
IEC61131-3 as an
Integration Tool

IEC61131-3 may sound like a com-
plex specification, but in practical use
it comes down to just a few concepts
that promote good programming

techniques and code reusability.
The most fundamental of IEC con-

cepts is program execution behavior.
Each controller or PLC in an automa-
tion system is called a resource, and
each resource executes one or more
tasks. Multiple tasks may be updated at
different update rates. The IEC code in
each task is further divided into Program
Organization Units (POUs), which are
executed within the task in the order
specified. The POU may exist as a pro-
gram type and run in the associated task.
Alternatively, it may be a mathematical
function type POU or a Function Block
type of POU, both of which run when
used within the program type of POU.

Much like the familiar programming
subroutine, customized functions and
function blocks allow the programmer
to wrap up a particular piece of code for
easy organization, for reuse, for protec-
tion of intellectual property, and/or for
revision control.

Variables and Data Types
The terminology and mechanics of vari-
ables, data types and literals is defined
in IEC61131-3 — and these definitions
must be followed.

The character set is limited to alpha-

numeric and the underscore with no
spaces or special characters allowed.
Programmers must therefore get used to
working with variables with names like
“FeedSpeed” or “Feed_Speed.” Capital
letters are preserved for display purposes,
but capitalization differences are ignored
in program execution.

Most programmers are likely to find a
new set of standard terms to get used to
in IEC61131-3. Besides the previously

mentioned acronym POU, a constant
hard-coded value is called a literal. A
variable with one bit of information is
called a BOOL. And when there’s a deci-
mal point, it’s called a REAL or LREAL
data type.

This data type terminology manifests itself
in both literals and variables. A literal, hard-
coded value of “5” is expressed in the code
with a data type prefix such as LREAL#5.0,
INT#5, WORD#5, or TIME#5s.

Understanding the benefits of IEC61131-3 and why its programming
methods are becoming preferred for mechatronic designs.

By Matt Pelletier, Yaskawa America Inc.

so
u

r
ce

: i

s
to

c
k

ph
o

to
.c

o
m

/r
zd

e
b

Accelerating Engineering Innovation ELECTRONICALLY REPRINTED FROM APRIL 2011 .com

www.yaskawa.com
1-800-YASKAWA

PR.DN.02

™

Automation: System Integration Trends

This provides a visible double-check
for the programmer to avoid uninten-
tional mixing of data types. The same
holds true with variables.

A variable is assigned a data type, and
the initial value associated with that
variable must match the data type. So
if a variable is named “FeedSpeed” and
is given the data type LREAL, then it
can have an initial value of 5.0, but not
5 or 5s.

Often in programming, the output
of one part of the code is in one data
type, and it must be used in another
part of the code as another data type.
For example, an input value may be re-
ceived from an HMI as a WORD#5, to
be written to the variable “FeedSpeed,”
with the LREAL data type. This re-
quires a data conversion step.

IEC61131-3 good programming
practice insists that any conversion step
not be hidden from view, so the pro-
grammer must specifically define the
conversion step. Fortunately, data type
conversion function blocks between any
two combinations of the 20 standard
data types are provided so that data type
conversion can be tightly controlled.

Multiple Programming
Languages
IEC uses and combines five of the most
common programming languages: Lad-
der Diagram (LD), Structured Text (ST),
Function Block Diagram (FBD), Instruc-
tion List (IL) and Sequential Function
Chart (SFC).

The programmer decides the best
language for a particular POU based on
personal preference and on the purpose
of that particular POU. A function block
POU written in one language can be
used within another POU of a different
language.

For example, a complex mathemati-
cal formula may be best programmed
using the ST language. I/O logic is
usually more easily programmed in
LD, while FBD may be best for a mo-
tion control sequence. SFC is effective
to control the states of the machine.
Under the IEC61131-3 standard, the
strengths of each language can be used
simultaneously.

High-Level Programming
IEC61131-3 goes beyond fundamental
programming techniques — defining
several high-level programming concepts
such as Enumerated Types, Arrays and
Data Structures.

Enumerated Types give a name to a
number so that when a numerical selec-
tion is required, the name can be used in
its place. This makes the code more intel-
ligible and aids in troubleshooting.

For example, the PLCopen function
block MC_MoveAbsolute includes a di-
rection input so that rotary machines can
locate the position in four different ways,
including “shortest_way.” Instead of as-
signing the direction input to 0, 1, 2, or
3, the “shortest_way” text can be used.

Arrays are familiar to many program-
mers and allow a large amount of data
to be accessed by indexing the address
within the array. The data structure is a
critical programming tool for wrapping
up an assembly of different types of data
into one variable.

One example of the usefulness of data
structures can be found in Yaskawa’s
PLCopen Toolbox user library for the
MP2000iec series controllers. Each axis in
a system will typically have the same data
associated with it such as a jog speed, run
speed, position, parameters, etc.

Traditionally, the programmer must
create separate variables for each of these
axis-specific pieces of data, a tedious task.

But with IEC61131-3, it’s possible to
define a data structure that contains all
of the axis-specific data once and for all,
creating a type of template.

The programmer then creates a single
variable (FeedAxis) for the axis and
chooses this new structure as the data
type (Axis Struct). This provides the
equivalent result to having created tens
or even hundreds of variables all at once.

The data can be accessed as if it were
a variable using the dot notation such
as FeedAxis.JogSpeed or FeedAxis.Prm.
Additional variables with this same data
structure can be defined for the other
axes in the system, quickly creating an
orderly and consistent definition of vari-
ables associated with each axis.

The IEC61131-3 standard provides
a host of benefits to programmers of
PLCs and controllers for integrating
mechatronic applications. Although it
takes some time up front to learn specific
terminology and techniques, overall
efficiency is increased. The resulting pro-
grams can then be used and interpreted
by others familiar with the standard,
creating common ground for other
programmers and for maintenance and
operations personnel.

Matt Pelletier is senior product training
engineer at Yaskawa America Inc.

For more information, go to http://
dn.hotims.com/34931-500.

Logical POUs
 MyFunctionBlock*
 MyFunction
 Main*
 Initialize
 IO
 HMI
Physical Hardware
 Configuration: MP2000_Series
 Resource: MP2300Siec*
 Tasks
 Start: SYSTEM
 FastTsk: CYCLIC
 MedTsk: CYCLIC
 Main: Main
 SlowTsk: CYCLIC

MyFunction

MyFunctionBlock
MYFunctionBlock_1

MyVar1

MyVar2

MyVar3

MyVar4

MyVar5

FB_OutputVar

FU_OutputVar

Execute

FB_Input1

FB_Input2

FB_Output

Execute

InputSpeed

–
 +
 +
 +
 +
 +
 +
–
 –
 –
 –
 +
 +
 –

 +

A Function POU and Function Block POU run in a Program POU titled “Main.”

So
u

r
ce

: Y

a
sk

a
w

a

Posted with permissions from the April 2011 issue of Design News, United Business Media LLC. Copyright 2011. All rights reserved.
For more information on the use of this content, contact Wright’s Media at 877-652-5295.

77302

www.designnews.com
www.wrightsmedia.com

