a coordinated motion sequence. The parameter input
will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared.

ARGUMENTS: VA n

where n is an unsigned number in the range 1024 to 68,431,360 decimal.

USAGE:
While Moving Yes Default Value 262144

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VS” Vector Speed

“VP” Vector Position

“VE” End Vector

“CR” Circle

“VM” Vector Mode

“BG” Begin Sequence

“VD” Vector Deceleration

“VT” Vector smoothing constant - S-curve

EXAMPLES:
VA 1024 Set vector acceleration to 1024 counts/sec2

VA ? Return vector acceleration

00001024

VA 20000 Set vector acceleration

VA ?

0019456 Return vector acceleration

ACCEL=_VA Assign variable, ACCEL, the value of VA

SMC-2000 User’s Guide Command Reference •••• 157

VD (Vector Deceleration)
DESCRIPTION:

This command sets the deceleration rate of the vector in a coordinated motion sequence. The parameter input
will be rounded down to the nearest factor of 1024. The units of the parameter is counts per second squared.

ARGUMENTS: VD n

where n is an unsigned number in the range 1024 to 68,431,360 decimal.

USAGE:
While Moving No Default Value 262144

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VA” Vector Acceleration

“VS” Vector Speed

“VP” Vector Position

“CR” Circle

“VE” Vector End

“VM” Vector Mode

“BG” Begin Sequence

“VT” Smoothing constant - S-curve

EXAMPLES:
#VECTOR Vector Program Label

VMXY Specify plane of motion

VA1000000 Vector Acceleration

VD 5000000 Vector Deceleration

VS 2000 Vector Speed

VP 10000, 20000 Vector Position

VE End Vector

BGS Begin Sequence

158 •••• Command Reference SMC-2000 User's Guide

VE (Vector Sequence End)
DESCRIPTION:

VE is required to specify the end segment of a coordinated move sequence. VE would follow the final VP or
CR command in a sequence. VE ? or _VE returns the length of the vector in counts. VE is equivalent to the LE
command.

ARGUMENTS: None

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VM” Vector Mode

“VS” Vector Speed

“VA” Vector Acceleration

“VD” Vector Deceleration

“CR” Circle

“VP” Vector Position

“BG” Begin Sequence

“CS” Clear Sequence

EXAMPLES:
VM XY Vector move in XY

VP 1000,2000 Linear segment

CR 0,90,180 Arc segment

VP 0,0 Linear segment

VE End sequence

BGS Begin motion

SMC-2000 User’s Guide Command Reference •••• 159

VF (Variable Format)
DESCRIPTION:

The VF command allows the variables and arrays to be formatted for number of digits before and after the
decimal point. When displayed, the value m represents the number of digits before the decimal point, and the
value n represents the number of digits after the decimal point. When in hexadecimal, the string will be
preceded by a $. Hex numbers are displayed as 2’s complement with the first bit used to signify the sign.

If a number exceeds the format, the number will be displayed as the maximum possible positive or negative
number (i.e. 999.99, -999, $8000 or $7FF).

ARGUMENTS: VF m.n

where m and n are unsigned numbers in the range 0<m<10 and 0<n<4. A negative m specifies
hexadecimal format

USAGE:
While Moving Yes Default Value 10.4

In a Program Yes Default Format 2.1

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
VF 5.3 Sets 5 digits of integers and 3 digits after the decimal point

VF 8.0 Sets 8 digits of integers and no fractions

VF -4.0 Specify hexadecimal format with
4 bytes to the left of the decimal

160 •••• Command Reference SMC-2000 User's Guide

VM (Coordinated Motion Mode)
DESCRIPTION:

The VM command specifies the coordinated motion mode and the plane of motion. This mode may be specified
for motion on any set of two axes.

The motion is specified by the instructions VP and CR, which specify linear and circular segments. Up to 511
segments may be given before the Begin Sequence (BGS) command. Additional segments may be given during
the motion when the SMC-2000 buffer frees additional spaces for new segments.

The Vector End (VE) command must be given after the last segment. This tells the controller to decelerate to a
stop during the last segment.

It is the responsibility of the user to keep enough motion segments in the buffer to ensure continuous motion.
VM ? or _VM returns the available spaces for motion segments that can be sent to the buffer.

511 returns means that the buffer is empty and 511 segments may be sent. A zero means that the buffer is full
and no additional segments may be sent.

ARGUMENTS: VM nmp

where n and m is the plane of motion of any two axes of X,Y,Z,W or A,B,C,D,E,F,G,H

p is the tangent axis X,Y,Z,W or A,B,C,D,E,F,G,H. N turns off tangent.

USAGE:
While Moving No Default Value X,Y

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“VP” Vector Position

“VS” Vector Speed

“VA” Vector Acceleration

“VD” Vector Deceleration

“CR” Circle

“VE” End Vector Sequence

“BG” Begin Sequence

“CS” Clear Sequence

“CS” _CS - Segment counter

“VT” Vector smoothing constant -- S-curve

“AV” Vector distance

EXAMPLES:

VM X,Y Specify coordinated mode for X,Y

CR 500,0,180 Specify arc segment

VP 100,200 Specify linear segment

VE End vector

BGS Begin sequence

SMC-2000 User’s Guide Command Reference •••• 161

VP (Vector Position)
DESCRIPTION:

The VP command defines the target coordinates of a straight line segment in a 2 axis motion sequence. The
axes are chosen by the VM command. The motion starts with the Begin sequence command. The units are in
quadrature counts, and are a function of the vector scale factor. For three or four axis linear interpolation, use
the LI command. When used as an operand, _VPX, _VPY, _VPZ, _VPW return the absolute coordinate of the
axes at the last intersection along the sequence. For example, during the first motion segment, this instruction
returns the coordinate at the start of the sequence. The use as an operand is valid in the linear mode, LM, and
in the Vector mode, VM. The parameter N is optional and can be used to define the vector speed that is
attached to the motion segment.

ARGUMENTS: VP n,m < N

where n,m are signed integers in the range -2147483648 to 2147483647. The length of each segment
must be limited to 8 ⋅ 106. N is an unsigned even integer between 0 and 8,000,000

USAGE:
While Moving No Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“CR” Circle

“VM” Vector Mode

“VA” Vector Acceleration

“VD” Vector Deceleration

“VE” Vector End

“VS” Vector Speed

“BG” Begin Sequence

“VT” Vector smoothing constant - S-curve

EXAMPLES:
#A Program A

VM X,Y Specify motion plane

VP 1000,2000 Specify vector position X,Y

CR 1000,0,360 Specify arc

VE Vector end

VS 2000 Specify vector speed

VA 400000 Specify vector acceleration

BGS Begin motion sequence

EN End Program

Hint: The first vector in a coordinated motion sequence defines the origin for that sequence. All other vectors
in the sequence are defined by their endpoints with respect to the start of the move sequence.

162 •••• Command Reference SMC-2000 User's Guide

VR (Vector Speed Ratio)
DESCRIPTION:

The VR r command multiplies the vector speed specifications given by VS or < by the value specified by r. r is
between 0 and 10 with a resolution of .0001. VR takes effect immediately and will ratio all the following VS
commands and any <n specifications used on VP, CR or LI segments. VR doesn’t ratio the accelerations. VR is
useful for feed rate override.

ARGUMENTS: VR r

 where r is between 0 and 10 with a resolution of .0001

USAGE:
While Moving Yes Default Value 1

In a Program Yes Default Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VS” Vector speed

EXAMPLES:
#A Vector Program

VMXY Vector Mode

VP 1000,2000 Vector Position

CR 1000,0,360 Specify Arc

VE End Sequence

VS 2000 Vector Speed

BGS; AMS Begin Sequence After Motion

JP#A Repeat Move

#SPEED Speed Override

VR@AN[1]*.1 Read analog input, compute ratio

JP#SPEED Loop

XQ#A,0 Execute task 0 and 1 simultaneously

XQ#SPEED,1

The above two programs #A and #SPEED are executed at the same time. #SPEED reads the analog input
continuously and sets the speed ratio accordingly.

SMC-2000 User’s Guide Command Reference •••• 163

VS (Vector Speed)
DESCRIPTION:

The VS command specifies the speed of the vector in a coordinated motion sequence in either the LM or VM
modes. The parameter input is rounded down to the nearest factor of 2. The units are counts per second. VS
may be changed during motion.

ARGUMENTS: VS n

where n is an unsigned number in the range 2 to 8000000 decimal

USAGE:
While Moving Yes Default Value 8192

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“VA” Vector Acceleration

“VP” Vector Position

“CR” Circle

“LM” Linear Interpolation

“VM” Vector Mode

“BG” Begin Sequence

“VE” Vector End

“VR” Vector Speed Ratio

EXAMPLES:
VS 2000 Define vector speed as 2000 counts/sec

VS ? Return vector speed

002000

164 •••• Command Reference SMC-2000 User's Guide

VT (Vector Time Constant - S curve)
DESCRIPTION:

The VT command filters the acceleration and deceleration functions in vector moves of VM or LM type to
produce a smooth velocity profile. The resulting profile, known as S-curve, has continuous acceleration and
results in reduced mechanical vibrations. VT sets the bandwidth of the filter, where 1 means no filtering and
0.004 means maximum filtering. NOTE that the filtering results in longer motion time.

ARGUMENTS: VT n

where n is a positive number in the range between 0.004 and 1.0, with a resolution of 1/256

USAGE:
While Moving Yes Default Value 1.0

In a Program Yes Default Format 1.4

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“IT” Independent Time Constant for smoothing independent

moves

EXAMPLES:
VT 0.8 Set vector time constant

VT ? Return vector time constant

0.8

SMC-2000 User’s Guide Command Reference •••• 165

WC (Wait for Contour Data)
DESCRIPTION:

The WC command acts as a flag in the Contour Mode. After this command is executed, the controller does not
receive any new data until the internal contour data buffer is ready to accept new commands. This command
prevents the contour data from overwriting on itself in the contour data buffer.

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:
“CM” Contour Mode

“CD” Contour Data

“DT” Contour Time

EXAMPLES:
CM XYZW Specify contour mode

DT 4 Specify time increment for contour

CD 200,300,-150,500 Specify incremental position on X,Y,Z and W X-axis
moves 200 counts Y-axis moves 300 counts Z-axis moves -
150 counts W-axis moves 500 counts

WC Wait for contour data to complete

CD 100,200,300,400

WC Wait for contour data to complete

DT 0 Stop contour

CD 0,0,0,0 Exit mode

166 •••• Command Reference SMC-2000 User's Guide

WT (Wait)
DESCRIPTION:

The WT command is a trip-point used to time events. After this command is executed, the controller will wait
for the number of samples specified before executing the next command. If the TM command has not been used
to change the sample rate from 1 msec, then the units of the Wait command are milliseconds.

ARGUMENTS: WT n

 where n is an integer in the range 0 to 2 Billion decimal

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

EXAMPLES: Assume that 10 seconds after a move is over a relay must be closed.
#A Program A

PR 50000 Position relative move

BGX Begin the move

AMX After the move is over

WT 10000 Wait 10 seconds

SB 5 Turn on relay

EN End Program

SMC-2000 User’s Guide Command Reference •••• 167

XQ (Execute Program)
DESCRIPTION:

The XQ command starts a previously entered program. Execution will start at the label or line number
specified. Up to four programs may be executed simultaneously to perform multitasking.

The function can be used as an operand where _XQn returns the line number for thread n, and -1 if thread n is
not running.

ARGUMENTS: XQ #A,n XQm,n

 where A is a program name of up to seven characters

 where m is a line number

 where n is the thread number (0,1,2 or 3) for multitasking

USAGE:
While Moving Yes Default Value n = 0

In a Program Yes Default Format ---

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:
“HX” Halt execution

EXAMPLES:
XQ #APPLE,0 Start execution at label APPLE, thread zero

XQ #DATA,2 Start execution at label DATA, thread two

XQ 0 Start execution at line 0

168 •••• Command Reference SMC-2000 User's Guide

ZR (Zero)
DESCRIPTION:

The ZR command sets the compensating zero in the control loop or returns the previously set value. It fits in the
control equation as follows:

 D(z) = GN(z-ZR/z)

ARGUMENTS: ZR x,y,z,w ZRX=x ZR a,b,c,d,e,f,g,h

where x,y,z,w are unsigned numbers in the range 0 to 1 decimal with a resolution of 1/256

USAGE:
While Moving Yes Default Value .9143

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

RELATED COMMANDS:
“GN” Gain

“KD” Derivative

“KP” Proportional

“KI” Integral Gain

EXAMPLES:
ZR .95,.9,.8,.822 Set X-axis zero to 0.95, Y-axis to 0.9, Z-axis to 0.8, W-axis

zero to 0.822

ZR ?,?,?,? Return all zeroes

0.9527,0.8997,0.7994,0.8244

ZR ? Return X zero only

0.9527

ZR ,? Return Y zero only

0.8997

ZRY=0.9 Y zero as .9

ZR*=0.89 All zeros as .89

SMC-2000 User’s Guide Command Reference •••• 169

ZS (Zero Subroutine Stack)
DESCRIPTION:

The ZS command is only valid in an application program and is used to avoid returning from an interrupt (either
input or error). ZS alone returns the stack to its original condition. ZS1 adjusts the stack to eliminate one
return. This turns the jump to subroutine into a jump. Do not use RI (Return from Interrupt) when using ZS.
To re-enable interrupts, you must use II command again.

The status of the stack can be interrogated with the instruction _ZS. The response, an integer between zero and
fifteen, indicates zero for beginning condition and fifteen for the deepest value.

ARGUMENTS: ZS n

 where 0 returns stack to original condition

 1 eliminates one return on stack

USAGE:
While Moving Yes Default Value ---

In a Program Yes Default Format ---

Not in a Program No

Can be Interrogated Yes

Used in an Operand Yes

EXAMPLES:
II1 Input Interrupt on 1

#A;JP #A;EN Main program

#ININT Input Interrupt

MG “INTERRUPT” Print message

S=_ZS Interrogate stack

S= Print stack

ZS Zero stack

S=_ZS Interrogate stack

S= Print stack

EN End

SMC-2000 User’s Guide Additional Program Examples •••• 1

Additional Program Examples

Homing Sequence

This example demonstrates how to home servos with a home sensor in the middle of a slide where it is possible

for the servo to be on either side of the home sensor at power up. If the servo is already past the sensor, it will hit a limit
switch first, and the #LIMSWI special label subroutine will reverse the CN command and turn the servo around. The
#BACKUP subroutine is used to make the servo come back to the home input and go a small distance past it, so the
#HOMING routine can always hit the same side of the home sensor.

Ideally, the home sensor is a photo device. If there is a white and black strip along the slide, the photo eye will
see either light or dark, and the value of _HMX will be "1" or "0". Under this design, the FEX command can
automatically determine the direction to find the transition point of the black and white strip. You should not need to
account for the limit switch or the #BACKUP routine in the case.

#TEST
 SPX=10000
 ACX=1000000
 DCX=1000000
 CN,1
 TRUE=1
 FALSE=0
 HOMING=FALSE
 SHX; WT 2000
#HOMING
 MG "Attempting to find home "{N}
 MG "(normal direction)"
 FLX=200000000
 BLX=-200000000
 HOMING=TRUE
 JGX=8192; FEX; BGX; AMX
 HOMING=FALSE
 JG*=500; FIX; BGX; MCX (MCX because controller will automatically define the position as zero when index

found).
 MG "Homed O.K!" EN

#BACKUP

2 •••• Additional Program Examples SMC-2000 User's Guide

 MG "Going back to the "{N}
 MG "home input.."
 CN,-1
 FEX; BGX; AMX
 IPX=-20000; AMX (May need to adjust number based on distance)
 CN,1
 JP #HOMING
EN

#LIMSWI; AB1 (AB1 optional, to instantly stop all servos)
 JP #REALPRB,HOMING=FALSE (Do next part if limit during homing)
 ZS; WT 1000; JP #BACKUP (Next part handles a real limit event)
 #REALPRB
 MG "Limit Hit!"
RE1

#CMDERR (Command error handler special label)
 AB1; ZS
 JP #LIMSWI,_TC=22 (Refer to #LIMSWI handler if try to begin or motor off)
 MG "Error "{N};TC1{N}
 MG " on line",_ED{F3.0}
 MG "Program halted!"
 AB
EN

Absolute Encoder
 This program can be used as a simple diagnostic tool for absolute encoder alarms. The variable XHmOfs is
used as an offset to fine tune the zero point of the absolute encoder. If an absolute encoder alarm is encountered, the axis
on which the error occurred is displayed. If a command error is encountered, the error message is displayed along with
the line number. The program is also aborted in this case.

#ABSOLUT
XHmOfs=2344 (A user defined variable to "fine tune" the zero point)
AEX=4096 (Read Absolute Encoder with 4096 pulses per rev)
DPX=_TPX+XHmOfs (Adds user defined offset to number received from encoder)
MG "POSITION=",_TPX
EN

#CMDERR (Command error handler special label)
 AB1; ZS
 JP #ABS_ALM,_TC=116 (116 is an absolute encoder alarm)
 MG "Error "{N};TC1{N}
 MG " on line",_ED{F3.0}
 MG "Program halted!"
 AB
EN

#ABS_ALM

SMC-2000 User’s Guide Additional Program Examples •••• 3

 QY; MG " <= Encoder Alarm Code"
 Axis=_AE+65*$1000000
 MG "Absolute Encoder Error on -",Axis{S1},"- Axis."
EN

Port Two Interface

This program shows how to use an operator interface on port 2. The thread zero is used for gathering the data from the
operator. Thread one is used for controlling the motion of the indexer. Input #1 makes one index per at every falling
edge. Inputs #2 & #3 are used for manual jogging.

#AUTO
#CUT2LEN
 CC 9600,0,0,0; CI,1 (The following are parameter settings)
 ACX=3000000; DCX=_ACX
 Response=0; Dwell=0; Speed=68266.6626 (The following are variables)
 Dist=2048; Cycles=0; X=0; Quit=0; Option=0
 StartInt=1; Cut=1
 JogXP=2; JogXN=3
 JogSpeed=50000
 MainCnt=0
 BSpace=""; Min=0; Max=0; ASpace=""
 DM MINCOL[4], MAXCOL[4]
 MINCOL[1]=7; MAXCOL[1]=12
 MINCOL[2]=6; MAXCOL[2]=13
 MINCOL[3]=7; MAXCOL[3]=12
 TRUE=1; FALSE=0 (The following are constants)
 SConv=(8192/60)*30 (Converts a percentage to 100% = 3000 R.P.M).
 DConv=8192
 MaxSpeed=3000 (Max Speed in R.P.M.)
#MAIN (This is the #MAIN loop of the program)
 JS #SHOMENU
 #LOOP
 JP #ASKSPD,P2CH="e"
 JP #ASKDIST,P2CH="f"
 JP #ASKCYC,P2CH="g"
 JP #SHOWCNT,P2CH="h"
 JS #START,_HX1=0
 JP #LOOP,Quit=0
 JS #CLRSCR
 Row=2; Col=2; JS #SETXY
 MG {P2} "Program Completed"
 HX1
EN

#START; SHX; WT 500; XQ #MOTION,1; EN (This subroutine executes the #MOTION program)

#SHOMENU (Display the Main Menu)

4 •••• Additional Program Examples SMC-2000 User's Guide

 JS #CLRSCR
 MG {P2} "F1) Set Speed " {N}
 MG {P2} "F2) Set Distance " {N}
 MG {P2} "F3) Set Quantity " {N}
 MG {P2} "F4) View Batch Cnt" {N}
EN

#GETANS (Used for getting all responses from port #2)
 CI,-1; WT 50; CC 9600,0,0,1
 IN{P2},Response
 CI,-1; WT 50; CC 9600,0,0,0
EN

#CLRSCR; MG {P2} {^27},"E" {N}; EN (Clears the screen of the QSI terminal)

#SETXY (Sets the X,Y position on the QSI terminal . Just before calling this routine,

set "Col" to 1 through 20. Just before calling this routine, set "Row" to 1
through 3. Col and Row start at 1,1 in the upper left corner.)

 hRow=Row+63*$100
 hCol=Col+63
 SetXYStr=$1B490000 | hRow | hCol // QSI Code ESC "I" row col
 MG {P2} SetXYStr {S} {N}
EN

#ASKSPD (Ask user for speed value)
 Option=1
 Response=Speed/SConv
 JS #CLRSCR
 MG {P2} "Speed (%) =",Response{F4.2}
 MG {P2} "Enter index speed "{N}
 MG {P2} "in % of full-> " {N}
 Min="0"; Max="100"
 JS #GETANS
 JP #ERROR,Response<1
 JP #ERROR,Response>100
 Speed=Response*SConv
 JP #MAIN
EN

#ASKDIST (Ask user for distance value)
 Option=2
 Response=Dist/DConv
 JS #CLRSCR
 MG {P2} "Distance =",Response{F3.2}," ft"{N}
 MG {P2} "Enter index distance"{N}
 MG {P2} "in feet. -> " {N}
 Min="0.1"; Max="4000"
 JS #GETANS
 JP #ERROR,Response<.1

SMC-2000 User’s Guide Additional Program Examples •••• 5

 JP #ERROR,Response>4000
 Dist=Response*DConv
 JP #MAIN
EN

#ASKCYC (Ask user for number of cycles)
 Option=3
 Response=Cycles
 JS #CLRSCR
 Row=1; Col=2; JS #SETXY
 MG {P2} "Set Indexes=",Response{F4.0} {N}
 Row=3; Col=2; JS #SETXY
 MG {P2} "How many indexes?"{N}
 Row=4; Col=1; JS #SETXY
 MG {P2} "(0 TO Quit) " {N}
 Min="0"; Max="1000"
 JS #GETANS
 JP #ERROR,Response<0
 JP #ERROR,Response>1000
 Cycles=@INT[Response]
 X=0
 JS #SETQUIT,Response=0
 JP #MAIN
EN

#SETQUIT; Quit=1; EN (Set a flag if number of cycles is 0)

#SHOWCNT (The subroutine displays the batch count)
 JS #CLRSCR
 Row=1; Col=2; JS #SETXY
 MG {P2} "Run Speed =",Speed/SConv{F3.1},"%" {N}
 Row=3; Col=1; JS #SETXY
 MG {P2} "Batch Count =" {N}
 Row=4; Col=2; JS #SETXY
 MG {P2} "Press F1 to cancel" {N}
 Row=3; Col=14
 #UPDATE
 JS #SETXY; WT 50
 MG {P2} MainCnt{F6.0}{N}
 JP #UPDATE,P2CH<>"e"
 CI,-1
 JP #MAIN
EN

#ERROR (Subroutine to display all data entry errors)
 JS #CLRSCR
 MG {P2} "ERROR! NOT IN RANGE!"{N}
 Row=2; Col=MINCOL[Option]; JS #SETXY
 MG {P2} Min {S}," to " {N}
 Col=MAXCOL[Option]; JS #SETXY
 MG {P2} Max {S} {N}

6 •••• Additional Program Examples SMC-2000 User's Guide

 Row=3; Col=5; JS #SETXY
 MG {P2} "PRESS <ENTER>"{N}
 Row=4; Col=6; JS #SETXY
 MG {P2} "TO CONTINUE"{N}
 JS #GETANS
 JP #ASKSPD,Option=1
 JP #ASKDIST,Option=2
 JP #ASKCYC,Option=3
EN

#MOTION (Program that runs the motion)

 JS #MANUAL,@IN[JogXP] | @IN[JogXN] = TRUE
 JP #MOTION,X>=Cycles
 SPX=Speed
 PRX=Dist
 AI StartInt; AI -StartInt
 BGX; X=X+1; MainCnt=MainCnt+1; AMX
 SB Cut; WT 250; CB Cut
 JP #MOTION
EN

#MANUAL
 JP #JOGXP,@IN[JogXP]=TRUE
 JP #JOGXN,@IN[JogXN]=TRUE
 JP #XSTOP,@IN[JogXP] | @IN[JogXN] = FALSE
 JP #XSTOP,@IN[JogXP] & @IN[JogXN] = TRUE
 JP #MANUAL,@IN[JogXP] | @IN[JogXN] = TRUE
 STX; AMX
EN

#JOGXP; JGX=JogSpeed; BGX; JP #MANUAL; EN
#JOGXN; JGX=-JogSpeed; BGX; JP #MANUAL; EN
#XSTOP; STX; AMX; EN

Engineering Units

This program demonstrates how the SMC-2000 can be used with engineering units from an operator point of

view. This program asks the operator to enter a speed in R.P.M. until they enter a zero. Everywhere in the program a
speed or distance is required, use the engineering unit multiplied by the conversion factor.

#RPM
 SHX; ACX=1000000; DCX=_ACX
 RPM=8192/60 (Convert RPM to counts per second)
 INCHES=8192*5/0.2 (Pulses Per Rev * Gear Box / Ball Screw Pitch)

#LOOP
 IN "Enter the speed in R.P.M. ",Speed

SMC-2000 User’s Guide Additional Program Examples •••• 7

 IN "Enter the distance in inches. ",Dist
 JP #QUIT,Speed<0.1
 JP #QUIT,Speed>4500
 SPX=Speed*RPM (Use engineering units to convert speed)
 PRX=Dist*INCHES (Use engineering units to convert distance)
 BGX
 AMX
 JP #LOOP
EN

#QUIT
 STX; AMX
 MG "Program STOPPED."
EN

Special Labels

This program demonstrates 5 of the 7 SPECIAL LABELS as part of an SMC-2000 Application Program.

#AUTO is usually the first line of a program. When this program is burned into the SMC using the BP command, the
program will begin executing when the power is turned ON or after the RS command is given, or the RESET button on
the front of the SMC is pressed.

#AUTO
 ERX=150; OEX=1; II3
 SHX; WT 500
#BUSY
 JGX=@AN[1]*10000
 BGX
 MG "BUSY..."
 WT 500
 JP #BUSY
EN

#POSERR -- This special label is used to handle the situation when a servo is not able to remain in position.
The special label works with the ER command. When the value of the ER command is exceeded, thread zero
automatically jumps to the #POSERR label. In this program example, ERX=150 counts. If you have low gains or a
small motor, you should be able to cause more than 150 counts of error by hand, causing the #POSERR label to execute.
In the following example, the program displays a message and waits for input #1 to go low (falling edge). The servo is
then re-energized.

There are 3 ways to return from a special label like this. The example below uses RE1. This means to return
from the error routine to the line in thread zero that was being executed when the #POSERR occurred. The "1" means to
restore a trippoint if one was in progress, such as WT, AI, AM, AT, etc.

The second way is to simply do an RE, which means that any trippoints that were in progress are cleared. This
means that if thread zero was waiting for a AM command, it would continue as if the profiler had completed the path.

The third way is to use the ZS command, which clears the subroutine stack, and the SMC forgets that it is in the
middle of an error routine. After the ZS is given, you can do a JP to anywhere in the program that is convenient.
Typically there would be a jump back to a main loop where manual jogging can take place.

8 •••• Additional Program Examples SMC-2000 User's Guide

#POSERR
 SB1
 MG "FOLLOWING ERROR IS HIGH!"
 MG "TOGGLE INPUT #1 TO CONTINUE"
 AI1; AI-1
 CB1; SHX; WT 500
RE1

The following is the special label that is automatically executed when there is a programming error, a command
given where it cannot be used, or a number out of range for a command. The example below includes a jump to the
#LIMSWI label if the _TC code is 22, which is "Begin not valid due to limit switch." This is considered a command
error, but is easier to treat as a limit switch error. Similar conditions could be handleed by checking other _TC code and
reacting accordingly. If the error is anything other than 22, motion is aborted without aborting the program (AB1), then a
message is printed indicating the type of error and what line number it happened on. NOTE: _ED reports the last line
that had an error. The #CMDERR routine can be finished just like the #POSERR special label but this is not
recommended because usually there is very little reason to continue execution of the program if there are serious errors in
it. This routine is very useful in two ways:

#1 - During program design when there will be many programming mistakes, it is convenient to have the program display
the error and line number automatically.

#2 - It is safer to abort motion if there is a program fault. Without the AB1 command, the motors will continue doing
whatever they were doing before the fault. For example, if they were jogging, they would continue jogging.

#CMDERR
 JP #LIMSWI,_TC=22
 AB1
 MG "Error "{N};TC1{N}
 MG " on line",_ED{F3.0}
 MG "Program Halted!"
 AB
EN

The following is the #LIMSWI special label for handling situations where limit switches are hit during motion.
This label automatically executes if an axis is in motion and a limit switch in the direction of motion is hit, or a software
limit is exceeded. Without this special label, if a limit switch is hit during motion, such as a position absolute move, the
motor will decelerate to a stop with NO ERROR. If a AM command was used, it would be cleared. The example as
shown does not recover from the limit switch error, but a recovery method that works well is the use of a status flag
variable. For example if the machine was in a manual jog operation, a variable could be used to indicate that it was in jog
mode (JOGMODE=1) The first line in the #LIMSWI could jump to #PROBLEM if JOGMODE<>1, otherwise return
from the error. The two commented lines below demonstrate this. (The JOGMODE variable would be set to "1" in your
JOG routine and set back to "0" at the end of your jog routine)

#LIMSWI
 Limit="+"
 Axis="X"; JS #HARD,_LFX=0; JS #SOFT,_FLX<_TPX
 Axis="Y"; JS #HARD,_LFY=0; JS #SOFT,_FLY<_TPY
 Limit="-"
 Axis="X"; JS #HARD,_LRX=0; JS #SOFT,_BLX>_TPX
 Axis="Y"; JS #HARD,_LRY=0; JS #SOFT,_BLY>_TPY
 (JP #PROBLEM,JOGMODE=0; RE1)
 (#PROBLEM)

SMC-2000 User’s Guide Additional Program Examples •••• 9

 AB1; HX1; HX2; HX3
 ZS
 MG "PROGRAM HALTED! (LIMSWI)"
EN

#HARD; MG Limit{S}," ",Axis," HARDWARE LIMIT HIT!"; EN
#SOFT; MG Limit{S}," ",Axis," SOFTWARE LIMIT HIT!"; EN

The following is the special label to handle input interrupts. Inputs 1-8 can be used as interrupts. This example
uses an input to tell the SMC that the system is under an E-STOP condition. This input may come from a contact that
also removes power from the amplifiers. Notice that the interrupt command II is used at the beginning of the program to
designate input #3 as an interrupt. When this input goes low, thread zero automatically jumps to #ININT if it is included
in the program. Notice that the example assumes that if an E-STOP occurs, the current operation has been scrapped. The
ZS (Zero Subroutine Stack) command is used which allows the program to jump anywhere. Usually it is easiest to jump
back to a main loop which handles the different modes of operation of the machine. Also note that if the ZS is used, the
interrupt must be re enabled for next time.

#ININT
 AB1; HX1; HX2; HX3
 SB3
 MG "ESTOPPED!"
 AI-3; AI3 (Wait for e-stop input to go high (re-enabled))
 CB3
 MG "RE-ENABLED.."
 SHX
 WT 2000
 ZS
 II3 (Re-enable input interrupt for next time)
 JP #BUSY
EN

SMC-2000 User’s Guide Options •••• 11

Options

Absolute Encoder (W-Option)
The SMC-2000 has the ability to interface to Yaskawa motors with absolute encoders. Absolute encoders allow
the system to “remember” its position during power loss, even if the motor is moved while power is off.

To use the absolute encoder with the SMC 2000, there are several servo parameters that need to be set, and there
are several special commands you must place in a program initialization sequence.

Setting servo(s) parameters
Yaskawa servo amplifier models SGD, SGDA, SGDB need to be set up to operate in a Torque Mode, as
described in the parameter setting section of chapter 2 “tuning the servo system”. The following parameters
must also be set.

Parameter (SGD, SGDA) Function Setting

Cn-01, bit 1 , E Absolute Encoder Selection 0,1

Cn-0A Dividing Ratio setting 1024

Cn-11 Number of Encoder Pulses 1024

Parameter (SGDB) Encoder Type Function Setting

Cn-01, bit 1 , E W,S Absolute Encoder Selection 0,1

Cn-0A W Dividing Ratio setting 1024

 S 8192

Cn-11 W Number of Encoder Pulses 1024

 S 8192

12 •••• Options SMC-2000 User's Guide

Absolute Encoder Commands
This SMC-2000 has new firmware with an improved method of reading absolute encoders. The new firmware
can be identified by entering <control>R <control>V in the terminal window of YTerm. This will return the
firmware revision level. Firmware D150N19I and higher includes the following absolute encoder commands.

AE (Absolute Encoder)
Reads the absolute encoder for specified axis(axes).

Examples:

AEX=4096; Where 4096 is the encoder resolution after quadrature.

AE4096,4096,,,4096

The SMC-2000 will read the encoder and automatically Define the Position (DP) to the current value.

If an encoder had an alarm, a Command Error will result. If the #CMDERR special label is used, you
can use _TC to determine what type of encoder problem was encountered. Possible errors are listed
below.

114 Absolute encoder option not installed

115 Motor must be in MO for this command

116 Absolute encoder responded with an alarm

117 Absolute encoder did not respond

Note: _AE will report the last encoder read that was attempted. 0=X, 1=Y, 2=Z, and so on.

TY (Tell Yaskawa Encoder)
This command can be used to indicate where the absolute encoder was when an absolute read was
done. If there was an alarm, this number will be 2147483647 (default).

TYX for one axis or

TY all axes or

_TYX to use as an operand

QY (Absolute Encoder Alarm Received Serially from Encoder)
This will return the serial string that was received from the encoder. The following is typical of what
may be received. (These are on page 159 in the SGDB Manual.)

ALRMOA Backup Alarm

ALARMOD Battery Alarm

ALARMOB Checksum Error

ALARMOP Over Speed

ALARMOH Absolute Error

SMC-2000 User’s Guide Options •••• 13

ALARMOE Battery/Backup Combination Error

Extended I/O (I-Option)
The SMC-2000 has optional extended I/O that contains an additional 40 inputs and 42 outputs. All inputs are
grouped into banks of eight, and work the same as standard inputs. All outputs are grouped into banks of seven
with a separate common for each bank. However, the software will treat outputs as banks of eight, just like
standard outputs, for simpler programming.

Extended I/O is available only through a Yaskawa factory modification due to required hardware change.

Output Specification (Extended I/O only)

 Switching Power: Max. 10 Watt

 Switching Voltage: Max. 200 Vdc

 Switching Current: Max. 0.5 Amp.

 Carrying Current: Max. 1.25 Amp.

Part Number

 SMC2000 X → I: Extended I/O Option.

Location of Connectors

The connectors for the Extended I/O option are located on the bottom side of the SMC-2000.
There are (2) 50-pin connectors used for the Extended I/O option, as shown below.

Terminal Block
The standard 50 pin terminal block for the SGDB can be used for extended I/O. Yaskawa part
number: JUSP-TA50P

FRONT

BOTTOM

I/O 3 I/O

14 •••• Options SMC-2000 User's Guide

Command Reference
 INPUTS OUTPUTS

 TI3 Input [32 25] Lower Byte of OP,$FFFF Output [23:17]

 TI4 Input [40:33] Upper Byte of OP,$FFFF Output [31:25]

 TI5 Input [48:41] Lower Byte of OP,,$FFFF Output [39:33]

 TI6 Input [56:49] Upper Byte of OP,,$FFFF Output [47:41]

 TI7 Input [64:57] Lower Byte of OP,,,$FFFF Output [55:49]

 Upper Byte of OP,,,$FFFF Output [63:57]

 Note: Outputs 24, 32, 40, 48, 56, and 64 do not physically exist.

_OP# can be used to determine the port’s current setting.

For example:

 _OP, or _OP0 will report settings for Outputs 1 - 16

 _OP1 will report settings for Outputs 17 - 32

 _OP2 will report settings for Outputs 33 - 48

 _OP3 will report settings for Outputs 49 - 64

Extended Input Diagram
SMC

Bottom

I/O 3 SWITCH

0 V

0 V+24
VDC

SWITCH

SMC-2000 User’s Guide Options •••• 15

Extended Output Diagram

1st Output

2nd Output

3rd Output

Continues on to full bank of seven

Three physical
common pins

for each group of
seven

Dry contact outputs

I/O Port Lay Out

I/O 3 - 50 pin
Pin Number Function Pin Number Function
1 Output 17-23 Common 26 Output 35
2 Output 17-23 Common 27 Output 36
3 Output 17-23 Common 28 Output 37
4 Output 17 29 Output 38
5 Output 18 30 Output 39
6 Output 19 31 Input 25
7 Output 20 32 Input 26
8 Output 21 33 Input 27
9 Output 22 34 Input 28
10 Output 23 35 Input 29
11 Output 25-31 Common 36 Input 30
12 Output 25-31 Common 37 Input 31
13 Output 25-31 Common 38 Input 32
14 Output 25 39 Input 33
15 Output 26 40 Input 34
16 Output 27 41 Input 35
17 Output 28 42 Input 36
18 Output 29 43 Input 37
19 Output 30 44 Input 38
20 Output 31 45 Input 39
21 Output 33-39 Common 46 Input 40
22 Output 33-39 Common 47 Input 41
23 Output 33-39 Common 48 Input 42
24 Output 33 49 Input 43
25 Output 34 50 Input 44

I/O 4 - 50 pin
Pin Number Function Pin Number Function

16 •••• Options SMC-2000 User's Guide

1 Output 41-47 Common 26 Output 59
2 Output 41-47 Common 27 Output 60
3 Output 41-47 Common 28 Output 61
4 Output 41 29 Output 62
5 Output 42 30 Output 63
6 Output 43 31 Input 45
7 Output 44 32 Input 46
8 Output 45 33 Input 47
9 Output 46 34 Input 48
10 Output 47 35 Input 49
11 Output 49-55 Common 36 Input 50
12 Output 49-55 Common 37 Input 51
13 Output 49-55 Common 38 Input 52
14 Output 49 39 Input 53
15 Output 50 40 Input 54
16 Output 51 41 Input 55
17 Output 52 42 Input 56
18 Output 53 43 Input 57
19 Output 54 44 Input 58
20 Output 55 45 Input 59
21 Output 57-63 Common 46 Input 60
22 Output 57-63 Common 47 Input 61
23 Output 57-63 Common 48 Input 62
24 Output 57 49 Input 63
25 Output 58 50 Input 64

Industrial I/O Networks

As an alternative to the Extended I/O option [I], Yaskawa has added options to the SMC-2000 which make it
possible to use the extended I/O of the SMC2000 as a slave node on a network. These networks are DeviceNet,
ProfiBus, and InterBus-S, and have been designed to allow an I/O interface of 32 inputs and 32 outputs.
Commands cannot be sent as they would on the RS-232 ports.

Note: All network I/O interface modules are supplied by Hassbjer Micro Systems of Halmstad, Sweden.

Part Numbers

 SMC2000 X D: DeviceNet Option
 P: ProfiBus Option
 S: InterBus-S Option

DeviceNet I/O (D-Option)
This option will provide 32 inputs and 32 outputs of extended I/O as a slave node on a DeviceNet network. The
DeviceNet module resides inside the SMC-2000, and the network connection is made on the bottom panel of the
unit, labeled COM-D. SMC commands are used to set the address and baud rate, as well as to reset the
controller. SMC commands can also be used to monitor network status.

SMC-2000 User’s Guide Options •••• 17

Location of Connectors
The connector for the DeviceNet I/O option are located on the bottom side of the SMC-2000. This connector is
a 5-wire Phoenix type connector, as shown below.

Specifications and Technical Features
The media for the fieldbus is a shielded copper cable composed of one twisted pair and two wires for the
external power supply. The baud rate can be changed between 125K, 250K, and 500kbit/s. This can be done in
one of two different ways; first is simply by the DIP switches, the second way is via SMC commands.

Cable Specifications

baud thin thick
125k 100m 500m
250k 100m 250m
500k 100m 100m

Configuration
The DeviceNet module is a slave node that can be read and written to only by a DeviceNet Master. The
DeviceNet module will not initiate communication with other nodes, it will only respond to incoming
commands. The DeviceNet for SMC2000 modules are Group 2 only servers using the pre-defined master/slave
connection set for poll and bit strobing.

1) DeviceNet Connector

COM-D (Phoenix Type) Connector

1 V- Black
2 CAN_L Blue
3 SHIELD Bare
4 CAN_H White
5 V+ Red

2) Terminating the last module

Termination of the fieldbus requires a terminating resistor at each end of the fieldbus. These resistors should
have a value of 121 ohms. The resistor must be connected from CAN_L to CAN_H.

2) Address Setting

The SMC-2000 supports node address setting through software. The SMC-2000 dedicated outputs 49-54 (OP3)
are used for this. See the example below.

3) Baud rate

FRONT

BOTTOM

COM D

18 •••• Options SMC-2000 User's Guide

 There are three different baud rates for DeviceNet, 125k, 250k, or 500kbit/s. This is also settable through the
SMC program using dedicated outputs 55 & 56 (OP3)

3) LED indicators

The table below shows the function of the LED indicators.

Comment LED Color Function SMC Input

Internal Power Green Off = Network card power is off or
reset

63 High

 On = Network card power is ON. 63 Low
Net Status Red Flashing = Recoverable fault 61 Toggle

 Solid = Critical module fault (no 24
VDC etc.)

61 Low

 Green Flashing = Online but not
connected

64 Toggle

 Solid = On-line, link OK, connected 64 Low
Address Overwritten Red Off = Address DIP switch is valid 62 High

 On = DIP switch not valid 62 Low

Sample program for SMC-2000 with DeviceNet option

This example simply shows how the baud rate and slave address can be set using SMC language. This program
also monitors the connection, and upon connection to the network shows the value of all inputs once per second
and sends a test pattern on the network outputs.

#DEV_NET

OP 0,0,0,0
NetOK=$3F (Hex Status of inputs TI7 from DeviceNet card)
OnLineNC=$BF (Hex Status of inputs TI7 if Online but Not

Connected)
ByteVal=$00
VF -3.0 (Format to show data as hexadecimal)
NetReset=64 (Bit to RESET the DeviceNet card)
IN "Enter DeviceNet Address (0-63). ",Address
MG "Select the Baud Rate"
MG "1) 128K"
MG "2) 256K"
MG "3) 512K",{^13}
IN ,Baud (Get selection number for baud rate.)
JP #LOW,Baud=1; JP #MED,Baud=2; Baud=$80 ; JP #CONFIG
#LOW; Baud=$00; JP #CONFIG
#MED; Baud=$40

#CONFIG
Config=Baud | Address (Combine values to make complete byte.)
OP,,,Config (Set Address and baud rate)
CB NetReset; WT 200; SB NetReset (Reset DeviceNet card.)
WT 1000; MG "Attempting to Connect..."{N}
Attempts=0; AT0

#CONNECT
NetStat=@IN[64]; AT -150
NetStat=(NetStat | @IN[64]); AT -150
NetStat=(NetStat | @IN[64]); AT -150
NetStat=(NetStat | @IN[64]); AT -150
NetStat=(NetStat | @IN[64]); AT -150

SMC-2000 User’s Guide Options •••• 19

Attempts=Attempts+1
MG "."{N}
JP #NETBAD,Attempts>25
JP #CONNECT,NetStat<>0
MG {^13}, "CONNECTED!"

#LOOP
WT 1000
MG "DATA BYTES = ",_TI3," ",_TI4," ",_TI5," ",_TI6 {N}
MG "-- STATUS BYTE = ",_TI7
MG "- - - - - - - "
OP,ByteVal*$100+ByteVal,ByteVal*$100+ByteVal
ByteVal=ByteVal+1
JP #LOOP,ByteVal<256
ByteVal=$00
JP #LOOP

EN

#NETBAD;
MG "DeviceNet card is not working correctly!"
AB

EN

ProfiBus (P-Option)

This option will provide 32 inputs and 32 outputs of extended I/O as a node on a ProfiBus DP network. The
ProfiBus DP module resides inside the SMC-2000, and the network connection is made on the bottom panel of
the unit, labeled COM-P. The address is set through dedicated SMC outputs 49-56. The network card can be
reset via an SMC command and network status can also be monitored. ProfiBus-DP is used normally in
industrial automation to transfer data for motor controllers, MMIs, I/O units and various other industrial
applications. The Profibus-DP module is a slave node that can be read and written to by a Profibus-DP master.
The Profibus-DP for SMC-2000 will not initiate communication to other nodes, it will only respond to incoming
commands. This module does not support the ProfiBus-DP diagnostic functions.

Location of Connectors
The connector for the ProfiBus option are located on the bottom side of the SMC-2000. This connector is a 9-
pin female DSUB connector, located as shown below.

FRONT

BOTTOM

COM P

20 •••• Options SMC-2000 User's Guide

Specifications and Technical Features
The media for the fieldbus is a shielded copper cable composed of a twisted pair. The baud rate for the bus is
between 9.6kbaud and 12Mbaud. The ProfiBus-DP network consists of up to 32 different modules (126 with a
repeater), and the total amount of data transfer is 246 Byte out/module and 246 Byte in/module.

Several different ProfiBus-DP Masters are available on the market, for both PLC-systems and PC computers.

Configuration
1) Memory Map

The Memory Map consists of the Process Data for the ProfiBus Network. This data is updated every ProfiBus
cycle.

Address Memory Map Size Description

000h - 03Fh Input Data 64 bytes Default no. of input bytes that can be addressed by
all supported fieldbus systems

040h - 0C7h Additional Input
Data

136 bytes Area of free bytes that can be assigned to input data
during initialization of the ProfiBus-DP module

0C8h - 1DFh Not Used 280 bytes Not used in ProfiBus-DP SMC-2000
1E0h - 21Fh Output Data 64 bytes Default no. of output bytes that can be addressed by

all supported fieldbus systems
220h - 2A7h Additional Output

Data
136 bytes Area of free bytes that can be assigned to output

data during initialization of the ProfiBus-DP module
2A8h - 3BFh Not Used 280 bytes Not used in ProfiBus-DP SMC-2000
3C0h - 3DFh Fieldbus Specific

Data
32 bytes Fieldbus specific area, part of the control register

3E0h - 3FFh Control Register 32 bytes Control and status information of the fieldbus and
the module

2) Setting up the module

SMC-2000 outputs 49-56 are used for setting the address of the ProfiBus Slave. The following chart describes
the addresses. It is BCD format, 0-99. Note that the logic state is reversed.

 B3 (MSD) B2(MSD) B1 (MSD) B0 (MSD) B3 (LSD) B2(LSD) B1 (LSD) B0 (LSD)

Address OUT 56 OUT 55 OUT 54 OUT 53 OUT 52 OUT 51 OUT 50 OUT 49
01 1 1 1 1 1 1 1 0
02 1 1 1 1 1 1 0 1
…
98 0 1 1 0 0 1 1 1
99 0 1 1 0 0 1 1 0

3) Baud rate

No setting of the Baud rate has to be done for the ProfiBus-DP module. The module has auto-baud rate setting
from 9.6 kbaud - 12Mbaud.

4) Terminating the last module

SMC-2000 User’s Guide Options •••• 21

The first and the last ProfiBus module must be terminated with a resistor for the bus to work properly. To do
this on the PROFIBUS-DP module, just click down the terminating switch. This is the blue, two-position DIP
switch near the COM-P connector. The termination switches should be turned off for all other modules in the
network.

5) LED indicators

The table below shows the function of the LED indicators. The physical layout for the module is shown on the
next page.

Comment LED Color Function SMC Input

Bus Error Red LED Off = Normal,

LED On = Bus Error

61 = HIGH = Normal

61 = LOW = Bus Error

Running Green LED Off = Not Running

LED On = Running

62 = HIGH = Not Running

62 = LOW = Running

Power Green LED Off = No Power

LED On = Slave has
Power

63 = HIGH = No Power

63 = LOW = Slave has
Power

6) Fieldbus connectors

The picture below shows both the pin function of the fieldbus connectors and the necessary resistors within the
fieldbus cable.

InterBus-S (S-Option)

This option will provide 32 inputs and 32 outputs of extended I/O as a node on an InterBus-S network. The
InterBus-S module resides inside the SMC-2000, and the network connection is made on the bottom panel of the
unit, labeled COM-S1 and COM-S2. The network card can be reset via an SMC command, and network status
can be monitored via an SMC command.

VCC 6

B-Line 3

A-Line 8

GND 5

Pin #

220 Ω

390 Ω

390 Ω

9-Pin Male
D-Sub

Master

To Slave

22 •••• Options SMC-2000 User's Guide

Location of Connectors
The connectors for the InterBus-S option are located on the bottom side of the SMC-2000. COM S1 is a 6-wire
Phoenix connector, and COM S2 is a 7-wire Phoenix connector, located as shown below.

Specifications and Technical Features
The media for the fieldbus is a shielded copper cable composed of three twisted pairs. Two of these pairs are
used for the Bus connection and in the last pair only one wire is used. This wire is for the ground connection of
the Bus. The only baud rate for the bus is 500 kbit/s. Total amount of data for InterBus-S is 4096 I/O points.

Configuration
1) Terminating the last module

If this is the last module on the network, your must connect RBST [pin 6] to GND [pin7] on the COM S2
connector.

2) Fieldbus connectors COM S1 and COM S2

COM-S1 Connector COM-S2 Connector
Phoenix Type Phoenix Type
1 DO1 1 DO2
2 /DO1 2 /DO2
3 DI1 3 DI2
4 /DI1 4 /DI2
5 GND 5 GND
6 PE 6 RBST
 7 PE

If you are connecting to an InterBus-S master that has a 9 pin female connector, note the pin connections below.

Master Cable Connection
9 Pin D-Sub Description

1 DO1
6 /DO1
2 DI1
7 /DI1
3 GND

3) LED Indicators

FRONT

BOTTOM

COM S1 COM S2

SMC-2000 User’s Guide Options •••• 23

Regarding the fieldbus dependent parts on the SMC / IBS module, the modules are fully compatible with the
InterBus-S specifications. They include the ID code 03 Hex (General I/O module). The table below shows the
function of the LED indicators.

LED Color Function SMC Input
RC Green LED Off = Incoming Remote Bus Not active 62 High

 LED On = Normal Operation 62 Low
BA Green LED Off = Bus not active 64 High

 LED On = Normal operation 64 Low
ERR Red LED Off = Normal operation 61 High

 LED On = Outgoing Remote Bus Not
enabled

61 Low

SMC-2000 User's Guide Appendices •••• 1

Appendices

Appendix A - Electrical Specifications

Servo Control
ACMD Amplifier Command: +/-10 Volts analog signal. Resolution 16-bit DAC or .0003

Volts. 3 mA maximum

A+, A-, B+, B-, C+, C- Encoder and Auxiliary

TTL compatible but can accept up to +/-12 Volts.
Quadrature phase on CHA, CHB. Can accept single-ended
(A+, B+ only) or differential (A+, A-, B+, B-). Maximum
A, B edge rate: 8 MHz. Minimum C pulse width: 120nsec.

Input/Output

Uncommitted Inputs, Limits, Home Abort Inputs:

2.2K ohm in series with optoisolator. Requires at least
1 mA for on. Can accept up to 28 Volts without additional
series resistor. Above 28 Volts requires additional resistor.

AN[1] through AN[7] Analog Inputs: Standard configuration is +/-10 Volt.
14-Bit Analog-to-Digital converter.

OUT[1] through OUT[8] Outputs: 24 Volts, 600mA max. per point,
not to exceed 800mA per group of 8

OUT[9] through OUT [16] Outputs 24 Volts 600mA max. per point, not to exceed 800mA
per group of 8 (available on SMC-2000-8 only)

IN[17] through IN[24] Inputs TTL (available on SMC-2000-8 only)

Power
+5V available power output 750 mA

+12V available power output 40 mA

-12V available power output 40 mA

AC input power requirement 15 W

DC input power requirement 100 mA per output point

2 •••• Appendices SMC-2000 User's Guide

Appendix B - Performance Specifications

Minimum Servo Loop Update Time: SMC-2000-1 -- 250 µsec

 SMC-2000-2 -- 375 µsec

 SMC-2000-4 -- 500 µsec

 SMC-2000-8 – 875 µsec

Position Accuracy: +/-1 quadrature count

Velocity Accuracy:

 Long Term Phase-locked, better than .003%

 Short Term System dependent

Position Range: +/-2147483647 counts per move

Velocity Range: Up to 8,000,000 counts/sec

Velocity Resolution: 2 counts/sec

Motor Command Resolution: 16 Bits or .0003V

Variable Range: +/-2 billion

Variable Resolution: 1 ⋅ 10-4

Array Size: 8000 elements - 30 arrays

Program Size: 1000 lines x 80 characters

SMC-2000 User's Guide Appendices •••• 3

Appendix C - Connectors

X (Y, Z, ... , G, H) - 20 pin
1 A (+) Encoder Pulse 11 Servo On (Amp Enable)

2 A (-) Encoder Pulse 12 STEP

3 B (+) Encoder Pulse 13 SEN/DIR

4 B (-) Encoder Pulse 14 5V Ground

5 C (+) Encoder Pulse 15 ALM

6 C (-) Encoder Pulse 16 +5V

7 Torque/Speed Reference Command 17 24V Ground

8 5V Ground 18 -BA

9 5V Ground 19 +24 Volts

10 5V Ground 20 +BA

D1 - 15 pin
 1 Positive Overtravel X 9 Home Z
 2 Negative Overtravel X 10 Positive Overtravel W

 3 Home X 11 Negative Overtravel W

 4 Positive Overtravel Y 12 Home W

 5 Negative Overtravel Y 13 Abort input

 6 Home Y 14 +12 Volts (for analog inputs)

 7 Positive Overtravel Z 15 -12 Volts (for analog inputs)

 8 Negative Overtravel Z

D2 - 15 pin
 1 Positive Overtravel E 9 Home G
 2 Negative Overtravel E 10 Positive Overtravel H

 3 Home E 11 Negative Overtravel H

 4 Positive Overtravel F 12 Home H

 5 Negative Overtravel F 13 Input 24 (TTL)

 6 Home F 14 +12 Volts (for analog inputs)

 7 Positive Overtravel G 15 -12 Volts (for analog inputs)

 8 Negative Overtravel G

4 •••• Appendices SMC-2000 User's Guide

I/O 1 - 25 pin
 1 Analog 1 14 Output 5

 2 Analog 2 15 Output 6

 3 Analog 3 16 Output 7

 4 Analog 4 17 Output 8

 5 Analog 5 18 Input 8

 6 Analog 6 19 Input 7

 7 Analog 7 20 Input 6

 8 24V Ground 21 Input 5

 9 5 Volts 22 Input 4 (Latch W)

10 Output 1 23 Input 3 (Latch Z)

11 Output 2 24 Input 2 (Latch Y)

12 Output 3 25 Input 1 (Latch X)

13 Output 4

I/O 2 - 25 pin
 1 Input 17 (TTL) 14 Output 13

 2 Input 18 (TTL) 15 Output 14

 3 Input 19 (TTL) 16 Output 15

 4 Input 20 (TTL) 17 Output 16

 5 Input 21 (TTL) 18 Input 16

 6 Input 22 (TTL) 19 Input 15

 7 Input 23 (TTL) 20 Input 14

 8 24V Ground 21 Input 13

 9 5 Volts 22 Input 12 (Latch H)

10 Output 9 23 Input 11 (Latch G)

11 Output 10 24 Input 10 (Latch F)

12 Output 11 25 Input 9 (Latch E)

13 Output 12

SMC-2000 User's Guide Appendices •••• 5

AE 1- 25 pin
 1 Sample clock 14 Synch

 2 W Aux. B- 15 W Aux. B+

 3 W Aux. A- 16 W Aux. A+

 4 Z Aux. B- 17 Z Aux. B+

 5 Z Aux. A- 18 Z Aux. A+

 6 Y Aux. B- 19 Y Aux. B+

 7 Y Aux. A- 20 Y Aux. A+

 8 X Aux. B- 21 X Aux. B+

 9 X Aux. A- 22 X Aux. A+

10 5 Volt 23 5V Ground

11 X-axis Stepper mode jumper 24 Y-axis Stepper mode jumper

12 Z-axis Stepper mode jumper 25 W-axis Stepper mode jumper

13 No Connection

AE 2- 25 pin
 1 N.C. 14 N.C.

 2 H Aux. B- 15 H Aux. B+

 3 H Aux. A- 16 H Aux. A+

 4 G Aux. B- 17 G Aux. B+

 5 G Aux. A- 18 G Aux. A+

 6 F Aux. B- 19 F Aux. B+

 7 F Aux. A- 20 F Aux. A+

 8 E Aux. B- 21 E Aux. B+

 9 E Aux. A- 22 E Aux. A+

10 5 Volt 23 5V Ground

11 E-axis Stepper mode jumper 24 F-axis Stepper mode jumper

12 G-axis Stepper mode jumper 25 H-axis Stepper mode jumper

13 No Connection

Note: The ABCD axes and other I/O are located on the main SMC-2000-4 card.

6 •••• Appendices SMC-2000 User's Guide

Appendix D - Pin-Out Description
Outputs

Analog Motor Command

+/- 10 Volt range signal for driving amplifier. In servo
mode, motor command output is updated at the controller
sample rate. In the motor off mode, this output is held at
the OF command level.

Servo On (Amp Enable) Signal to disable and enable an amplifier.
Amp Enable goes low on Abort and OE1.

Error
The signal goes low when the position error on any axis
exceeds the value specified by the error limit command,
ER.

Output 1-Output 8
Output 9-Output 16
(SMC-2000-8 only)

24 Volt open collector outputs (600mA max. per point; not
to exceed 800mA per group of 8) are uncommitted and may
be designated by the user to toggle relays and trigger
external events. The output lines are toggled by Set Bit,
SB, and Clear Bit, CB, instructions. The OP instruction is
used to define the state of all the bits of the Output port.

Inputs

Encoder, A+, B+

Position feedback from incremental encoder with two
channels in quadrature, CHA and CHB. The encoder may
be analog or TTL. Any resolution encoder may be used as
long as the maximum frequency does not exceed 8,000,000
quadrature states/sec. The controller performs quadrature
decoding of the encoder signals resulting in a resolution of
quadrature counts (4 x encoder cycles).
Note: Encoders that produce outputs in the format of
pulses and direction may also be used by inputting the
pulses into CHA and direction into Channel B and using
the CE command to configure this mode.

Encoder Index, I+
Once-Per-Revolution encoder pulse. Used in Homing
sequence or Find Index command to define home on an
encoder index.

Encoder, A-, B-, I-

Differential inputs from encoder. May be input along with
CHA, CHB for noise immunity of encoder signals.
The CHA- and CHB- inputs are optional.

Auxiliary Encoder, Aux A+, Aux B+,
Aux I+, Aux A-, Aux B-, Aux I-

Inputs for additional encoder. Used when an encoder on
both the motor and the load is required.

Abort A low input stops commanded motion instantly without a
controlled deceleration. Also aborts motion program.

Reset

A low input resets the state of the processor to its power-on
condition. The previously saved state of the controller,
along with parameter values, and saved sequences are
restored.

Positive Overtravel Limit Switch

When active, inhibits motion in forward direction. Also
causes execution of limit switch subroutine, #LIMSWI.
The polarity of the limit switch may be set with the CN
command.

SMC-2000 User's Guide Appendices •••• 7

Negative Overtravel Limit Switch

When active, inhibits motion in reverse direction. Also
causes execution of limit switch subroutine, #LIMSWI.
The polarity of the limit switch may be set with the CN
command.

Home (Zero Return) Switch

Input for Homing (HM) and Find Edge (FE) instructions.
Upon BG following HM or FE, the motor accelerates to
slew speed. A transition on this input will cause the motor
to decelerate to a stop. The polarity of the Home Switch
may be set with the CN command.

Input 1 - Input 8

Input 9 - Input 16 isolated
Input 17 - Input 23 - TTL

Uncommitted inputs. May be defined by the user to trigger
events. Inputs are checked with the Conditional Jump
instruction and After Input instruction or Input Interrupt.
Input 1 is latch X, Input 2 is latch F, Input 3 is latch Z and
Input 4 is latch W if the high speed position latch function
is enabled.

Latch

High speed position latch to capture axis position within 25
micro seconds on occurrence of latch signal. AL command
arms latch. Input 1 is latch X, Input 2 is latch Y, Input 3 is
latch Z and Input 4 is latch W. Input 9 is latch E, Input 10
is latch F, Input 11 is latch G, Input 12 is latch H.

8 •••• Appendices SMC-2000 User's Guide

Appendix E - SMC-2000 Dimensions

13.75"

8.75"

3.3"
(3.55” fo r CE model)

12.52"

N 24V 0L

I/O
1

AE
1

I/O
2

AE
2

D1 D2

X

Y

Z

W

E

F

H

G

C
O
M
1

C
O
M
2

POWER

ALARM

RESET

SMC-2000 User's Guide Appendices •••• 9

Appendix F - SMC-2000 Cable Layouts

ΣΣΣΣ SGD/SGDA (Cable # SMCCBL1XX)

SMC2000 Side Drive Side

PA [1] [20]
*PA [2] [21]
PB [3] [22]
*PB [4] [23]
PC [5] [24]
*PC [6] [25]
D/A [7] [01]
5V GND
GNDDD

[8] [02]
5V GND [9]
5V GND [10] [04]
SVON [11] [14]
+24IN [19] [13]
SEN/DIR [13] [05]
5V GND [14] [06]
ALM [15] [34]
24V GND [17] [35]
-BA [18] [29]
+BA [20] [28]
FG

3M Connector
Connector: 10136-3000VE
Cover: 10320-52A0-008

Cable: #28 AWG-10 Pair
(YASKAWA Part Number: SSRFPVV-SB)

3M Connector
Connector: 10120-3000VE (Solder Type)
Cover: 10320-52A0-008

Signal Name Pin # Pin #

Dashed Indicates:
Required for Absolute
Encoder ONLY

�

�

�

�

�

�

�

�

�
White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet

Blue
Brown
White/Brown
White/Orange
Orange
Gray
White/Gray
Yellow
White/Yellow

 PIN NUMBER LAYOUT
Solder Side View

 3M Connector 10120-3000VE
 (Solder Type)

Cover: 10320-52A0-008

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10136-3000VE

Cover: 10336-52A0-008

1
2

9
10

11
12

19
20

1
2

17
18

19
20

35
36

10 •••• Appendices SMC-2000 User's Guide

ΣΣΣΣ SGD/SGDA w/ Breakout (Cable # SMCCBLAXX)

SMC2000 Side Drive Side

PA [1] [20]
*PA [2] [21]
PB [3] [22]
*PB [4] [23]
PC [5] [24]
*PC [6] [25]
D/A [7] [01]
5V GND [8] [02]
5V GND [9]
5V GND [10] [04]
SVON [11] [14]
+24IN [19] [13]
SEN/DIR [13] [05]
5V GND [14] [06]
ALM [15] [34]
24V GND [17] [35]
-BA [18] [29]
+BA [20] [28]
FG

ALM [34]
ALM-SG [35]
ALO1 [30]
ALO2 [31]
ALO3 [32]
SG-AL [33]
*ALMRST [18]
*BK [07]
*V-CMP [08]
SG-COM [10]

3M Connector
Connector: 10136-3000VE
Cover: 10320-52A0-008

Cable: #28 AWG-10 Pair
(YASKAWA Part Number: SSRFPVV-SB)

3M Connector
Connector: 10120-3000VE (Solder Type)
Cover: 10320-52A0-008

 Signal Name Pin # Pin #

Dashed Indicates:
Required for Absolute
Encoder ONLY

�

�

�

�

�

�

�

�

�

Pigtail Connections for external wiring

White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet

Blue
Brown
White/Brown
White/Orange
Orange
Gray
White/Gray
Yellow
White/Yellow

White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet
Brown
White/Brown
Orange

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10120-3000VE
 (Solder Type)

Cover: 10320-52A0-008

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10136-3000VE

Cover: 10336-52A0-008

1
2

9
10

11
12

19
20

1
2

17
18

19
20

35
36

SMC-2000 User's Guide Appendices •••• 11

ΣΣΣΣ SGDB (Cable # SMCCBL2XX)

SMC2000 Side Drive Side

PA [1] [33]
*PA [2] [34]
PB [3] [35]
*PB [4] [36]
PC [5] [19]
*PC [6] [20]
D/A [7] [09]
5V GND [8] [10]
5V GND [9] [02]
5V GND [10] [06]
SVON [11] [40]
+24IN [19] [47]
SEN/DIR [13] [04]
5V GND [14] [02]
ALM+ [15] [31]
24V GND [17] [32]
-BA [18] [22]
+BA [20] [21]
FG

3M Connector
Connector: 10150-3000VE
Cover: 10350-52A0-008

Cable: #28 AWG-10 Pair
(YASKAWA Part Number: SSRFPVV-SB)

3M Connector
Connector: 10120-3000VE (Solder Type)
Cover: 10320-52A0-008

Signal Name Pin # Pin #

Dashed Indicates:
Required for Absolute
Encoder ONLY

�

�

�

�

�

�

�

�

�
White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet

Blue
Brown
White/Brown
White/Orange
Orange
Gray
White/Gray
Yellow
White/Yellow

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10120-3000VE
 (Solder Type)

Cover: 10320-52A0-008

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10150-3000VE

Cover: 10350-52A0-008

1
2

9
10

11
12

19
20

1
2

25
24

26
27 49

50

12 •••• Appendices SMC-2000 User's Guide

ΣΣΣΣ SGD/SGDB w/ Breakout (Cable # SMCCBLBXX)

PA [1] [33]
*PA [2] [34]
PB [3] [35]
*PB [4] [36]
PC [5] [19]
*PC [6] [20]
D/A [7] [09]
5V GND [8] [10]
5V GND [9]
GND [10] [06]
SVON [11] [40]
+24IN [19] [47]
SEN/DIR [13] [04]
5V GND [14] [02]
ALM [15] [31]
24V GND [17] [32]
-BA [18] [22]
+BA [20] [21]
FG

ALM [31]
ALM-SG [32]
ALO1 [37]
ALO2 [38]
ALO3 [39]
SG-AL [01]
*ALMRST [44]
*TGON+ [27]
*TGON-SG [28]
*S-RDY+ [29]
*S-RDY-SG [30]

3M Connector
Connector: 10150-3000VE
Cover: 10350-52A0-008

Cable: #28 AWG-10 Pair
(YASKAWA Part Number: SSRFPVV-SB)

3M Connector
Connector: 10120-3000VE (Solder Type)
Cover: 10320-52A0-008

 Signal Name Pin # Pin #

Dashed Indicates:
Required for Absolute
Encoder ONLY

�

�

�

�

�

�

�

�

�

Pigtail Connections for external wiring

White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet

Blue
Brown
White/Brown
White/Orange
Orange
Gray
White/Gray
Yellow
White/Yellow

White/Black
Black
Green
White/Green
White/Red
Red
Violet
White/Violet
Brown
White/Brown
Orange

SMC-2000 User's Guide Appendices •••• 13

ΣΣΣΣ SGDC (Cable # SMCCBL)

SMC2000 Side Drive Side

PA [1] [17]
*PA [2] [18]
PB [3] [19]
*PB [4] [20]
PC [5] [21]
*PC [6] [22]
D/A [7] [10]
GND [8] [11]
NOT USED [9]
GND [10] [13]
SVON [11] [07]
+24IN [19] [06]
SEN [13] [14]
0V [14] [15]
ALM [15] [03]
ALM-SG [17] [04]
FG

3M Connector
Connector: 10126-3000VE
Cover: 10326-52A0-008

Cable: #28 AWG-10 Pair
(YASKAWA Part Number: SSRFPVV-SB)

3M Connector
Connector: 10120-3000VE (Solder Type)
Cover: 10320-52A0-008

Signal Name Pin # Pin #

Dashed Indicates:
Required for Absolute
Encoder ONLY

�

�

�

�

�

�

�

�

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10120-3000VE
 (Solder Type)

Cover: 10320-52A0-008

 PIN NUMBER LAYOUT
Solder Side View

3M Connector 10126-3000VE

Cover: 10326-52A0-008

1
2

9
10

11
12

19
20

1
2

13
12

14
15 25 26

14 •••• Appendices SMC-2000 User's Guide

ΣΣΣΣ MINI (Cable # SMCCBLMXX)

SMC-2000 User's Guide Appendices •••• 15

I/O (Cable # SMCCBL5XX)

SMC2000 I/O Connector Pigtail

Analog 1 Input 17 (TTL) [1]
Analog 2 Input 18 (TTL) [2]
Analog 3 Input 19 (TTL) [3]
Analog 4 Input 20 (TTL) [4]
Analog 5 Input 21 (TTL) [5]
Analog 6 Input 22 (TTL) [6]
Analog 7 Input 23 (TTL) [7]
Ground Ground [8]
+5 Volts +5 Volts [9]
Output 1 Output 9 [10]
Output 2 Output 10 [11]
Output 3 Output 11 [12]
Output 4 Output 12 [13]
Output 5 Output 13 [14]
Output 6 Output 14 [15]
Output 7 Output 15 [16]
Output 8 Output 16 [17]
Input 8 Input 16 [18]
Input 7 Input 15 [19]
Input 6 Input 14 [20]
Input 5 Input 13 [21]
Input 4 (Latch W) Input 12 (Latch H) [22]
Input 3 (Latch Z) Input 11 (Latch G) [23]
Input 2 (Latch Y) Input 10 (Latch F) [24]
Input 1 (Latch X) Input 9 (Latch E) [25]

Signal Name I/O 1 Signal Name I/O 2 Pin #

Black
White
Red
Green
Orange
Blue
White w/ Black
Red w/ Black
Green w/ Black
Orange w/ Black
Blue w/ Black
Black w/ White
Red w/ White
Green w/ White
Blue w/ White
Black w/ Red
White w/ Red
Orange w/ Red
Blue w/ Red
Red w/ Green
Orange w/ Green
Black w/ White & Red
White w/ Black & Red
Red w/ Black & White
Green w/ Black & White

 Belden 9543
25D Male Pigtail
Connector

1 13

14 25

 PIN NUMBER LAYOUT
Solder Side View

25D Male Connector

16 •••• Appendices SMC-2000 User's Guide

D (Cable # SMCCBL6XX)

SMC2000 D Connector Pigtail

X + Limit E + Limit [1]
X - Limit E - Limit [2]
X Home E Home [3]
Y + Limit F + Limit [4]
Y - Limit F - Limit [5]
Y Home F Home [6]
Z + Limit G + Limit [7]
Z - Limit G - Limit [8]
Z Home G Home [9]
W + Limit H + Limit [10]
W - Limit H - Limit [11]
W Home H Home [12]
Abort Input 24 TTL [13]
+ 12 Volt + 12 Volt [14]
- 12 Volt - 12 Volt [15]

Signal Name D1 Signal Name D2 Pin #

Black
White
Red
Green
Orange
Blue
White w/ Black
Red w/ Black
Green w/ Black
Orange w/ Black
Blue w/ Black
Black w/ White
Red w/ White
Green w/ White
Blue w/ White

Belden 9541
 15D Male Pigtail
 Connector

1 8

9 15

 PIN NUMBER LAYOUT
Solder Side View

15D Male Connector

SMC-2000 User's Guide Appendices •••• 17

Appendix G - Connection Diagram

Yaskawa

POWER
ALARM

RESET

D1 I/O
1

X

AE
1

Y

C C
O O
M M
1 2

Dedicated I/O Cable
Part#: SMCCBL620

SMC to Servopack Cable
Part#: SMCCBL0** => Pigtail End
 SMCCBL1** => SGD/SGDA
 SMCCBL2** => SGDB
 SMCCBL?** => SGDC
 SMCCBLM** => Sigma Mini

Communication Port 1 Cable
Part#: SMCCBL7**

I/O Cable
Part#: SMCCBL520

Auxiliary Encoder Cable
(Supplied by user)

Operator Interface Cable
(Part of Operator Interface)

90 to 260V AC Single Phase Input

24VDC Power Input

 **Length of the cable 05: 5 feet
10: 10 feet
15: 15 feet

SMC-2000 User's Guide Appendices •••• 269

Glossary of Terms Glossary of Terms •••• 1

Glossary of Terms

Absolute Position
Position referenced to a fixed zero position.

Amplifier
Electronics that convert low level command signals to high power voltages and currents in order to
operate a servomotor.

ASCII
Abbreviation for American Standard Code for Information Interchange. This code assigns a seven (7)
bit number to each numeral and letter of the alphabet. In this manner, information can be transmitted
between machines as a series of binary numbers.

Axis
This is the principal direction along which movements of the tool or work piece occurs. The term also
refers to one of the reference lines of a coordinate system.

Bandwidth
Term used for measurement of system response. Bandwidth is the frequency range that a control system
can follow.

Baud Rate
The number of binary bits transmitted per second on a serial communications link, i.e. RS232.

Example: 19200 baud is approximately one (1) character every 520 µs (in 8+2 bit communication).

Bode Plot
A graphic recording of the magnitude of system gain in dB, and the phase of system gain in degrees
versus the sinusoidal input signal frequency in logarithmic scale.

Closed-Loop
A system that has a velocity and/or position transducer to generate correction signals resulting from
actual data compared to desired parameters.

Compensation
Corrective or control action in a feedback system, used to improve system performance characteristics,
i.e. accuracy and response time.

Glossary of Terms Glossary of Terms •••• 2

Crossover Frequency
Frequency at which the gain intercepts the 0 dB point on a Bode. Used in reference to the open-loop
gain plot.

Damping
An indication of the signal’s rate of change compared to its steady state value. Related to settling time.

Damping Ratio
Comparison of actual damping to critical damping. A damping ratio of less then 1 is an underdamped
system, and a value of over 1 is an overdamped system.

Duty Cycle
The ratio of on-time to total cycle time for a repeating cycle.

Efficiency
The ratio of power output to power input.

Encoder
A type of feedback device which converts mechanical motion into electrical signals to indicate actuator
position. Typical encoders are designed using a printed disc and a light source. As the disc turns with
the actuator shaft, the light source shines through the disc’s printed pattern onto an optical sensor. The
transmitted light is interrupted by the patterns on the disc. These interruptions are sensed and converted
to electrical pulses. By counting these pulses, the position of the actuator shaft is calculated.

Filter
A transfer function used to modify the frequency or time response of a control system.

Gains
The ratio of a system’s output signal to input signal. The control loop parameter that determines system
performance characteristics.

Holding Torque
The maximum external force applied to a stopped, energized motor without causing the motor to
continuously rotate. Also called static torque.

Home
A reference position in a motion control system derived from mechanical specification or external
switch. Often used as the Zero position.

Glossary of Terms Glossary of Terms •••• 3

I/O
Abbreviation of Input/Output term. Input(s) refers to input signal(s) from switches or sensors. Output(s)
refers to output signal(s) to relays, solenoids, etc.

Inertia
The unit measure of an object's resistance to change in speed. As an object's inertia increases, larger
torque is needed to accelerate (increase) or decelerate (decrease) it’s speed.

Jogging
A means of accomplishing incremental motor movement by repeated closing and opening of a circuit.

Optoisolated
A method of sending a signal from one piece of equipment to another without the usual requirements of
common ground potentials. The signal is transmitted optically with a light source (i.e. light emitting
diode) and a light sensor (i.e. photosensitive transistor) These optical components provide electrical
isolation.

Position Error
The positional error sensed during motion determined by position control loops. It is the difference
between the actual motor position and where it should be.

Ramping
Term to define the acceleration and deceleration of a motor.

Rated Torque
The torque producing capacity of a motor at a given speed. This is also the maximum torque that the
motor can deliver to a load, and is usually specified with a torque/speed curve.

Regeneration
Usually refers to a circuit in a drive amplifier that accepts and drains energy produced by a rotating
motor either during deceleration or free-wheel shutdown.

RS232
An EIA standard that specifies characteristics for serial binary communication circuits in a point-to-
point link. This single ended hardware configuration is used extensively in office computer equipment.

RS422
Serial data communications hardware standard similar to RS232. The major difference is that RS422 is
a differential hardware configuration providing improved noise immunity for use in more hostile
environments like industrial conditions. RS422 provides longer communication distances and several
devices can be placed on one link in a multidrop configuration. A simple converter is available to
connect RS232 devices to RS422 devices.

Glossary of Terms Glossary of Terms •••• 4

Serial port
A digital data communications port configured with a minimum number of signal lines. This is
achieved by passing binary information signals as a timed series of "1"s and "0"s on a single line.

Servo amplifier
An electronic device that produces the winding currents for a servo motor.

Servo System
Automatic feedback control system for mechanical motion in which the controlled or output quantity is
position, velocity or acceleration. Servo systems are closed-loop systems.

Sigma
Sigma Servo System is a compact, high performance combination of brushless servomotors that match
with flexible (all digital) amplifiers manufactured by Yaskawa. The Sigma series of motors provide
high torque to inertia, higher torque per overall physical length and higher torque per dollar ratios then
previous generations of brushless servomotors.

Slew speed
The maximum velocity at which an encoder will be required to perform consistently.

Speed
The linear or rotational velocity of a motor (or any other object in motion).

Torque
A measure of angular force which produces motion. This force is defined by a linear force applied at a
distance e.g. lb./inch or oz/inch. Torque is one of the most important performance parameters for any
motion control system.

Transfer Function
A mathematical means of expressing the output to input relationship of a system. Expressed as a
function of frequency.

Yaskawa
Yaskawa, founded in 1905, is a global leader in the research, design, development and manufacturing of
industrial and commercial electrical products. Yaskawa is the first manufacturer specializing in
industrial electronic equipment to win the prestigious Deming Application Award.

YTerm-2000
YTerm-2000 is a front end to the SMC-2000 Multi-Axis Motion Controller. YTerm offers the user a
Windows interface for design, development, and control of motion control applications

Glossary of Terms Glossary of Terms •••• 5

A
Abort, 1, 19, 31, 49, 53, 121, 139, 261, 266, 326,

328, 331
Absolute Encoder, 144
Absolute value, 35, 73, 92, 97, 122
Absolute value function, 140
Acceleration, 1, 3, 8–9, 14, 8–9, 34, 44–51, 54,

56, 60, 63, 67, 70, 89–90, 105, 109, 113,
115–16, 141

After Absolute Position, 32, 86–87, 150–52, 233
After Distance, 32, 86, 88, 143, 151, 233, 236
After Input, 32, 86, 111, 146
After Move, 53, 100, 111, 148
After Relative Distance, 32, 152
After Vector Distance, 32, 49, 86, 90, 156
Amplifiers, 3, 5–6, 21

Connections, 6, 19
Analog feedback, 33, 145
Analog inputs, 1–2, 20, 112
Arc Cosine Function, 142
Arc Sine Function, 154
Arm Latch, 33, 72, 147, 255, 257
Arrays, 33, 52, 65, 81, 85, 100–103, 160–62,

160–62, 175, 179, 234, 250, 269, 289, 327
Dimension, 33, 64, 101, 175, 179, 250–52,

250–52, 251, 252
Download, 33, 247
Record, 33, 44, 61–62, 64, 84, 101–3, 249–52,

249–52, 249–52, 250–52, 268
Teach, 64, 250

At Speed, 32, 48, 89, 153
At Time, 155
Automatic record, 64, 251
Auxiliary encoder, 1, 6, 57, 65–67, 166, 177, 200
Auxiliary Encoder, 22

B
Backlash compensation, 66, 119
Baud rate, 6, 24, 49, 54, 164
Begin Motion, 25, 31, 36, 45, 48, 53, 57, 58, 70,

82–83, 88–89, 94–95, 99, 103, 106, 110,
112, 143, 146, 152, 157, 158, 160, 176,
196, 200, 205–6, 208, 213, 221, 225, 251–
52, 264–66, 288, 292

Burn, 159
EEPROM, 174
Program, 1, 6, 11–14, 26, 30, 32, 33, 47, 49–

52, 56, 62–64, 67, 72, 76–79, 81–97, 100–
107, 110–12, 114, 118, 119, 121–24, 125–
26, 161, 260–68, 260–68, 270–90, 270–90,
292, 294–301, 294–301, 313, 327, 331

Variables, 33, 162

C
Cam Cycles, 31, 76, 183–84, 186, 189, 193
Cam table, 189
Choose ECAM master, 183
Circle, 31, 115–16, 172, 286–88, 286–88, 290,

292, 295
Circular Interpolation, 1, 14, 53, 116
Clear Bit, 33, 110, 163, 239, 260
Clear Sequence, 49–50, 53, 57, 173, 174, 223,

288, 290
Clock, 23, 100, 276, 330
Communication, 1–2, 1–2, 1–2, 82, 93, 107, 167,

174
Baud rate, 6, 24, 49, 54, 164
Configure Communications Port 2, 164
Handshake, 24–25, 164
Interrupt, 167
Serial Ports, 2

Complement Function, 170
Configuration

Jumper, 21
Configure, 19, 24–25, 27, 30, 33, 65–67, 69,

104, 145, 164, 166, 169, 195, 203, 237,
260, 331

Configure Encoder, 33, 67, 166
Configuring, 3, 26
Connecting

Servo motors, 5–6, 180, 237
Contour Data, 31–32, 65, 84, 86, 165, 168, 181,

269, 297
Contour mode, 31, 43–44, 60–64, 165, 168, 173,

181, 297
Coordinated motion, 1, 28, 32, 43–44, 53–56,

200, 277, 286–87, 290, 293, 295
Cosine, 35, 44, 97, 101
Cosine Function, 171

D
Damping, 7, 34, 128, 182
Data capture, 102, 250

Arrays, 33, 52, 65, 81, 85, 100–103, 160–62,
160–62, 175, 179, 234, 250, 269, 289, 327

Automatic record, 64, 251
Debugging, 83, 279
Deceleration, 1, 8–9, 14, 8–9, 44–51, 53, 57, 60,

68–70, 105, 121, 176
Define Position, 33, 36, 49, 70, 108, 122, 180
Delta Time, 181
Derivative Constant, 7, 34, 216
DeviceNet, 319

Glossary of Terms Glossary of Terms •••• 6

Digital filter, 27, 130–34, 135
Damping, 7, 34, 128, 182
Feedforward, 34, 141, 182, 194, 199
Gain, 3, 5, 7–8, 11, 21, 34, 99, 104, 128–31,

134, 201, 217–18, 217–18, 300
Integrator, 7–8, 34, 128, 131–32, 201, 207, 217
PID, 128, 131, 136
Stability, 66–67, 119, 128, 133, 182
Tuning, 5, 6–8, 66, 313
Velocity feedforward, 34, 182, 194, 199

Digital inputs, 19, 111
Digital outputs, 110
Dimension, 33, 64, 101, 175, 179, 250–52, 250–

52, 251, 252
Download, 33, 85, 178, 247, 269, 285

Array, 33, 247
Dual encoder, 33, 34, 66, 102, 182, 271
Dual loop, 34, 44, 65–66, 182, 252

E
ECAM, 193

Choose, 183
Enable, 78, 184

ECAM disengage, 190
ECAM Engage, 185
Echo, 24–26, 33, 164, 188, 267
EEPROM, 174
Electric cam table, 193
Electronic cam, 72–73, 159
Electronic gearing, 1, 43–44, 57–58, 72, 200,

202
Ellipse Scale, 57, 192
Enable ECAM, 78, 184
Encoder, 1, 3, 6–7, 19, 30, 33, 34, 56–58, 65–66,

69, 82, 87, 102, 105, 114–15, 117–19, 122,
127–28, 130, 132, 134, 145, 147, 166, 177,
182, 191, 195–96, 195–96, 200, 203, 208,
231, 233, 236, 252, 271, 313, 325, 328, 331

Auxiliary Encoder, 22
Dual loop, 34, 44, 65–66, 182, 252
Index, 3, 19, 31, 63–65, 69, 76, 85, 195–96,

195–96, 203, 269, 331
Encoder input, 19
End, 187
Error

Automatic error routine, 123
Codes, 84, 268
Handling, 1, 82, 121, 253

Error Limit, 21, 35, 93, 121–22, 123, 191, 240,
272, 280

Excessive error, 1, 240
Execute program, 12–13, 32, 204, 299
Extended I/O, 315

F
Feedforward, 34, 141, 182, 194, 199
Find Edge, 31, 69–70, 195–96
Find Index, 31, 195–96, 203
Formatting, 30, 104, 107

Hexadecimal, 105, 107–8, 242, 245, 289
Forward Limit, 222
Forward Motion, 86, 114, 197, 233, 236
Forward Software Limit, 35, 197
Fraction function, 198

G
Gain, 3, 5, 7–8, 11, 21, 34, 99, 104, 128–31, 134,

201, 217–18, 217–18, 300
Gear Ratio, 31, 57–60, 74, 200, 202
Gearing, 1, 31, 43–44, 57–58, 72, 200, 202
Getting Started, 5

H
Halt, 32, 83, 87–89, 91, 111, 146, 149, 204, 266,

299
Helical, 200
Home, 203

I
Increment Position, 31, 52, 211, 213, 246
Independent Time Constant, 67, 212, 296
Index, 3, 19, 31, 63–65, 69, 76, 85, 195–96, 195–

96, 203, 269, 331
Industrial I/O, 318
Inputs, 1–2, 1–2, 23, 71, 83, 102, 111–12, 205,

252, 273, 315–16, 315–16, 326, 331–32,
331–32

Digital inputs, 19, 111
Encoder input, 19
Index, 3, 19, 31, 63–65, 69, 76, 85, 195–96,

195–96, 203, 269, 331
Input variable, 26, 32, 208
Interrupt, 32, 82, 89, 94–95, 112, 146, 160,

187, 205, 254, 267, 301
Limit switch, 7, 57, 82, 93–94, 100, 121, 123,

202, 208, 253, 267–68
Optoisolated inputs, 1–2, 19
Tell Inputs, 273

Installation, 6
Installing the SMC-2000, 5
Integer function, 210
Integrator, 7–8, 34, 128, 131–32, 201, 207, 217
Integrator Limit, 207, 217
InterBus-S, 324

Glossary of Terms Glossary of Terms •••• 7

Interrupt, 32–33, 82, 89, 93–95, 107, 112, 146,
160, 167, 187, 205–6, 205–6, 250, 253–54,
253–54, 267, 301, 332

Return from Interrupt Routine, 254

J
Jog, 10, 30–31, 30–31, 72, 78, 84, 89, 94–95, 99,

104, 118, 122, 139, 140, 147, 150, 151,
157–58, 157–58, 176, 197–200, 197–200,
205, 211, 213, 233, 236, 255, 264, 268

Joystick, 48, 99, 117–18
Jump to Program Location, 32, 214
Jump to Subroutine, 32, 86, 91, 215, 301
Jumper, 21

K
Keywords, 91, 98–101, 106

L
Latch Target, 228
Leading Zero, 230
Limit switch, 7, 57, 82, 93–94, 100, 121, 123,

202, 208, 253, 267–68
Linear Interpolation, 14, 30–31, 43, 49–53, 57,

60, 221–25, 292, 295
Linear Interpolation Distance, 31, 223
Linear Interpolation End, 31, 221
Linear Interpolation Mode, 31, 49, 53, 221–25
List, 33
List Arrays, 220
List Labels, 224
List Program, 227
List Variables, 229
Logical operators, 91, 107, 214–15

M
Master Axis for Gearing, 31, 57, 200
Master reset, 138, 259
Math functions

Absolute value, 35, 73, 92, 97, 122
Cosine, 35, 44, 97, 101
Logical operators, 91, 107, 214–15
Sine, 35, 62–63, 76, 97

Memory, 1–2, 12, 27, 63, 81, 94, 159, 161–62,
161–62, 175, 193, 227

Message, 234
Motion Complete, 1, 32, 81–82, 86–88, 92, 148–

49, 157, 160, 208, 231–32, 266, 283, 284
Motion Smoothing

S-Curve, 22
Motor command, 1, 11, 131, 139, 275

Motor Off, 33, 64, 84, 121–22, 159, 180, 235,
268, 280

Motor Type, 33, 145, 169, 237
Moving

Acceleration, 1, 3, 8–9, 14, 8–9, 34, 44–51, 54,
56, 60, 63, 67, 70, 89–90, 105, 109, 113,
115–16

Begin motion, 25, 31, 36, 45, 48, 53, 57, 58,
70, 82–83, 88–89, 94–95, 99, 103, 106,
110, 112, 143, 146, 152, 158, 160, 176,
196, 200, 205–6, 208, 213, 221, 225, 251–
52, 264–66, 288, 292

Circular Interpolation, 1, 14, 53, 116
Contour mode, 31, 43–44, 60–64, 165, 168,

173, 181, 297
Deceleration, 1, 8–9, 14, 8–9, 44–51, 53, 57,

60, 68–70, 105, 121
Jog, 10, 30–31, 30–31, 72, 78, 84, 89, 94–95,

99, 104, 118, 122, 139, 140, 147, 150, 151,
157–58, 157–58, 176, 197–200, 197–200,
205, 211, 213, 233, 236, 255, 264, 268

Linear Interpolation, 14, 30–31, 43, 49–53, 57,
60, 221–25, 292, 295

S curve, 67, 296
Slew speed, 1, 8–9, 44–45, 58, 69, 87, 89, 114,

176, 211, 213, 264
Tangent, 31, 44, 53, 55–57, 277, 290
Vector mode, 36, 156–57, 172–73, 192, 277,

286–88, 292, 294–95
Multitasking, 1, 82–83, 204, 299

N
No Operation, 32, 238
Non-volatile memory, 1–2, 193

O
Off on error, 191, 240, 272
Off on Error, 35
Offset, 14, 34, 55–57, 189, 193, 241
Optoisolated inputs, 1–2, 19
Outputs, 1–2, 20, 23, 30, 110, 114, 127, 130,

134, 163, 242, 252, 315–16, 315–16, 326,
331

Digital outputs, 110
Motor command, 1, 11, 131, 139, 275
Output Bit, 33, 56, 88, 93, 110, 114, 163, 239,

242, 253
Output Port, 33, 110, 163, 242, 260

P
PID, 128, 131, 136
Play back, 44, 103

Glossary of Terms Glossary of Terms •••• 8

Position Absolute, 31, 92, 149, 176, 244, 246,
264

Position capture, 71, 147
Position Format, 29, 33, 107, 158, 177, 180, 191,

197, 208, 213, 244–46, 245, 255–57, 264,
271–72, 278, 286–87, 295

Position latch, 71
Position Relative, 27, 31, 86, 148–49, 176, 187,

231, 244, 246, 298
Power supply, 5, 21
ProfiBus, 321
Programmable

EEPROM, 174
Programming, 27, 30, 43, 81, 125, 315
Proportional Constant, 7, 34, 216, 218

R
Read Analog Input, 150
Record, 251
Record Array, 249–52
Record Data, 252
Reference Position, 257
Report Latched Position, 255
Reset, 33, 90, 100, 121, 138, 258–59, 258–59,

331
Return from Error Routine, 253
Return from Interrupt Routine, 254
Reverse Limit, 226
Reverse Motion, 86, 158, 236
Reverse Software Limit, 35, 158
Round Function, 256
RS232, 1–2, 1–2, 1–2, 164

S
S curve, 67, 296
Sample time, 30, 34, 276
S-Curve, 22
Serial Port, 6
Servo Here, 262
Servo Motor, 3, 5, 123, 237
Set Bit, 33, 110, 163, 239, 260
Setup, 6, 76
Sin Function, 263
Slew, 9, 22
Slew speed, 1, 8–9, 44–45, 58, 69, 87, 89, 114,

176, 211, 213, 264
Smoothing, 22
Speed, 264
Square Root Function, 265
Stability, 66–67, 119, 128, 133, 182
Status, 174
Status of Digital Input Function, 209
Status of Digital Output Function, 243
Step Motor

KS, Smoothing, 22
Step Motors, 21
Stepper Motor Smoothing, 219
Stop, 266
Stop Code, 34, 103, 252, 261
Subroutine, 32, 53, 82, 84, 91–95, 112, 121, 123,

187, 191, 205, 215, 240, 253–54, 253–54,
268, 272, 283, 301, 332

Subroutine stack, 32, 92–93, 205, 253–54, 301
Synchronization, 3, 19, 23, 72

T
Tangent, 31, 44, 53, 55–57, 277, 290
Teach, 64, 250
Tell Error, 8, 10, 34, 86, 107, 268, 270, 272
Tell Error Code, 268
Tell Inputs, 273
Tell Position, 9, 12, 26, 29, 34–36, 89, 99, 101,

107–8, 158, 197, 245, 278
Tell Status, 29, 34, 267
Tell Status Byte, 267
Tell Switches, 34, 280
Tell Torque, 34, 252, 281
Tell Velocity, 34, 213, 282
Tell Yaskawa Absolute Encoder, 284
Terminal, 174
Time, 1, 5, 7, 12, 25–26, 27, 25–26, 43–45, 47,

53, 60–64, 67, 43–45, 86–88, 90, 92–93,
100–102, 126, 129–30

Sample time, 30, 34, 276
TIME, 274
Time Command, 276
Timeout for In Position, 283
Torque limit, 11, 34, 275, 281
Trace, 34, 83, 279
Trippoint

Motion Complete, 86, 158, 236
Trippoints, 13, 87, 152

After Absolute Position, 32, 86–87, 150–52,
233

After Distance, 32, 86, 88, 143, 151, 233, 236
After Input, 32, 86, 111, 146
After Move, 53, 100, 111, 148
After Relative Distance, 32, 152
After Vector Distance, 32, 49, 86, 90, 156
At Speed, 32, 48, 89, 153
At Time, 155
Forward Motion, 86, 114, 197, 233, 236
Motion Complete, 1, 32, 81–82, 86–88, 92,

148–49, 157, 160, 208, 231–32, 266, 283,
284

Tuning, 5, 6–8, 66, 313
Tuning Servo System, 7

Glossary of Terms Glossary of Terms •••• 9

U
Upload, 33, 178, 248, 285

V
Variable, 14, 26, 29, 32–33, 78, 81, 84, 91–92,

97–101, 104–5, 108, 110, 118–19, 138,
141, 145, 149, 166, 175, 177, 208–11, 208–
11, 214, 234, 237, 239, 257, 261, 268, 271–
73, 271–73, 278, 280–82, 280–82, 286,
289, 327

Format, 33, 109, 234, 289
Vector

Acceleration, 14, 31, 50–51, 54, 56, 116, 172,
221–25, 286–88, 290, 292, 295

Deceleration, 14, 31, 50–51, 54, 57, 172, 221–
25, 286–88, 290, 292

Position, 32, 90, 92, 152, 157, 172–73, 192,
277, 286–88, 290, 292, 294–95

Sequence end, 32, 288
Speed, 14, 32, 36, 49–54, 56, 89, 116, 172,

221–25, 264, 286–88, 290, 292, 294–95
Speed ratio, 294–95
Time constant, 68, 212, 296
Vector mode, 36, 156–57, 172–73, 192, 277,

286–88, 292, 294–95
Vector Deceleration, 287
Vector Speed, 295
Velocity feedforward, 34, 182, 194, 199

W
Wait, 298
Wait for Contour Data, 32, 86, 297

Y
YTerm-2000, 5–6, 12

Z
Zero, 300

Glossary of Terms Glossary of Terms •••• 11

YASKAWA ELECTRIC AMERICA, INC.
Chicago-Corporate Headquarters 2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: (847) 887-7000 Fax: (847) 887-7310 Internet: http://www.yaskawa.com
MOTOMAN INC.
805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone: (937) 847-6200 Fax: (937) 847-6277 Internet: http://www.motoman.com
YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-0022, Japan
Phone: 81-3-5402-4511 Fax: 81-3-5402-4580 Internet: http://www.yaskawa.co.jp
YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.
Avenida Fagundes Filho, 620 Bairro Saude Sao Paolo-SP, Brasil CEP: 04304-000
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795 Internet: http://www.yaskawa.com.br
YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone: 49-6196-569-300 Fax: 49-6196-888-301 Internet: http://www.yaskawa.de
MOTOMAN ROBOTICS AB
Box 504 S38525, Torsas, Sweden
Phone: 46-486-48800 Fax: 46-486-41410
MOTOMAN ROBOTEC GmbH
Kammerfeldstrabe 1, 85391 Allershausen, Germany
Phone: 49-8166-900 Fax: 49-8166-9039
YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, Scotland, United Kingdom
Phone: 44-12-3673-5000 Fax: 44-12-3645-8182
YASKAWA ELECTRIC KOREA CORPORATION
Paik Nam Bldg. 901 188-3, 1-Ga Euljiro, Joong-Gu, Seoul, Korea
Phone: 82-2-776-7844 Fax: 82-2-753-2639
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
Head Office: 151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, SINGAPORE
Phone: 65-282-3003 Fax: 65-289-3003
TAIPEI OFFICE (AND YATEC ENGINEERING CORPORATION)
10F 146 Sung Chiang Road, Taipei, Taiwan
Phone: 886-2-2563-0010 Fax: 886-2-2567-4677
YASKAWA JASON (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone: 852-2803-2385 Fax: 852-2547-5773
BEIJING OFFICE
Room No. 301 Office Building of Beijing International Club,
21 Jianguomanwai Avenue, Beijing 100020, China
Phone: 86-10-6532-1850 Fax: 86-10-6532-1851
SHANGHAI OFFICE
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6553-6600 Fax: 86-21-6531-4242
SHANGHAI YASKAWA-TONJI M & E CO., LTD.
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6533-2828 Fax: 86-21-6553-6677
BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing 100083 China
Phone: 86-10-6232-9943 Fax: 86-10-6234-5002
SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Beijing Economic & Technological Development Area,
Beijing 100076 China
Phone: 86-10-6788-0551 Fax: 86-10-6788-2878
YEA, TAICHUNG OFFICE IN TAIWAN
B1, 6F, No. 51, Section 2, Kung-Yi Road, Taichung City, Taiwan, R.O.C.
Phone: 886-4-2320-2227 Fax: 886-4-2320-2239
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795 Internet: http://www.yaskawa.com.br

Yaskawa Electric America, Inc., September 2001 ATSA-SMC-2000, RevA Printed In U.S.A.

	Overview
	Introduction
	SMC-2000 Functional Elements
	System Elements

	Getting Started
	Elements You Need
	Installing the SMC-2000
	Motion Examples

	Hardware Interface
	Cable Shielding, Segregation and Noise Immunity
	Proper Shield Terminations
	Improper Shield Terminations
	Encoder Interface
	Opto-isolated Inputs
	Outputs
	Analog Inputs
	Amplifier Interface
	Motors with Brakes
	Step Motors

	Communication - RS232
	RS232 Ports
	Configuration
	Daisy-Chaining
	Synchronizing Sample Clocks
	Operator Interface
	Controller Response to Data

	Programming Basics
	Introduction
	Command Syntax
	Controller Response to Commands
	Command Summary
	Command Interrogation List

	Programming Motion
	Overview
	Independent Axis Positioning
	Independent Jogging
	Linear Interpolation Mode
	Coordinated Motion Sequences
	Tangent Motion
	Coordinated Motion Sequence Instructions - Summary
	Electronic Gearing
	Contour Mode
	Teach (Record and Play-Back)
	Dual Loop (Auxiliary Encoder)
	Backlash Compensation
	Motion Smoothing (S curve profiling)
	Homing
	High Speed Position Capture
	Electronic Cam

	Application Programming
	Introduction
	Program Format
	Special Labels
	Executing Programs - Multitasking
	Debugging Programs
	Program Flow Commands
	Mathematical and Functional Expressions
	Variables
	Arrays
	Input and Output of Data
	Programmable I/O
	Example Applications

	Error Handling
	Introduction
	Hardware Protection
	Software Protection

	Troubleshooting
	Overview
	Installation
	Communication
	Stability
	Operation

	Theory of Operation
	Overview
	Operation of Closed-Loop Systems
	System Modeling
	System Analysis
	System Design and Compensation

	Command Reference
	Command Syntax
	AB (Abort)
	@ABS (Absolute value function)
	AC (Acceleration)
	@ACOS (Arc Cosine Function)
	AD (After Distance)
	AE (Absolute Encoder)
	AF (Analog Feedback)
	AI (After Input)
	AL (Arm Latch)
	AM (After Motion)
	@AN (Read Analog Input)
	AP (After Absolute Position)
	AR (After Relative Distance)
	AS (At Speed)
	@ASIN (Arc Sine Function)
	AT (At Time)
	AV (After Vector Distance)
	BG (Begin Motion)
	BL (Reverse Software Limit)
	BN (Burn)
	BP (Burn Program)
	BV (Burn Variables)
	CB (Clear Bit)
	CC (Configure Communications Port 2)
	CD (Contour Data)
	CE (Configure Encoder)
	CI (Communication Interrupt)
	CM (Contour Mode)
	CN (Configure)
	@COM (2’s Complement Function)
	@COS (Cosine Function)
	CR (Circle)
	CS (Clear Sequence)
	CW (Copyright information / Data Adjustment bit on/off)
	DA (De-allocate the Variables & Arrays)
	DC (Deceleration)
	DE (Dual (Auxiliary) Encoder Position)
	DL (Download)
	DM (Dimension)
	DP (Define Position)
	DT (Delta Time)
	DV (Dual Velocity (Dual Loop))
	EA (ECAM Master Axis)
	EB (Enable ECAM Mode)
	EG (ECAM Engage)
	EM (ECAM Cycle)
	EN (End)
	EO (Echo)
	EP (Cam table intervals and starting point)
	EQ (ECAM quit (disengage))
	ER (Error Limit)
	ES (Ellipse Scale)
	ET (Electric cam table)
	FA (Acceleration Feed Forward)
	FE (Find Edge)
	FI (Find Index)
	FL (Forward Software Limit)
	@FRAC (Fraction function)
	FV (Velocity Feed Forward)
	GA (Master Axis for Gearing)
	GN (Gain)
	GR (Gear Ratio)
	HM (Home)
	HX (Halt Execution)
	II (Input Interrupt)
	IL (Integrator Limit)
	IN (Input Variable)
	@IN (Status of Digital Input Function)
	@INT (Integer function)
	IP (Increment Position)
	IT (Independent Time Constant - Smoothing Function)
	JG (Jog)
	JP (Jump to Program Location)
	JS (Jump to Subroutine)
	KD (Derivative Constant)
	KI (Integrator)
	KP (Proportional Constant)
	KS (Stepper Motor Smoothing)
	LA (List Arrays)
	LC (Lock Controller)
	LE (Linear Interpolation End)
	LF (Forward Limit)
	LI (Linear Interpolation Distance)
	LL (List Labels)
	LM (Linear Interpolation Mode)
	LR (Reverse Limit)
	LS (List Program)
	LT (Latch Target)
	LV (List Variables)
	LZ (Leading Zero)
	MC (Motion Complete - “In Position”)
	MF (Forward Motion to Position)
	MG (Message)
	MM (Master's Modulus)
	MO (Motor Off)
	MR (Reverse Motion to Position)
	MT (Motor Type)
	NO (No Operation)
	OB (Output Bit)
	OE (Off on Error)
	OF (Offset)
	OP (Output Port)
	@OUT (Status of Digital Output Function)
	PA (Position Absolute)
	PF (Position Format)
	PR (Position Relative)
	PW (PassWord)
	QD (Download Array)
	QU (Upload Array)
	QY (Query Yaskawa Absolute Encoder Alarm)
	RA (Record Array)
	RC (Record)
	RD (Record Data)
	RE (Return from Error Routine)
	RI (Return from Interrupt Routine)
	RL (Report Latched Position)
	@RND (Round Function)
	RP (Reference Position)
	RS (Reset)
	<control>R <control>S (Master Reset)
	SB (Set Bit)
	SC (Stop Code)
	SH (Servo Here)
	@SIN (Sin Function)
	SP (Speed)
	@SQR (Square Root Function)
	ST (Stop)
	TB (Tell Status Byte)
	TC (Tell Error Code)
	TD (Tell Dual Encoder)
	TE (Tell Error)
	TI (Tell Inputs)
	TIME
	TL (Torque Limit)
	TM (Time Command)
	TN (Tangent)
	TP (Tell Position)
	TR (Trace)
	TS (Tell Switches)
	TT (Tell Torque)
	TV (Tell Velocity)
	TW (Timeout for In Position (MC))
	TY (Tell Yaskawa Absolute Encoder)
	UL (Upload)
	VA (Vector Acceleration)
	VD (Vector Deceleration)
	VE (Vector Sequence End)
	VF (Variable Format)
	VM (Coordinated Motion Mode)
	VP (Vector Position)
	VR (Vector Speed Ratio)
	VS (Vector Speed)
	VT (Vector Time Constant - S curve)
	WC (Wait for Contour Data)
	WT (Wait)
	XQ (Execute Program)
	ZR (Zero)
	ZS (Zero Subroutine Stack)

	Additional Program Examples
	Homing Sequence
	Absolute Encoder
	Port Two Interface
	Engineering Units
	Special Labels

	Options
	Absolute Encoder (W-Option)
	Absolute Encoder Commands
	Extended I/O (I-Option)
	Industrial I/O Networks
	DeviceNet I/O (D-Option)
	ProfiBus (P-Option)
	InterBus-S (S-Option)

	Appendices
	Appendix A - Electrical Specifications
	Appendix B - Performance Specifications
	Appendix C - Connectors
	Appendix D - Pin-Out Description
	Appendix E - SMC-2000 Dimensions
	Appendix F - SMC-2000 Cable Layouts
	Appendix G - Connection Diagram

	Glossary of Terms
	Index

