YASNAC J300
PLC PROGRAMMING MANUAL

RUNNING RUN
CET
40 G49 G80 ;

G391 G30 YO Z0 MOb ;
N1l T09 M06 ;

UNIVERSAL INCREMENT G/M CODE
X 498, 042 X GO0 G80

0.
Y 111, 286 ¥ g. G1l7 GS8

G800 GbH2 [!jﬂ [P ‘:._,.-a | '
G67 |

Z 6. 638 Z

G994
T NO :T0000 ACT &:8 G21

7

YASKAWA SIE-C843-13.1

FOREWORD

The Programmable Logic Controller (hereafter refereed to as PLC) for YASNAC J300 series
NC functions as the interface between the YASNAC NC and a machine tool to execute se-
quence control specific to the machine tools simply and efficiently by software.

For the edition of PLC sequence, a personal computer can be used. This feature allows of-
fline mode programming. The created programs can be checked by using the sequence de-
bugging board (model: JANCD-JCP02-3, name: JXSD) installed in the NC after transmit-
ting the programs to the NC. This feature allows efficient program development.

PLC sequence can be edited in online mode. The online mode editing can be executed by
using the standard hardware without requiring the JXSD board, permitting simple modifica-
tions to the PLC sequence which is already in operation. It is of course possible to develop
a sequence program without using a personal computer.

This manual explains the PLC instructions, program debugging methods, the procedure used
for writing the programs to flash ROM, etc. so that a series of operation from PLC program
development to writing the program to flash PROM can be performed smoothly.

CONTENTS

FOREWORD e teitisentsenetateneeaneitaaeneeaneans i
1 SYSTEM CONFIGURATION

1.1

SYSTEM CONFIGURATION OF YASNAC
J300 PLC SYSTEM et 1-2

2 SEQUENCE PROGRAM DEVELOPMENT PROCEDURE

2.1

SEQUENCE PROGRAM DEVELOPMENTcvvveennn. 2.2

3 PLC PROGRAM SPECIFICATIONS

3.1
3.2

3.3

BASIC SPECIFICATIONSiciiiiiiiiiiriaannannns 3-2
PROGRAMFUNCTIONS i eiieiieeians 3-3
INPUT/OUTPUT SPECIFICATIONS ...t 3-4

4 SEQUENCE CONTROL METHOD

4.1
4.2

4.3

4.4

DIFFERENCES INOPERATIONccciiiiiiiennnn. 4-2
LEVEL AND OPERATION OF SEQUENCE PROGRAM 4-3
RELATIONSHIP BETWEEN THE LADDER STOP

COUNTAND THE SEQUENCE TASKccvinniinnnnn 4-6
SEQUENCE PROGRAM MEMORY CAPACITY

AND MEMORY CONFIGURATIONcoiiiinnet 4-7

' 5 ADDRESS NUMBERS AND ADDRESS MAP

5.1

5.2

ADDRESS MAP ...t e 5-2

ADDRESS MAP AND DISPLAY SYMBOLS 5-3

6 PLCINSTRUCTIONS

6.1

6.2

BASICS OF PLCINSTRUCTIONSccoviviiivnnnnn. 6-2
TYPES AND LISTOFINSTRUCTIONScoovvvnnntt 6-3

6.3 RELAYINSTRUCTIONSccoiiiiiiiiieiieeiiees
6.4 TIMERINSTRUCTIONScoiiiiiiiiiiiiian,
6.5 REGISTERINSTRUCTIONScciiiiiiiiiiaiinnn
6.6 CONTROLINSTRUCTIONSccooiiiiinnninnn..
6.7 MACROINSTRUCTIONSc.oiiiiiiiiiiinenannnn.

7 JXSD OFFLINE SYSTEM

7.1 OUTLINE OF THE JXSD OFFLINE SYSTEM

7.1.1 Operating Environment i,
7.1.2 EXeCULON FIlES ...ttt c ittt e

7.3 COMPILERo e et et iae e

7.3.1 7Compiler Operationc.iiiiiiiiiriiiiiiiirerranrnnnns
7.3.2 Compiler Error List ..., iieiiiiitineerrerirnnnnnns
7.3.3 Compiler Check temsoiiiiii i eeee

74 LINKER ... e e e
7.4.1 Object Dataand Linker Processingcciviviriiinnnnnnnns

7.4.2 Linker Operationttt
743 Linker Output File i i it e e raenns

7.5 REMOTE CONTROLLEROPERATION

7.5.1 Connectingthe JXSDto PLCt iieineenn,
7.5.2 Startingthe Remote Cantrollerovvievnriiii it ciiiinaaeen,
7.5.3 Description of Screen Display Information
7.5.4 Operation of Remote CONtrolleroeveeeerneeenernennnns..

7.6 LIST OF ERROR MESSAGES AND WARNING
MESSAGES

7.6.1 Error T T T P
7.6.2 Waming Messagesc.viiiiiiiiii i et

8 ONLINE EDITING

8.1 OUTLINE OF ONLINE EDITING e 8-2
8.1.1 Creating a Sequence Program Newlyccooiiiiiinienn. 8-2
8.1.2 Creating a Sequence Program by Modifying the Existing

Sequence Programveeveeienenuronoseoraniiiaransananans 8-3

8.2 FUNCTION TREE AND DISPLAY SCREENS 8-4

821 FunctionTree.........cecveeeurnnnnes b iasaieereianeae e 8-4
8.2.2 Ladder Display SCreencvvevieirirnininanreeiaiiiieeanss 8§-5

83 LADDER DISPLAY FUNGTIONevveeiiinieniainnnnss 8-6
8.3.1 BT/TOP (Bottom/Top) Functioncomiiiiiiiiiiiiiinann, 8-6
8.3.2 SYM DIS (Symbol Display) Functioncooiiiiiiiiinnnnn. 8-6
8.3.3 NET SEL (Net Selection) Functiono i, 8-7
8.3.4 GO/STP (Run/Stop) Function ... e rnen 8-8

84 NETEDITINGFUNCTION 8-10
8.41 Selectionof EditModecoiiiriiiii i ii s 8-11
8.4.2 Keys Used for Editingthe Laddercovoiiiiiiinininnna 8-15
8.4.3 Inputting COMACESiviirvenrarrnumraerreraisannsnnnaenss 8-19
8.4.4 Inputting Vertical and Horizontal Linescvivennennt 8-22
8.4.5 Inputting Register Instructionsciiiiiiiiiiianns 8-23
8.46 Canceling the Net Edit Function........... e e eeeeeeeaaaiaeaaa 8-34
8.4.7 Exitingthe EditFunction it 8-34

85 TABLEEDITFUNCTIONo 8-38
8.5.1 Editing the Data in the ConversionTableocoeieennn 8-39
8.5.2 Editingthe DataintheMessageTableccoviinin 8-40
8.5.3 Editing the Datainthe SymbolTableoovvninninn 8-41

8.6 INPUT/QUTPUTFUNCTION ..., 8-43
8.6.1 Downloading the Sequence Programcoocimnnniineenn. 8-43
8.6.2 Uploading the Sequence Programccvieiaaiiiieenns 8-45

8.7 SEQ STS (SEQUENCE STATUS) FUNCTION 8-47
8.7.1 Display of Sequence Statusoviiiiiiiiiiiiiaiiiinn 8-47
8.7.2 INIT! {Initiafization) Function ... 8-48

88 LISTOFMESSAGESot ienneneas 8-51
8.8.1 ListOFMESSAQES - ... vurinenerraraeirar it niieaannnnes 8-51
8.8.2 Listof Warning Messagesccoiveeimriirinniiananaioonn:s 8-52
8.8.3 Listof AlamM MESSages .v..vvvvrnrrrreeccssarasrrmnrrasannnancns 8-562

9 DOWNLOADING AND UPLOADING LADDER PROGRAM
9.1 DOWNLOADING LADDER PROGRAM

(PC CARD — FLASHROM)ooeieeieiieennann.. 9-2
9.2 UPLOADING LADDER PROGRAM
(FLASH ROM = PC CARD)'veenoeee e 9-4

|

ONFIGURATION

SYSTEM C

Chapter 1 describes the system configuration of YASNAC
J300 PLC system.

1.1 SYSTEM CONFIGURATION OF YASNAC
J30OPLCSYSTEM 1-2

SYSTEM CONFIGURATION OF YASNAC J300 PLC SYSTEM

NC operation panst

o
scooeca |9

{inputfoutputsignal display

NC unit

Personal computer
(with offline system software package)

Serialcommunication ————
: |
JANCD- e
JCPOZ-L2 To send the ladder from a g3 -PCMCiAcard
personalcomputer, JCP02-3 [% — S\
(JXSD) is necessary. = !

YENET 1200
§§‘ ! | PC card (Toshiba)

/

: THBESS160051AAA
/O unit l l
(JANCD-
£C810) To send the ladderto the flash ROM,

\ /LJ/ a PC card is necessary.

Fig. 1.1

SEQUENCE PROGRAM DEVELOPMENT
PROCEDURE

Chapter 2 describes the procedure of sequence program
development — offline and online mode operation.

2.1 SEQUENCE PROGRAM
DEVELOPMENT 2-2

“ty

2.1 SEQUENCE PROGRAM DEVELOPMENT

Processing on the Desk Processing at Personal Computer Processing at NC Unit

| Determiningthe nurmber of /O points |

Creating the /O signal allocation
table

Creating the sequence ladder |

v

Completion of fist of /Os J

I Programming‘; J

[compileandiink (objectcoding) | Toming e povwer ON with SW
set at*4” on JCPQ1-2

ves Seral &

NO mim i il
Withouterrors? communicatiog Writing the binary file to the

CMOS
JCP02-3 (JXSD) memory
YES Necessary ¢ i

Saving the binary file to PC card Debugging and on-line editing

JCPO2-3 (JXSD)
Notnecessary

Compiete?

Transfering the ladder to PC
card
Text file and binary file

¥

Tuming the power OFF
—ON with SW1 ON on JCP01-1

v

Transferring the binary file
from PC card to flash ROM

v

Tuming the powsar OFF — ON by
tuming “1” of 1SW on JCPO1

v
]
]
'
[
]
]
]
1
1
b
[
'
]
L]
[
[
1
]
[
[
L]
]
L]
]
)
]
)
1
'
1
L]
1
1
t
]
[

S CK Final check NG |

: PC card
Y

Storingthe sequenceladder

Fig. 2.1

...... o RERP

PLC PROGRAM SPECIFICATIONS

Chapter 3 describes the specifications of PLC programs.

3.1 BASIC SPECIFICATIONS 3.2
32 PROGRAMFUNCTIONS 3.3
3.3 INPUT/OUTPUT SPECIFICATIONS3-4

#

3.1 BASIC SPECIFICATIONS

The basic specifications of PLC programs are indicated below.

Control method Scanning method

Processing time ' 0.5 ps/step (approximate value)
High-speed processing scan time 4 ms
Low-speed processing scan time 4ms X n

Note: Value "n” is determined by the high-speed précessing capacity and total program capacity.

Program memory capacity

Basic 256K bytes
Program 128K bytes
Table symbol 128K bytes

Note: 128K bytes are equivalent to approximately 32K steps of basic instructions.

Instructions
Basic instruction - 61 kinds
Macro instruction 22 k_inds

3.2 PROGRAM FUNCTIONS

3.2 PROGRAMFUNCTIONS

Internal relays 11960 points
Registers 1495 registers (8 bits/register)
Timers 188 timers (5 types)
8 msec to 2.4 sec 40 timers
50 msec to 12.75 sec 60 timers
100 msec to 25.5 sec 60 timers
1 sec to 255 sec 20 timers
1 min to 255 min 8 timers
Sequence parameters 100 sets (8 bits/set)
Keep relays 7200 points
Battery back-up memory 2900 sets

ters cannot be used for internal relays.

1. Internal relays and registers occupy the same addresses and the addresses used for
internal relays cannot be used for registers. Similarly, the addresses used for regis-

2. Keep relays and battery back-up memory occupy the same addresses, and the ad-
dresses used for keep relays cannot be used for battery back-up memory. Similarly,
the addresses used for battery back-up memory cannot be used for keep relays. Note
that the keep registers (#8000 to #9999) cannot be used for the keep relays.

3.3

INPUT/OUTPUT SPECIFICATIONS

General-purpose input/output ports are installed on the I/O module (JANCD-FC810,
FC860, FC861) and the ISP board (JSP02) in the NC operation panel.

The number of I/O points on each module is indicated below.

Module JANCD- | Number of input | Number of Sutput Remark
FC810, FC860 112 96
FCg61 64 56 For machine operation panel
JSPO2 64 56 -

An input/output port is incorporated in the control board (JSP02) in the NC operation
panel. Therefore, if modules FC810/FC860 are added, addition of a maximum of 4
boards (max. input: 512 points; max. output: 440 points) is possible, and if module
FC861 is added, addition of a maximum of 9 boards (max. input: 640 points, max.
input: 560 points) is possible. ' '

SEQUENCE CONTROL METHOD

Chapter 4 describes the sequence control method.

Sequence control by PLC is executed sequentially by the soft-
ware, which differs from the ordinary controf by relay circuits
in which processing is executed simultaneously. Due to this
characteristic, the sequence control by PLC results in consid-
erably different operation from ordinary relay circuit proces-
sing. When developing programs, this must be completely
understood.

4.1 DIFFERENCES IN OPERATION 4-2

4.2 LEVEL AND OPERATION
OF SEQUENCE PROGRAM 4-3

4.3 RELATIONSHIP BETWEEN
THE LADDER STOP COUNT
AND THE SEQUENCETASK 4-6

4.4 SEQUENCE PROGRAM MEMORY
~~ CAPACITY AND MEMORY
CONFIGURATION 4-7

441

DIFFERENCES IN OPERATION

There are two types of operation modes in the sequence control - relay sequence and PLC
sequence.

)

e

Fig.

Relay Sequence
All devices are processed simultaneously.
PLC Sequence

Devices are processed sequentially and the ladder is executed repeatedly in a fixed peri-
od. This period is called the scan time.

(Scan time example: 4 msec X n times)

A

| —/B\

| _/
#10001 #11001

A -

] g /il,l' f,;\
#10001 #1001 #11002

41

The PLC sequence ladder given above operates in the following sequence. The opera-
tion is not processed simultaneously.

The status of contact A is read.
The read status is output to internal relay B.
The status of contact A is read.

AND operation is executed between the status of contact A and the status of NC
contact of relay B.

® ®ee o0

The result of AND operation is output to internal relay D.

As the result of sequential processing, internal relay D is never turned ON.

However, if the same ladder is executed in the relay sequence, relay D is momentarily
turned ON (one-shot operation).

As discussed above, programming must always be carried out taking into consideration
that processing by the PLC is executed sequentially.

4.2 LEVEL AND OPERATION OF SEQUENCE PROGRAM

42 LEVEL AND OPERATION OF SEQUENCE PROGRAM

Length of time necessary for the execution of one cycle of a sequence program is called the
scan time. The scan time of this model of PLC is indicated below.

* High-speed processing scan time: 4 msec
» Low-speed processing scan time: 4 msec X n

This means, with this PLC, the sequence program can be processed by dividing it into a high-
speed processing part and low-speed processing part. Therefore, the sequence program must
be written in the format indicated below.

LD#......
: High-speed processing part

RTHI——— Endinstruction of high-spead processing

L_L/\ Low-speed procassing part
T

—— Endinstruction of sequence program

Fig. 4.2

As indicated above, the sequence program that requires high-speed processing should be en-
tered first and the sequence program for which low-speed processing is acceptable should
be entered after that.

(3) Operation Time Chart

The operation time chart of a sequence program is indicated below.

NC 110 1 f l !] !
High-speed processing ladder i s B =T = TR s DR e .
Low-speed processing ladder : —i 1 n —i
Sarvice task ! : i i ;

Processingfor:
Hcs)er_’s n;laggsa & display ‘ ams : H H :
signal display : : : — e
Background processing
Others

Fig. 4.3

(a)

(b)

(©

(d)

(4)

(5)

High-speed processing sequence program

The high-speed processing sequence program, from the beginning of the sequence pro-
gram up to the RTH instruction, is executed once every 4 msec or less as shown in the
time chart above.

During the brocessing of the high-speed sequence program, the input status remains un-
changed. '
Low-speed processing sequencé program

The low-speed processing sequence program entered following the RTH instruction is
divided into *“n” sections and one of these sections is executed in the remaining time
in each 4-msec interval. That is, the low-speed processing sequence program is
executed once in “4 msec X n”.

As seen above, value “n” will be smaller as the total program capacity and the high-
speed processing program capacity are smaller.

Since the low-speed processing sequence program is executed in several sections, the
input status will be changed during its execution. Therefore, the precautions indicated
in item (3) below must always be observed.

Reading the input state

At the beginning of the 4-msec interval, the status of all inputs is read into the PLC col-
lectively. '

Outputting the output status

At the beginning of the 4-msec intervals, the previous output status is output collective-
ly. '

Precautions on High-speed Processing Sequence Program

The high-speed processing sequence program treats only the portion where high-speed
response is required, such as counting the contact ON/OFFE.

Therefore, this should be limited only to the requisite program. The capacity must be
less than 1000 steps when converted into the contact instructions.

Precautions on Low-speed Processing Sequence Program

(D Scan time of the low-speed processing séquence program is influenced by the total
capacity of the sequence program. It is calculated by “4 msec X n”.

The sequence program size that can be processed in a 4-msec interval is approxi-
mately 3000 steps in contact instructions. This size is the total of high-speed pro-
cessing sequence program and low-speed processing sequence program.

4.2LEVEL AND OPERATION OF SEQUENCE PROGRAM

)

Fig. 4.4

Fig. 4.5

Since the low-speed processing sequence program is executed in several sections,
the status of inputs will be changed during the execution of the program. There-
fore, the inputs that are used for the execution of the low-speed processing se-
quence program should be taken into the internal relays at the start of the low-speed
processing sequence program, and for the execution of the low-speed processing
sequence program, the contacts of the relays where the inputs have been received
should be used as the input signals.

High-speedprocessing sequence program

eed

'ogram
should be taken into the internal
relays.

Low-spaed processing sequence program

By creating the program in this manner, one cycle of the low-speed processing se-
quence program can be executed under the same input signal status.

If the results of the high-speed processing sequence program are output to the low-
speed processing sequence program, the same consideration must be given to the
creation of the program.

The signals that should not be output until one cycle of the low-speed processing
program is executed should not be directly output to the PLC address used for ex-
ternal outputs. Such signals should first be input to the internal relays and they
should be connected to the external output addresses at the end of the low-speed
processing sequence program.

A
—=— Write the outputs that should be output extemally after the

execution of one cycle of the low-speed processing sequence
programat this part.

4.3 RELATIONSHIP BETWEEN THE LADDER STOP COUNT AND THE
SEQUENCE TASK

The service task includes the following:

» User’s message display processing
* [/O’signal display processing
 Background processing

» Others

The task operates during the period, from the completion of one scan of the low-speed pro-
cessing sequence program and until the start of the next scan.

The ladder stop count (the number of times the low-speed processing ladder should be
stopped) should be set based on the load during the processing of the service task.

Recommended value: 1

4.4 SEQUENCE PROGRAM MEMORY CAPACITY AND MEMORY CONFIGURATION

4.4 SEQUENCE PROGRAM MEMORY CAPACITY AND MEMORY
CONFIGURATION

The sequence program is finally written to the flash memory (ROM).

The program memory of this PLC can be divided into the areas indicated below.

Control Table

High-speed Processing Program

128K bytes
Low-speed Processing Program
.
r
Data Table
Message Table
128K bytes

Fig. 4.6

Generally, relay instructions occupy 3 to 7 bytes and other instructions 1 to 25 bytes. Assum-
ing that one instruction occupies an average of 4 bytes, 128K byte memory area is equivalent
to 32K steps (128K/4 = 32 K).

L

ADDRESS NUMBERS AND ADDRESS MAP

Chapter 5 describes the address numbers and address map.

51 ADDRESSMAPcc...t 5-2
5.2 ADDRESS MAP AND DISPLAY

SYMBOLS e 5-3 E

M

5.1 ADDRESS MAP

When creating a sequence program, input/output signals of PLC, internal relays, timers, bat-
tery back-up memory and other devices in the PLC are all designated by an address number
(four-digit number following #) and a bit number (bit 0 to bit 7).

0000 O '

Bit number (0 to 7)
Address number

a) Name of eight points of a signal
b) Name of one-byte (eight bits) data

(1) Designation of I/O signals, Internal Relays, and Other Devices (One-bit De-
vice))

The devices which have one-bit information are designated by a five-digit number (ad-
dress number + bit number) following “#” as indicated below.

Device Designation
1 /O signals # OOOO O
2 Internal relays ’ l
. Bit number
3 Keeprelays . Address number

In this case, the address number has the same meaning as a) explained above, and it can
be considered to be the name assigned collectively to eight points of a signal.

(2) Designation of the Registers, Timers, and Other Devices (One-byte Devices)
The devices which have one-byte (eight bits) information are designated by the address

number. In this case, the address number has the same meaning as b) explained above,
and it can be considered to be the name assigned to one-byte data.

Device Designation
4 Registers
0000
5 Timers
6 Sequencerparameters L Address number
7 Keep memory

Note: With some types of instructions, designation of “#1500”, for example, specifies two bytes of “#1500" and “H#1501".
Example: PUSH #1500

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

The address map and the relationship with external devices are shown below.

Standard Main NC Section PLC Section O $_eqti9n Machine
Output 4 A1) Ilnpul
(Example) NG oupuil Mashine puts (Ex)
HO- < #3000 | #1000], = —H—
MEM -#3159 - #1063 LS
oput| —(3) (2) Output
NC inputs | Machine ouiputs
—AF ¢ X #3500 #1100 F > —@-{
® &E%Pbm_up |_- #3690 | | - #1163 | SOL
muemory (9) 5
Sequencer I rela)
pm7000 Sedverent] (8] mamatroays
m7098 | | Poee || #1200
ROIEER 10) (11 - #2994
IKeep ralays‘ Timers
#7100 #7100 7} #1?090
. k: - K-#7999 -#1399
@ap mamory
#9999 #1700
#7109 | | #1799
G

(1) Addresses of Input Signals from the Machine (#1000 to #1063)

For the signals input from the machine operation panel and electric control panel, such
as those of pushbutton switches and limit switches, addresses #1000 to #1063 are as-
signed. The correspondence between the address and the input signal should be deter-
mined by the machine tool builder.

(D One bit of address (#1000s) corresponds to one point of input signals.

(2) Address number and bit number are determined depending on the pin number and
the connector number of the I/O board where the input signal is connected.

Example:
i BitNo.
7§ §

#1000 .
64-36]54-21(54-5 | 54-35|54-20(|54-34|54-19{54-33

-

T— Pin No. 10
—— Connector No. 01

Enter the input signal name.

(® The input signals of #1000s are expfessed by the following symbols.

i HF

#10000 #1000
{NO contact) | {NC contact}

()

3

Addresses of Output Signals fo the Machine (#1100 to #1163)

For the signals output to the machine operation panel and electric control panel, such
as the signals of lamps and solenoids, addresses #1100 to #1163 are assigned. The cor-
respondence between the address and the output signal should be determined by the ma-
chine tool builder.

(1) One bit of address (#1100s) corresponds to one point of output signals.

() Address number and bit number are determined depending on the pin number and
the connector number of the /O board where the output signal is connected.

Example:
BitNo
#1100 - ';_ [5 4 3 2 1 0
L~
51-5 | 51-6 | 51-7 | 51-8 51-41]51-2751-26]51-25
| T pinno. 10
Connector No. 08
Enter the output signal name.
(3 The output signals of #1100s are expressed by the following symbols.
@ } Contact: —4 — ——
#11000 #11000
#1000 (NOcontact) (NG contact)

Addresses of Input Signals from the NC’s Main Section (#3500 to #3799)

For the signals input from the NC main section, in other words, the signals output from
the NC main section to the PLC, such as M-BCD signal, addresses #3500 to #3799 are

assigned.

The correspondence between the signal name and the address is determined by the NC
and cannot be changed.

(D One bit of address (#3500 to #3799) corresponds to one point of input signals.

Example:

£—A‘ Bit No.

7 6 s 4 3 2 1 0
#3520 rMA'I] MAG | MA5 | MAd | MA3 | Ma2 | MA1 | MAo |

- r

First M code output

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

(@ The input sigﬁa]s of #3500 to #3799 are expressed by the following symbols.
—AF—® —H— o

#3000C0 #30000

(4) Addresses of Output Signals to the NC Main Section {#3000 to #3159}

For the signals output from the PLC to the NC main section, such as EDIT and MEM
mode selection signals, addresses #3000 to #3159 are assigned.

The correspondence between the signal name and the address is determined by the NC
and cannot be changed.

(D) One bit of address (#3000 to #3159) corresponds to one point of output signals.

Example:

l_- Bit No.

7 6 5 4 3 2 1 0
#3000 | EOT | MEM| mpI | TP | sTP| H [Joa| RT |

Edit MemoryManua! Tape Step Handle Jog Rapid

(@ The output signals of #3000 to #3159 are expressed by the following symbols.

Outputto the NC
#30000
Contact : — F— —F—
#30000 #30000

(5) Addresses of internal Relays (#1200 to #2994; excluding #1300 to #1399 and
#1700 to #1799)

For the internal relays that can be used only in the PLC to create a sequence program,
addresses #1200 to #2994 (excluding #1300 to #1399 and #1700 to #1799} are as-
signed. '

(D) One bit of address of #1400s, for example, corresponds to one piece of internal
relay.

Example of /O list:

Bit No.

3 2 1 0

7 6 5 4
#1400 | ‘I I A I
Enter an intemal relay name.

(@) The number of usable intemal relays is indicated below.

500 bytes X 8 bits = 4000 relays

(3 The internal relay and its contact are expressed by the following symbol.

Internairelay :
#14000
Contact: —{ b— —AfF—
#14000 #14000

(NO contact) (NC contact}

There are no limits to the number of contacts (NO and NC contacts) as long as the
program capacity is not exceeded.

(® The addresses used for registers cannot be used for internal relays.

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

(6) Addresses of Registers (#1200 to #2994; excluding #1300 to #1399 and
#1700 to #1799)

For the general-purpose one-byte (eight bits) register, addresses #1200 to #2994 (ex-
cluding #1300 to #1399 and #1700 to #1799) are assigned.

These registers are used for register instructions and workpiece address for macro
instructions.

(D One address number corresponds to a one-byte register.

Example of I/O list:

#1500

#1501

Enter a register name.

(@ The number of usable registers is in the range from #1200 to #2994 (excludes
#1300 to #1399 and #1700 to #1799).

(3 For the registers, the address number itself is used as the symbol in a ladder.

See the examples below.

—i—— |#so0 }—1

Registerinstruction (example: INR)-

1y [#sm0 ——

Miacro instruction {example: PUSH)

(4) The addresses used for internal relays cannot be used for registers.

(7) Addresses of Timers (#1300 to #1399 and #1700 to #1799)
For the timers, addresses #1300 to #1399 and #1700 to #1799 are assigned.

(D Ore address number corresponds to a timer.

Example of /O list:

#1700

#1701

Enter a imer name. Enter a setting vatue.

(2) The number of available timers and timer setting units are indicated below.

Table 5.1
Address No. Timer Type Number of Timers
#1700 1o #1700, #1760 to #1769 1= 8 msec 40
#1300 to #1309, #1360 to #1369 -
#1710 to #1729, #1790 to #1799 _
#1310 to #1329, #1390 to #1399 1=0.1sec 60
#1730 10 #1749, #1780 to #1789 1 = 50 msec 60
#1330 to #1349, #1380 to #1389 -
#1750 to #1759 _
#1350 to #1359 1=1sec 2
#1770 to #1773 1=1min 8
#1370 to #1373 -

(® An example of a timer symbol is indicated below.

[]_-D [#1700 '%‘,EHJ'O‘l

Timer instruction Timersettingvalue
(2types) (hexadecimal)

(Example)

5-8

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

{8) Battery Back-up Memory (pm7000 to pm7099, #7100 to #9999)

For the memory to which addresses of #7000s are assigned, such memory is called the
“battery back-up memory”. The data saved to this type of memory are therefore re-
tained even when the power is turned OFF.

In the PLC sequence ladder program, only the image data at the PL.C side can be han-
dled. Itis not possible to handle (read and write) the source data in the NC main section.

The battery back-up memory data are classified into the following three types.

e Sequencer parameters: pm7000 to pm7099

* Keep relays: #7100 to #7999
* Keep memory: #7100 to #9999
Standard NC Main Section PLC Section
Battery back-up memory {Image)
Sequencer
pm 7000 parameters
to pPM 7000
pm7099 to pm 7099
#7100 Keep relays
#710010 #7999
to -
Keepmemory
#9999 #710010 #9999

(a) Transferring the sequencer parameter data to the PLC

The sequencer parameter data are transferred from the NC main section to the PLC in
the following case in addition to the time when the power is turmed ON.

If even one item of sequencer parameter data is changed by parameter write operation,
the entire sequencer parameter data are transferred collectively.

In a sequence program, it is allowed only to read the sequencer parameter data. Do not
attempt to change the data. ‘

(b) Transferring the data in the keep relay and keep memory data to the NC

Image data saved in the keep relays and the keep memory in the PL.C change continu-
ously since the data are read and written as the sequence program is executed. There-
fore, it is necessary to transfer the latest image data in the PLC to the battery back-up
memory in the NC main section as the source data. This data transfer is called the auto-
matic data transfer.

While the power is ON, the data in #7100 to #9999 are collectively transferred from
the PLC to the NC..

(9) Addresses of Sequencer Parameters (pm7000 to pm7089)

For the sequencer parameters, addresses pm7000 to pm7099 are assigned. The data set
for sequencer parameters can be changed by using the normal parameter write opera-
tion.

‘When using the data of these parameters in a sequence parameter, the following two
methods are available.

* To use as one-bit data
* To use as one-byte data

(a) Using as one-bit data
Example of IO list:

vm7°°°I|I1I I A I I
Entersignal name.

The symbol used in the ladder is indicated below.

pr 70000 _pm 70000
Data “1” = Closed Data "1: =0Open
Data “0" = Open Data ‘0" = Closed

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

(b) Using as one-byte data
Example of I/O list:

pm7000| 4

pm7001 A

Enterparameter data name.
In this case, the address number itself is used as the symbol.

See the example below where a parameter is used with a timer instruction.

’—H—{_TZHTL #1770, pm'r@ |-O—{

Variable timer L’nmersetting by
instruction aparameter

(10) Addresses of Keep Relays (#7100 to #7999)

For the keep relays that can be used in the PLC, address #7100 to #7999 are assigned.

(D One bit corresponds to one piece of keep relay.

Example of I/O list:

#7101 L[L | | [[[[|
:
Enter kesp raléy name.

(@ The number of usable keep relays is indicated below.
900 bytes X 8 bits = 7200 relays

(® Keep relays and contacts are expressed by the following symbol.

|
Keep relay : —o——{

#71000 °

Contact : — b— .1 —3F—

#71000 #71000
(@) (b)

(11) Addresses of Keep Memory (#7100 to #9999)

For the one-byte keep memory where the data can be retained after power OFF, address-
es #7100 to #9999 are assigned. With the exception that the keep memory can retain
the saved data, it can be used in the same manner as with the registers.

Therefore, the keep memory can be used as the object of register instructions or auxilia-
ry data of macro instructions.

When writing a sequence program for random type ATC memory, a keep memory must
be used.

(© For one-byte (8 bits) keep memory, address number #7100 or above is assigned.
Example of /O list:

wios | |

#7106

Enter keap memory name.

(@) The number of usable keep memory is:

2900 in the range from #7100 to #9999

(3) Forthe keep memory, the address number itself is used as the symbol.

See the example below.

I'—H—LMOVI #1500,471600 H

MOV: Contentsof register #1500 are transferred
to keep memory #7100, -

5.2 ADDRESS MAP AND DISPLAY SYMBOLS

(® Forthe devices that have one-byte or 1arger information, a four-digit address num-
ber is assigned. ‘

Although the data are basically of one-byte construction, the data can be handled
as two-byte or four-byte data by the setting for the parameter.

In the case of two- or four-byte data, the address is specified as a one-byte unit ad-
dress; the address of the least significant byte is used as the address for two- or four-

byte data.
Byte Word
#7200 #7200
#7201
#7202 #7202
#7203
Word start number setting parameter: pm3430
Double-word start number setting parameter: pm3431
Seftingrange: 8000 to 9999
pm3430 < pm3431
Byte Word Double-word
#8200 #8200 #8200
#8201
#8202 #8202
#8203

{12) Writing the Initial Values for Keep Relays and Keep Memory

When keep relays and keep memory are used in a sequence program, it is necessary to
set the initial values for these devices before running the program.

Set the initial values following the procedure indicted below.

(D Set the system number switch in the'j NC unit to “1” and turn the power ON.
(@ Press the [MAINT] process key and the [SEQPRM] function soft-key.
(3 Move the cursor to the required keep memory number.

Use the page keys and the cursor up/down keys, or press the cursor up/down keys
after keying in the keep memory number.

(3) Press the [INSRT] key or the cursor right key.
[INSRT] key: The cursor moves to the decimal number column.

Cursor right key: The cursor moves to the bit data column.

(3) Move the cursor to the bit for which the data should be changed and press the
- [WRITE] key.
Each time the [WRITE] key is pressed, ON/OFF status of the specified bit is
changed.

Data entry by numeric keys is possible only when the cursor is moved to the deci-
mal number column.

Example: Writing a decimal number for bit data

Key Operation Bit76543210 Decimal Number
[0] [WRITE] . 00000000 0
[81[WRITE] 00001000 8
121 [5] [5] [WRITE] 11111111 255

s —
PARAMETER MNT Oxcokrx NOOOOO
#7100 7 6 5 4 3 2 1 0
0 0 0 00 0 0 O 0
0 0 0 00 0 00 8
111 11 1 1 1 255
0 0 0 0 0 0 0 O 0
¢ 0 0 0 0 0 0 O [t}
0 0 0 0 0 0 0 O [¢]
0 0 0 0 0 0 0 ¢ G
¢ 0 00 0 0 0 0 Q
0 0 0 0 0 0 C O 0
0 0 0 0 0 ¢ 0 0 0
0:0FF 1:0N
MEM STP LSK
DIAGN. TIME t
keming [earrd [PeERR]
7

. 1 ? 3 4 5 FAN
PEHEBEEEERES

(® Repeat steps @ and (& to write the initial values for the necessary addresses.

(@ Return the system number switch to “0”.

PLC INSTRUCTIONS

Chapter 6 describes the PLC instructions. The PLC can use
61 types of basic instructions and 11 types of macro instruc-
tions. Expianation is given for the functions and display sym-
bols. The list of coded instructions is also given.

6.1 BASICS OF PLC INSTRUCTIONS 6-2
6.2 TYPES AND LIST OF

INSTRUCTIONS -+ veveneeeanannn 6-3
6.3 RELAY INSTRUCTIONS 6-8
6.4 TIMER INSTRUCTIONS 6-15
6.5 REGISTERINSTRUCTIONS 6-17
6.6 CONTROLINSTRUCTIONS 6 - 41
67 MACRO INSTRUCTIONS 6 - 44

6.1 BASICS OF PLC INSTRUCTIONS

(13) Registers Saving the Intermediate Results during Logical Operation

The PLC has registers where the intermediate results of logical operation in a sequence
program are saved. Configuration of these registers is “1 bit + 16 bits™.

The result of operation presently executed is saved (0 or 1).
‘ Stack register (16 bits)

I;H][srcﬂsn |st2|s1a | 574575 ISTSNS:naI s-ru] STLs,I

Contactstatus —~ M)\ \ S\ NSNS T
WA AWEW RN WAL W W W

AND-STR, OR-STR instruction, etc.

STR, STR-NOT instruction, etc,

(14) Result Register (RR)
This is a one-bit register where the result of presently executed operation is set.

Setting the status (0 or 1) of contact to RR by using the LD instruction and outputting
the contents of RR to the relay address by using the OUT instruction are possible.

It is also possible to shift the contents of RR to the stack register by one bit or to shift
the contents of the stack register to RR by one bit after the completion of operation by
using the STR or AND-STR instruction.

(15) Stack register (STO to ST15)

When executing a long logical operation, it is possible to save the intermediate result
to the stack register by up to 16 bits.

The STR and STR-NOT instructions move the data in RR to STO and, sequentially, the
data in the stack registers to the right by one bit.

The AND-STR and OR-STR instructions execute the operation between the data in
STO and RR, set the result to RR and shift the data in stack register to the left by one
bit. After the execution of these instructions, “0” is set for ST15. Both the number of
STR and STR-NOT instructions, and the number of AND-STR and OR-STR instruc-
tions must be the same during the execution of a series of logical operations. Otherwise,
an error occurs. In other words, the number of data saving times to the stack register
and the number of data fetching times from the stack register must be the same.

6.2 TYPES AND LIST OF INSTRUCTIONS

6.2 TYPES AND LIST OF INSTRUCTIONS

(1) Types of Instructions

With the PLC, the following types of instructions are provided.

(a) Basic instructions
Relay instruction: 13 types
Register instruction: 37 types
Timer instruction: 2 types Total 61 types
Control instruction: 9 types
(b) Macro instructions
Macro instruction: 22 types
Auxiliary instruction: 5 types
(2) List of Relay Instructions
The list of relay instructions is indicated below.

No. | Instruction Description RR after Operation
1 LD Reads the signal status (0, 1) and sets it to RR. t
2 LD-NOT | Reads the inversion of signal status (0, 1) and setsitto RR. i3
3 AND Executes AND between the contact and RR, and sets the g

result to RR. (Logical product)
Executes AND between the inversion of signal status and
4 AND-NOT RR, and sets the result to RR. (Reverse logical product) §
5 OR Executes OR between the contact and RR, and sets the result 3
to RR. (Logical sum)
Executes OR between the inversion of signal status and RR,
6 OR-NOT | 1 sets the result to RR. (Reverse logical sum) 3
7 XOR Sets “not-coincide” between the signal and RR to RR. $
8 XNR Sets “coincide” between the signal and RR to RR. $
9 STR Enters the content of RR to the stack register and executes 8
the LD instruction.
Enters the content of RR to the stack register and executes
10 | STR-NOT | 101 D.NOT instruction. ' ¢
AND Executes AND between RR and the stack register and sets
1 -STR the result to RR. ¢
12 OR-STR Executes OR between RR and the stack register and sets the 4
result toRR.
13 ouT Writes the result of operation (RR) to the relay (address). —_

Note: Symbel in the column of “RR after Operation™
4 The content of RR changes before and after the operation of an instruction.
— The content of RR does not change before or after the operation of an instruction.

(3) List of Timer Instructions

The list of timer instructions is indicated below.

No. { Instruction . Description RR after Operation
1 TIM Timer processing (fixed timer) timeup=1
2 TMR Timer processing (variable timer) timeup=1

{(4) List of Register Insiructions
The list of register instructions is indicated below.
No. | Instruction . Description RR after Operation
1 INR Adds “+1” to the register content. —
2 DCR Adds “~1" to the register content. —
3 CLR Clears the content of the register. —_—
4 CMR Inverts the content of the register. —
5 ADI Adds a numeric value to the content of the register. —_
6 SBI Subtracts a numeric value from the content of the register. —_
AND operation between a pumeric value and the content of

7 ANI . —_
theregister.
OR operation between a numeric value and the content of

8 ORI . —
theregister.
XOR operation between a numeric value and the content of

9 XRI . —
theregister.

10 DEC C01.nc1dence between a numeric value and the content of the _
register

11 col - Coincidence between a numeric value and the content of the _
register

12 CMP Compares a numeric value to the content of the register. —

13 CPI Compares a numeric value to the content of the register. —

14 MVI Loads a numeric value to the register. _
Executes addition between register R1 and register R2 and

15 ADD —_
stores the result to R2.

16 SUB '| Executes subtraction between register R1 and register R2 _
and stores the result toR2,
Executes AND between register R1 and register R2 and

17 ANR . —
stores the result to R2.

18 ORR Executes OR between register R1 and register R2 and stores .

the result to R2.

6.2 TYPES AND LIST OF INSTRUCTIONS

No. | Instruction Description RR after Operation
Executes XOR between registers R1 and R2 and stores the

19 XRR ‘ —

. result to R2, :

Executes comparison between registers R1 and R2 and

2 CPR stores the result to RR. . $

a1 COR Executes comparison between registers R1 and R2 and ¢
stores the “ceincide” result toRR.

22 MOV Transfers the content of the register R1 1o register R2. —_

23 DST Executes AND between a numeric value and the content of _
the register 1 and transfers the result to register R2.

24 DIN Extractsdata. —

25 ADC Executes double-length addition. ¢
Executes addition between double-length register (WR2)

26 ADDW and double-length register (WR1) and stores the result to —
WR2.
Subtracts the content of double-length register (WR1) from

27 SUBW the content of double-length register (WR2) and stores the —_
result to WR2.
Multiplies the content of double-length register (WR1) and RRissetto “1”

28 MULW the content of double-length register (WR2) and stores the when overflow
result to WR2. occurs.
Divides content of double-length register (WR1) by the con-

29 DIVW tent of double-length register (WR2) and stores the result to o
WR2. ‘

30 INRW Adds “+1” to the content of the double-length register. —

31 DCRW Adds “~1" to the content of the double-length register. —

32 CLRW | Clears the content of the double-length register to “0”. —

33 CMRW Inverts the content of the double-length register. -_—
Executes comparison between double-length register R1 and

34 CORW double-length register R2 and stores the “coincide” result to 3
RR. A

35 CPRW Executes comparison between dbublc—length-register R1and 3
double-length register R2 and stores the result to RR.

36 MVIW Loads a numeric value to the donble-length register. _

: Executes AND between the content of double-length register
37 DSTW (WR1} and a numeric value and transfers the result to —

double-length register (WR2). .

'
8l

|

6-5

(5) List of Control Instructions

The list of control instructions is indicated below.

No. | Instruction Description RR after Operation
1 NOP No operation —_
2 MCR Start of master control relay —_
3 END End of master control relay —_
4 RET End of sequence program —
5 RTI Executes the RET instructionif “RR =1". —
6 SET Sets “1” toRR. 1
7 RTH End of high-speed processing sequence program —
8 MP Executes jump to the location indicated by ADR. —
9 ADR Indicates the location of destination of jump indicated by .

JMF.
(68) List of Macro Instructions
The list of macro instructions is indicated below.

No. { Instruction Description RR after Operation
1 SUBPQO3 | Detectsthe rising edge of the signal. ¢
2 SUBPOO4 | Detects the falling edge of the signal. ¢
3 SUBP00O5 | Counter $
4 SUBPO06 | Rotation {for the control of rotating object) $
5 SUBPO07 | Code conversion $
6 SUBPOO9 | Pattemclear $
7 SUBPO11 | Parity check $
8 SUBPG14 | Dataconversion (binary & BCD) 3
9 SUBPO17 | Datasearch $

10 SUBPO18 | Index datatransfer ¢
11 SUBP023 | Messagedisplay (option) ¢
12 SUBP025 | Binarydecode processing 8
13 SUBPQ27 | Binary code conversion $
14 SUBP031 | Expansion data transfer 3
i5 SUBP032 | Binaryconversion ¢
16 SUBP034 | Binary datasearch $
17 SUBP(035 | Binary index modifier data transfer 13

6.2 TYPES AND LIST OF INSTRUCTIONS
.

No. | Instruction Description RR after Operation
18 SUBP036 | Binary addition $
19 | SUBP037 | Binarysubtraction)
20 SUBP038 | Binary multiplication ¢
21 SUBP039 | Binary division ¢
22 SUBP040 | Binary constant definition §
(7) List of Auxiliary Instructions
The list of auxiliary instructions is indicated below.
No. | Instruction Bescription RR after Operation
1 IPSH Designation of a numeric value used by SUBP instruction —
5 APSH ‘Dcsigna!tion of the address of a register used by SUBP _
nstruction :
3 PUSH Pcs:gngnon of the address of a register used by SUBP .
instruction
4 TPSH Designation of the table number of a PC table used by SUBP _
instruction
5 IPSHD Designation of the data used by SUBP instruction -

6.3

RELAY INSTRUCTIONS

The relay instructions are described below.
(1) LD (Load) RR after operation: RR §

(D Format LD #XX XXX

E: Internal signal name

(@) Reads the signal status (1 or 0) and sets it to RR.
(® Normally, the instruction i$ used for NO contact.

A B c
5 —+ _
#10010 #14123 #30080

LD #10010
AND #14123
OUT #30080

(2) LD-NOT (Load Not) RR after operation: RR {

(1) Format LD-NOT #X X X X X

E Internal signal name

() Reads the signal status (1 or 0) and sets it to RR.

@ Normally, the instruction is used for NC contact.

}—ﬂfﬁ ¥ —\f(%\; |
1 l
#10010 #14123 #11012

LD-NOT #10010
AND -NOT #14123
out #11012

6-8

Example: #10100
#14312

Example: #10100
#14312

- 6.3 RELAY INSTRUCTIONS

(3) AND RR after operation: RR §

(O Format AND #XXXXX

: Internal signal name

(2) Executes AND between the contact and RR and sets the result to RR (logical prod-

uct).
D 1l Il) I
11 — 1 \]
#10012 #14352 #14132 #14040 -
LD #10012
AND #14352
AND #14132 ‘
OUT #14040
(4) AND-NOT RR after operation: RR §

(D Format AND-NOT #X X X X X

: Internal signal name

(@) Executes AND between the inverted contact and RR and sets the result to RR (in-
verted logical product).

]
Hﬂ YR o—{
#10012 #14352 #14132 #14040

LD-NOT #10012
AND - NOT #14352
AND - NOT #14132
our #14040

5) OR "~ S RR after operation: RR §

(1 Format OR #X X XXX : o
: Internal signal name

(@) Executes OR between the contact and RR and sets the result to RR (logical sum).

[Il WY
#10012 #9040

#14352

#14132

LD #10012
OR #14352
OR #4132
OUT #14040

(6} OR-NOT RR after operation: RR {

(D Format OR-NOT #X X X X X

:_ Internal signal name

(2) Executes OR between the inverted contact and RR and sets the result to RR (in-

verted logical sum).
N
' o
#10012 #14040
rd)
#14352
| %
Ll
#14132

LD-NOT #10012
OR - NOT #14352
OR-NOT #14132
ouT #14040

6.3 RELAY INSTRUCTIONS

(7) XOR (Exclusive OR) RR after operation: RR §

(1) Format XOR #X X XXX

: Internal signal name

(@ Sets “not agree” between contact and RR to RR.

‘ Alelc
A B c A B ¢ |[ololo
——tf—r =0 1ol
#10012 #14352| #140 #10012 #14352 #14040| | 11 O
— or 1] 1
#10012 #14352 111 o
LD #10012 LD #10012
AND - NOT #148352 E{ XOR #14352
STR-NOT #10012 OUT #14040
AND #14352 ;
OR- STR i
ouT #14040

(8) XNR (Exclusive NR) RR after operation: RR {

(D Format XNR #XXXXX

: Internal signal name

@ Sets “agree” between contact and RR to BR.

Al B} C

A B c A B c otol 1

A} EHE—N—!H——O—I{ 1700 0
#10012 #14352 | #1404 #10012 #14352 #14040 o1l o
#10012 #14352 : LERHE
LD #10012 LD ' #0012
AND #14352 E{ XNR #14352
STR-NOT #10012 OUT #14040
AND - NOT #14352
OR-STR
ouT #14040

(9) STR (Store) RR after operation: RR §

(@ Format STR #XX XXX T

: Intemnal signal name

() Sets the contents of RR to stack and executes the LD instructjon.

[AR [sto Jst1 | s72]----[sT15]
N N W A
Up to 16 stacks can be used.

(3 Normally, the instruction is used for NO contact.

A —[]C E
#10012 #10013 #14041
1 11
T 3]
#14001 #14002

LD #0012

OR #14001

STR #10013

OR #14002

AND - STR

ouT #14041

{10) STR-NOT (Store NOT) RR after operation: RR {

(D) Format STR-NOT #X XX XX

_ : Internal signal name

(@) Sets the contents of RR to stack and executes the LD-NOT instruction.

A E
)2) 1
A\
#10012 #10013 #14041
B» Lk
Al il
#14001 #14002

LD-NOT #10012
OR-NOT #14001
STR-NOT #1013
OR-NOT #14002
AND -S5TR

out #14041

6.3 RELAY INSTRUCTIONS

(11) AND-STR (AND Store) RR after operation: RR ¢

(O Format AND-STR
(@) Executes AND between RR and stack (STO) and sets the result to RR. Stacks shift

to the left by one.
[rR [sto [stifsra |- | st "
YA _/ ~—
AND
c E
D—-—j—i}ﬁ-——
#10012 #0013 | #1d041
D .
A+
#14001 #14002 '
LD #10012
OR #14001

STR-NOT #10013
OR-NOT #14002

AND-STR
ouT #14041
(12) OR-STR (OR Store) RR after operation: RR §

(D Format OR-STR
(@) Executes OR between RR and stack (STO) and sets the result to RR. Stacks shift

to the left by one.

A B E |
B ¥ O
#10012 #14001 #13041

c D
{}
#10013 #14002
LD #0012
AND #14001
STR #10013
AND #14002 4
OR-8TR :
out #14041

(13) OUT RR after operation. RR-——
(Format OUT #XX XXX

: Internal signal name

(Z) Writes the result of operation (RR) to the relay.

A B c
it S
#10012 #14001 #14041

LD #10012
AND #14001
OUT #14041

6.4 TIMER INSTRUCTIONS
e ——————

6.4 TIMERINSTRUCTIONS

The timer instructions are described below.
(1) TIM (Fixed Timer) RR =1 at time-up

(® Format TIM #XXXX, XXH

L Timer setting (hexagonal)
#1700s

(@ The timer instruction counts the length of time while the ST contact is ON (RR =
1), and turns the TM ON at the preset time.

While the ST contact is OFF (RR = 0), the instruction sets the TM OFF and resets
the timer.

(3@ Setting range is from 0 to 255 in decimal. However, the setting must be made in
hexadecimal.

If the setting is “255", the timer does not count up.

(@ The following five types of timers can be used.

Address No. ~ Timer Type Number of Timers

#1700 to #1709, #1760 to #1769 1 = 8 msec 40
#1300 1o #1309, #1360 to #1369 -
#1710 to #1729, #1790 to #1799 1=0.1 sec 0
#1310 to #1329, #1390 to #1399 -
#1730 to #1749, #1780 to #1789 1 = 50 msec 60
#1330 to #1349, #1380 to #1389 -

#1750 to #1759 _

#1350 to #1359 I=1sec 20

#1770 to #1773 1 =1 min 8

#1370 to #1373 -

* Accuracy of timers depends on the basic unit value.
With a timer of #1770, for example, setting of 2" sets the count-up time in the
range of 61 to 120 seconds since the setting unit of this timer is “1 = 1 minute”.

» Touse the timers of #1300 to #1399, ti)e compiler of Ver. 3.5 or higher is necessary.

]
‘—[]55—-{ TIM| #1705, 03H
#10012 #14041

1
LD #0012 }

TIM #1705,03H

[
OUT #14041 !

Do not use the same address for both a fixed timer and a variable timer. If used, correct
operation cannot be guaranteed. ‘

(2) TMR (Variable Timer) RR = 1 at time-up

@ Format - TMR #xXXX, #XXXX

[)

— Sequencer parameter
address: pm7000s

#1700s

@ The timer instruction counts the length of time while the ST contact is ON (RR =
1), and turns the TM ON at the preset time. '

While the ST contact is OFF (RR = 0), the instruction sets the TM OFF and resets
the timer.

(3 Setting range is from O to 255 in decimal. However, the setting must be made in
hexadecimal.

If the setting is “255”, the timer does not count up.

(@ Write the timer value from the NC keyboard by following the parameter writing
procedure. In this case, the timer value can be written in a decimal value.

(3) Five types of timers can be used as with the TIM instruction.

ST
0— T™R| #1705,#7042
#10012 . #14041

LD #10012
TMR #1705,#7042
OUT #14041

6.5REGISTER INSTRUCTIONS

6.5

REGISTER INSTRUCTIONS

The register instructions are described below.

(1) INR (Increment Register) RR after operation: RR —

+

Format INR #X XXX

The instruction adds “+1” to the content of the register when the ST contact is ON
(RR = 1). If the ST contact is OFF (RR = 0), addition is not executed.

An ST contact must be entered before the INR instruction.

The instruction adds “+1” to the content of the register in intervals of “4 X n” msec
while the ST contact is ON.

There is no function to detect overflow. If a timer counts to FFH, it returns to OH.

®@e G 06

The following examples show when the register of #1500s is used.

ST :
}—#Fogg{mnl #1505 }——{

LD #10012
INR #1505

+—| iNR | #1505 |— [Theragster instructions
. are described below.

(2) DCR (Decrement Register) RR after operation: RR —

(D Format DCR #X X XXX
: Register

A
(@ The instruction adds “~1* to the content of the register when the ST contact is ON
(RR = 1). If the ST contact is OFF (RR = 0}, addition is not executed.

(3 An ST contact must be entered before the DCR instruction.
)

(® The instruction adds “~1” to the content of the register in intervals of “4 X n” msec
while the ST contact is ON.

f—E’B——‘IDCRl #1505 L|———{
#10012 :‘

LD #10012
DCR #1505

ot

(5) Thereis no function to detect underflow. If a timer counts to OH, it retums to FFH.

(3)

(4)

CLR (Clear) . RR after operation: RR—

(» Format CLR #XX XXX

: Register

(@) The instruction clears the content of the register to “0” when the ST contact is ON
(RR = 1). If the ST contact is OFF (RR = 0), the content of the register is not
cleared.

The RR content remains unchanged before and after the execution of the CLR
instruction. .

An ST contact must be enteljed before the CLR instruction.

® ©

The instruction clears the content of the register to “0” in intervals of “4 X n” msec
while the ST contact is ON.

ST
h?ogjgﬂ #1505 [——-}

LD #10012
CLR #1505

CMR (Complement Register) RR after operation: RR —

(® Format CMR #XXXXX

: Register

() The instruction reverses the content of the register when the ST contact is ON (RR
=1). If the ST contact is OFF (RR = 0), the instruction does not reverse the content
of the register.

The RR content remains unchanged before and after the execution of the CMR
instruction.

An ST contact must be entered before the CMR instruction.

® ©

The instruction reverses the content of the register in intervals of “4 n” msec while
the ST contact is ON.

.
’—? F—lcMR] #1508 H
#14001

LD #14001
CMR #1505

6.5REGISTERINSTRUCTIONS

(5)

(6)

i T S s

ADI| (Add Immediate) RR after operation: RR —
(O Format ADI #XXXX, XxH
3
Numeric value (hexadecimal)
Register

(@ The instruction adds the specified numeric value to the content of the register and
stores the result to the register when the ST contactis ON (RR = 1). If the ST con-
tact is OFF (RR = 0), the instruction is not executed.

The RR remains unchanged before and after the execution of the ADI instruction.
(® An ST contact must be entered before the ADI instruction.

(9) The ADI instruction is executed in intervals of “4 % n” msec while the ST contact

is ON.
ST | i
*—{] (- ADI | #1505, 10H
#10012

LD #t0012
ADI #1505, 10H

(5) Thereis no function to detect overflow. Make sure that the result will not exceed
FFH.

SBI {Subtract immediate) RR after operation: RR -

(® Format SBI #x XXX, XXH

+

Numeric value (hexadecimal)
Register

(@ Theinstruction subtracts the speciﬁec:i numeric value from the content of the regis-
ter and stores the result to the register when the ST contact is ON (RR = 1). If the
ST contact is OFF (RR = 0), the instruction is not executed.

't
The RR content remains unchanged before and after the execution of the SBI
instruction. |

'
(3) An ST contact must be entered before the SBI instruction.

@ The SB_f instruction is executed in intervals of “4 X n” msec while the ST contact

is ON.
ST
[sai| #1505, 20H
#10012

T LD #0012
SB! #1505,20H

(5 There is no function to detect underflow. Make sure that “numeric value contents

of register”. 7
(7) ANI (AND Immediate) RR after operation: RR —
(O Format ANI #X XXX, XXH
Numeric value (hexadecimal)
Register

(@ The instruction executes AND between the specified numeric value and the con-
tent of the register and stores the result to the register when the ST contact is ON
(RR = 1). If the ST contact is OFF (RR = 0), the instruction is not executed.

The RR content remains unchanged before and after the execution of the ANI
instruction.

(3) An ST contact must be entered before the ANI instruction.

(4} The ANI instruction is executed in intervals of “4 X n” msec while the ST contact

is ON.
ST
H I—{ani| #1505, SSHH
#10012

LD #10012
ANI #1505, 55H

o~ | D7 [Ds | D5 | D4 D3| D2 | D1 | DO
Register 0 0 1 1 0 0 1 1
Numeﬂé Value 0 1 -0 .1 0 1 0 1
Result 0 0 0 1 0 0 0 1

6-20

8.5REGISTERINSTRUCTIONS

(8) ORI (OR Immediéte) RR after operation: RR —

® Format ORI #x XXX, XXH

Numeric value (hexadecimal)

Register

(@ The instruction executes OR between the specified numeric value and the content
of the register and stores the result to the register when the ST contact is ON (RR
=1). If the ST contact is OFF (RR = 0), the instruction is not executed.

The RR content remains unchanged before and after the execution of the ORI

instruction.
(3 An ST contact must be entered before the ORI instruction.
(4 The ORI instruction is executed in intervals of “4 X n” msec while the ST contact
is ON.
ST
0—ori| #1505,55H
#10012 ‘
LD #10012
ORI #1505,55H .
D7 D6 D5 D4 D3 D2 D1 Do
Register 0 0 o1 1 0 0 1 1
Numeric Value 0 1 0 1 ¢ 1 0 1
Result 0 1 . 1 0 1 1 1

Y

i

(9)° XRI (XOR Immédiate)

@

@

® ©

Format XRI #XXXX, xXH -
[
Numeric value (hexadecimal)
Register
The instruction executes XOR between the specified numeric value and the content

of the register and stores the result to the register when the ST contact is ON (RR
=1). If the ST contact is OFF (RR = 0), the instruction is not executed.

The RR content remains unchanged before and after the execution of the XRI
mstraction. :

An ST contact must be entered before the XRI instruction.

The XRI instruction is executed in intervals of “4 X n” msec while the ST contact

is ON.
ST
*——n[}——{ XRi] #1505,55H ‘————{
#10012

LD #10012
" XRl #1505,55H

—~—~—___| D7 | Ds [D5 | D4 | D8 | D2 | DI | DO
Register 0 0 1 1 0 0 1 1
Numeric Value 0 1 0 1 o 1 0 1
Result 0 1 1 0 0 1 1 0

! 6.5REGISTER INSTRUCTIONS

(10) DEC (Decode) RR afterj operation: RR §

(» Format DEC #XX XX, XXxH
‘ Il

—— Numeric value {hexadecimal)
Register and contact set

(@ The instruction compares the numeric value to the eight-bit data of the register or
contact set and sets “1” to RR (RR = 1) if the result of comparison is “coincide”.
This instruction is executed independent of RR at the input side.

(3 Itis not allowed to enter a contact before the DEC instruction. If a contact must
be entered, use the COI instruction.

(® The DEC instruction is executed in intervals of “4 X n” msec.

{—_{DECI #1505, 104)—-{
#14020

DEC #1505, 10H '
OUT #14020

(11) COI (Coincide immediate) RR after operation: RR §

(0 Format COl #x XXX, XXH
h

Numeric value (hexadecimal)
Register and contact set

(2) When the ST contact is ON (RR = 1), the instruction compares the numeric value
to the eight-bit data of the register or contact set and sets “1” to RR (RR = 1) if the
result of comparison is “coincide”.

If the ST contact is OFF (RR =0), the instruction is not executed. RR remains un-
changed. !

An ST contact must be entered befofe the COI instruction.

®
(® The COl instruction is executed in intervals of “4 X n” msec while the ST contact
is ON. }

!

ST ;
! col] #3500, 104
#14016 #12010

LD #14018 i
CO! #3500, 10H 4
OUT #14010 ’

(12) CMP (Conipare) ' RR after operation: RR §

(D Format CMP #x XXX, .XXH

L Numeric value (hexadecimal)
Register and contact set

(Z) The instruction compares the numeric value to the eight-bit data of the register or
contact set and sets “1” or “0” depending on the result of comparison.

Register (contact) Z Numeric value: RR =1
Register (contact) < Numeric value: RR =0

This instruction is executed independent of RR at the input side.

() Itisnot allowed to enter a contact before the CMP instruction. If a contact must
be entered, use the CPI instruction.

(?) The CMP instruction is executed in intervals of “4 X n” msec.

4 #49510 2 10H
}——l CMP| #3510, 10H ;‘;21 = 0'\1'0H _
#14500 9510 <

CMP #3510, 10H —Z1=0FF
OUT #14500

6.5 REGISTERINSTRUCTIONS

|
(13) CPI (Compare Immediate} RR after operation: RR §

(® Format CPI #X XXX,' XxH

Numeric value (hexadecimal)
Register and contact set
(2) When the ST contact is ON (RR = 1), the instruction compares the numeric value

to the eight-bit data of the register or contact set and sets “1” to RR (RR = 1) if
“Register (contact) 2 Numeric value”.

If the ST contact is OFF (RR = 0), the instruction is not executed. RR remains un-
changed. ‘

r
i

(3) An ST contact must be entered beforé the CPI instruction.

(9 The CPl instruction is executed in intervals of “4 X n” msec while the ST contact
is ON. '

st ‘
] cri| #as10, 104
#14002 — #1450

LD #14002
CPl #3510,10H
OUT #14500

(14) MVI (Move Immediate) RR after operation: RR—

(® Format MVI #X XXX, XXH
])

Numeric value (hexadecimal)

Register

() The function transfers the numeric value to the register when the ST contact is ON
(RR = 1). If the ST contact is OFF (RR = 0), the instruction is not executed.

(3) An ST contact must be entered befof!e the MV1 instruction.
i

(3 The MVl instruction is executed in intervals of “4 % n” msec while the ST contact
is ON. |

ST "
—{mvi | #1505, 15H
#14002

LD #14002 ';
MVl #1505, 15H i

(15) ADD (Add Register) RR after operation: RR —.

(» Format ADD #X XXX, #XXXX
h

LA Register to be operated (R2)
Operating register (R1)

(@) The function executes addition between the content in the register R2 and the con-
tent in register R1 when the SR contact is ON (RR = 1) and stores the result to regis-

ter R2.
The content in register R1 remains unchanged and the status of RR also remains
unchanged. :
If the ST contact is OFF (RR = 0), the instruction is not executed.
_® An ST contact must be entered before the ADD instruction.
@ Th({; ADD instruction is executed in intervals of “4 X n” msec while the ST contact
is ON.

sT
F—] apD| #1501, #1502
#14012

LD #4012
ADD #1501,#1502

(5) Thereisno function to detect overflow. Make sure that the result will not exceed
255 (FFH). :

(16) SUB {Sub Register) RR after operation:. RR—

() The SUB instruction is basically the same as the ADD instruction with the excep-
tion that the SUB instruction executes subtraction.

(R2 -R1 — R2)

' (@) There is no function to detect underflow. Make sure that the following is always
satisfied: R1 £ R2

(17) ANR (AND Register) RR after operation: RR—

(D The ANR instruction is basically the same as the ADD instruction with the excep-
tion that the ANR instruction executes AND operation.

(R2 AND R1 -5 R2) -

6.5REGISTERINSTRUCTIONS

(18) ORR (OR Register) RR after operation: RR —

(D The ORR instruction is basically the same as the ADD instruction with the excep-
tion that the ORR instruction executes OR operation.

(R2 ORR1 - R2)
(19) XRR (XOR Register) RR after operation: RR —

(1) The XOR instruction is basically the same as the ADD instruction with the excep-
tion that the XOR instruction executes XOR operation.

(R2 XOR R1 - R2)

{20) CPR (Compare Register) RR after operation. RR —

(D Format CPR #X XXX, #XXXX
A

T— Register or contact set (R2)
Register or contact set (R1)

(@) The instroction executes comparison between R1 and R2 when the ST contact is
ON (RR = 1), and sets “0” or “1” to Z1 according to the result of comparison.

R1i<R2Z1 =0
Rl 2R2 Z1=1

If the ST contact is OFF (RR = 0), the CPR instruction is not executed. The content
of RR remains at “0”. ‘

After the execution of the CPR instruction, the contents of R1 and R2 remain un-
changed.

An ST contact must be entered befofe the CPR instruction.

(5) The CPR instruction is executed in intervals of “4 X n” msec while the ST contact
is ON. ' /

#

i

ST -
— cPR| #1501, #1502
#14012 | #14123

LD #14012 #1501 < #1502 .. Z1is cleared.
CPR #1501,#1502 #1501 Z #1502 .. Z1is set.

OUT #14123 i

"

(21) COR (Coincide Register) RR after operation: RR§

@ Format COR #X XXX, #XXXX

T—— Register or contact set (R2)
Register or contact set (R1)

(2) The instruction executes comparison between R1 and R2 when the ST contact is
ON (RR = 1), and sets “0” or “1” to Z1 according to the result of comparison.

Rl=R2 Zl1=1
Rl = R2 Z1=0

Ifthe ST contact is OFF (RR =0), the COR instruction is not executed. The content
of RR remains unchanged. '

(3 After the execution of the COR instruction, the contents of R1 and R2 remain un-
changed.

An ST contact must be entered before the COR instruction.

ONO

The COR instrucu'on is executed in intervals of “4 % n’* msec while the ST contact

~ isON.
ST A
] conj #1501, #1502
4012 #14123

#1
LD #14012 #1501 = #1502 ... Z1isset
COR #1501,#1502 #1501 = #1502 ... Z1is cleared.
OUT #14123
(22) MOV (Move Register) RR after operation: RR —
@ Format MOV #X XXX, #XXXX

h
T— Register (R2)
Register (R1)

(2) The function transfers the content of the register R1 to register R2 when the ST
contact s ON (RR = 1).

The content of the register R1 remains unchanged before and after the execution
of the instruction.

If the ST contact is OFF (RR = 0), the MOV instruction is not executed.

(3 An ST contact must be entered before the MOV instruction.

6.5 REGISTERINSTRUCTIONS

(¥ TheMOV instruction is executed in intervals of “4 X n” msec while the ST contact

1s ON.
}——4 |——'|le #1501, #1502 H
#
#14012
MOV #1501, #1502
(23) DST (Data Store) RR after operation: RR —
(® Format DST #XXXX, #XXXX, XxH
Numeric value
(hexadecimal)
Register (R2)
Register (R1)

(@) The instruction executes AND between the content of the register R1 and the nu-
meric value when the ST contact is ON (RR = 1), and stores the result to register
R2.

The content of the register R1 remains unchanged before and after the execution
of the instruction.

If the ST contact is OFF (RR = 0), the DST instruction is not executed.

}

|—|DST| #1501, #1502, OFH }—{

#1 4012
#14012
DST #1501, #1502, OFH

;

D7 D6 Ds D4 D3 D2 D1 DO
RegisterR1 B B B B B B B B
Numeric Value 0 0 ‘ 0 0 1 1 1 1
RegisterR2 0 0 0 0 B B B B
B: “0” or“1”
(® An ST contact must be entered before the DST instruction.
(4) TheDST instruction is executed in intervals of “4 X n” msec while the ST contact
is ON. :

M —
(24) DIN (Data Insert) RR after operation: RR —
(@ Format DIN #X XXX, #XXXX, XxH
. - A
Numeric value
(hexadecimal)
Register (R2)
Register (R1)

(@) The instruction executes AND between R1 and the numeric value, and between R2
and the complement of the numeric value, then OR between the results when the
ST contact is ON (RR = 1) and stores the result of OR to R2. (Extraction of the

data)
If the ST contact is OFF (RR = 0), the DIN instruction is not executed.

(3 An ST contact must be entered before the DIN instruction.

(@ The DIN instruction is executed in intervals of “4 X n” msec while the ST contact

is ON.
ST
F— bin | #1501, #1502, OFH
#14012
© b #14012
DIN #1501, #1502, OFH
D7 D6 D5 . D4 D3 D2 D1 Do
R1 A A A A A A A A
R2 B B B B B B B B
n 0 0 0 0 1 1 1 1
Result B B B B A A A A
AB: “0”or“1”

6.5REGISTERINSTRUCTIONS
_

(25) ADC (Add with Carry) RR after operation: RR §
(O Format ADC #x XXX, #XXXX

T— Register or contact set (R2)
Register or contact set (R1)

(2) The instruction executes addition between the contents in registers R1 and R2, and
the content of RR and stores the result to register R2. If carry occurs “1” is set to
RR. |

H)

(3 The ADC instruction is executed in intervals of “4 X n” msec while the ST contact

is ON. '

To execute the ADC instruction, the:content of RR must be “0”.

ADC #1501, #1502
ADC #1500, #1503
#10012 !

LD-NOT - #10012

ADC #1501, #1502

ADC #1500,#1503

i #1501

E@IE

+)

i

(26) ADDW (ADD Word Register)RR after operation: RR —

® Format ADDW #X X XX, #XXXX

T— Low side of-double-length
register (WR2)
Low side of double-length
register (WR1)

(@ The instruction executes addition between the contents of double-length register
(WR2) and double-length register (WR1) when the ST contact is ON (RR = 1) and
stores the result to double-length register (WR2).

(WR1) + (WR2) — (WR2)
If the ST contact is OFF (RR = 0), the ADDW instruction is not executed.

(3) An ST contact must be entered before the ADDW instruction.

(& The ADDW instruction is executed in intervals of “4 X n” msec while the ST con-

tact is ON.
sT
——{ADDW #1500, #1502
#14012
LD #14012
ADDW #1500,#1502
<Descriptiore
(WR2)
|Content of #1503} Cartent of #1502
(WR1)
+} lcontem of #1500 Comamoinsﬂ
[#1503 #1502 |
(WR2)

() There is no function to detect overflow. Make sure that the result will not exceed
FFFFH.

6.5REGISTERINSTRUCTIONS

(27) SUBW (SUB Word Register) RR after operation: RR —

(D Format SUBW #X XXX, #XXXX

i T— Low side of double-length
‘ register (WR2)
Low side of double-length
register (WR1)

|
(@ The instruction executes subtraction between the contents of double-length regis-

ter (WR2) and double-length register (WR1) when the ST contactis ON (RR = 1)
and stores the result to double-length register (WR2).

(WR2) - (WR1) - (WR2)
If the ST contact is OFF (RR = 0), the SUBW instruction is not executed.

(3 An ST contact must be entered before the SUBW instruction.

(4) The SUBW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON. ‘

ST
F—{suBw| #1500,#1502
#14012

LD #14012
SUBW #1500,#1502

3
(WR2)
Iauemomsoa Contont of #1502 |

(WR1)

-} |comtent ot #1501} Contentof #1500}

<Description> -

[#1503 #1502 !
(WR2)

(3) There is no function to detect underflow. Make sure that the following is always
satisfied: WR1 £ WR2

(28) MULW (MUL Word Register) RR after operation: RR §

® Format | MULW #X XXX, #XXXX

®

® ©

T— Low_ side of double-length
register (WR2)
Register (R1)

The instruction executes multiplication of the contents of double-length register
(WR2) and the register (R1) when the ST contact is ON (RR = 1) and stores the
result to double-length register (WR2).

(WR1) X (R2) - (WR2)
If the ST contact is OFF (RR = 0), the MULW instruction is not executed.

An ST contact must be entered before the MULW instruction.

The MULW instruction is exeéuted in intervals of “4 X n"” msec while the ST con-
tact is ON.

If overflow occurs, in other words, if the result exceeds FFFH, “1” issetto RR (RR
=1).

The lower one word is stored to the register.

ST
—{MuLW| #1500,#1502
#14012

LD #14012
MULW #1500,#1502

<Description>
{WR2)
[Content of #1503} Gortent of #1502|
- R1
”
[#15038 | #1502 |
: WR2)

6.5REGISTERINSTRUCTICNS

| S M ekl]

(29) DIVW (DIV Word Register) RR after operation: RR —

(O Format DIVW #X XXX, #XXXX
[

; T— Low side of double-length
' register (WR2)
EE— Register (R1)

(@) The instruction executes division between the contents of double-length register

(WR?2) and register (R1) when the ST contact is ON (RR = 1) and stores the result
to double-length register (WR2). -

'The content of R1 remains unchanged before and after the execution of the instruc-
tion.

(WR1) + (R2) - (WR2)
If the ST contact is OFF (RR = 0), the DIVW instruction is not executed.

An ST contact must be entered before the DIVW instruction.

® ©

The DIVW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON. ‘-

8T :
——{oivw| #1500,#1502
#14012

Lo #14012
DIVW #1500, #1502

<Dascription>
(WR2)
[content of #1503; Contern o #1502
R1
+) Contant of #1500

[#1503 | ws02 |
(WR2) |

') ‘
(5) The instruction is not executed if the‘ content of R1 is “0”.

1
it

6-35

(30) INRW (Increment Word Register) RR after operation: RR —

(® Format INRW #XXXX
o FX XXX

L Low side of double-length register

(® The instruction adds “+1” to the content of the double-length register when the ST
contact is ON (RR = 1).

G) An ST contact must be entered before the INRW instruction.

(¥) The INRW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON.

*—AWNHW[#1500 H

#14012
lNHW #1500

(5 There is no function to detect overflow. If the result of operation exceeds FFH, it
returns to OH.

(31) DCRW (Decrement Word Register) RR after operation: RR —
(D The DCRW instruction is baswally the same as the INRW instruction with the ex-
ception that the DCRW instruction adds “~1”.

(@ There is no function to detect underflow. If the result of operation exceeds OH, it
returns to FFFH.

(32) CLRW (Clear Word Register) RR after operation: RR —
(© The CLRW instruction is basically the same as the INRW instruction with the ex-

ception that the CLRW instruction clears the content of the double-length register
to “0”.

(33) CMRW (Complement Word Register) RR after operation: RR —

() The CMRW instruction is bas_iéally the same as the INRW instruction with the ex-
ception that the CMRW instruction reverses the content of the double-length regis-
ter.

6.5REGISTERINSTRUCTIONS

(34) CORW {Coincide Word Register) RR after operation: RR §

(® Format CORW #X XXX, #XXXX

T— Double-length register
(WR2)

Double-length register
(WRD

(@ Theinstruction executes comparison between WR1 and WR2 when the ST contact
is ON (RR = I), and sets “0” or “1”.to Z1 according to the result of comparison.

WRI1 =WR2Z1 =1
WR1 = WR2 Z1=0

If the ST contact is OFF (RR = (), the CORW instruction is not executed. The con-
tent of RR remains unchanged.

(3) After the execution of the CORW instruction, the contents of WR1 and WR2 re-
main unchanged. '

*

An ST contact must be entered before the CORW instruction.

®
(5 The CORW instruction is executed in intervals of “4 X n” msec while the ST con-

tact is ON. :
ST -
{-——1 —corw| #1500,#1502 F‘O—‘{
#14012 #14123
LD #14072 #1500 = #1502 Z1is set.

CORW #1500,#1502 %1500 = #1502 Z1iscleared.
ouT #14123 .

(35) CPRW (Compare Word Register) RR after operation: RR {

(D Format ~ CPRW " #XX XX, #XXXX
y

T—' Double-length register
- (WR2)

- T ’ Double-length register

' (WRI)

(@) The instruction executes comparison between WR1 and WR2 when the ST contact
is ON (RR = 1), and sets “0” or “1” to Z1 according to the result of comparison.

WR1 <WR2Z1 =0
WRI1 2 WR2 Zl=1' ‘

If the ST contact is OFF (RR = 0), the CPRW instruction is not executed. The con-
tent of RR remains unchanged.

(3 After the execution of the CPR instruction, the contents of WR1 and WR2 remain

unchanged.
(¥ An ST contact must be entered before the CPRW instruction.
(5) The CPRW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON.
’ ST I Z1
l‘_[cpnw #1500, #1502 f—()—*
#14012 #14123
LD. #14012 #1500 < #1502 Z1is set.
CPRW #1500,#1502 #1500 = #1502 Z1iscleared.

out #14123

6.5REGISTER INSTRUCTIONS

(36) MVIW (Move Immediate Word Register) RR after operation: RR —

® Format MVIW #x XXX, XX XXH

4

Numeric value
(low side)

Numeric value
(high side)
Double-length
register

H

(@) The instruction transfers the numeric value to the register when the ST contact is
ON(RR=1).

If the ST contact 1s OFF (RR = 0), the MVIW instruction is not executed.

(3 An ST contact must be entered before the MVIW instruction.

(#®) The MVIW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON.

ST ‘
— wvw{ #1500,20FFH
#14012 ‘

LD #14012 ‘
MVIW #1500, 20FFE i

(37) DSTW (Data Store Word Register) RR after operation: RR —

®

)

Format - DSTW #X XXX, #XXXX, XXXX
—— Numeric value
Register (WR2)
Register (WR1)
The instruction executes AND between the content of WR1 and the numeric value

when the ST contact is ON (RR = 1) and stores the result to WR2. The content
of the register (WR1) remains unchanged before and after the execution of the
instruction.

If the ST contact is OFF (RR = 0), the DSTW instruction is not executed.

|—ios1'wl #1500, #1502, OFOFH I———{

4012
. #14012
' DSTW #1500, #1502, OFOFH

(3 An ST contact must be entered before the DSTW instruction.
(@) The DSTW instruction is executed in intervals of “4 X n” msec while the ST con-
tact is ON.
D15 (D14 [Dta D12 | D1t {D1o | Do iDs | D7 I D6 | D5 | D4 |D3 | D2 | D1 | DO
Register WR1 B B B B B B|(B|B|B|B|B|B|B|B|B|B
Numeric Value 0 0 0 0 1 1 1 1 0 0 1 1
Register WR1 0 0 0 0 B B|Bi{B |0 ;O 0|B{iB|1B|B

B: “0” or “1”

6.6 CONTROL INSTRUCTIONS

6.6 CONTROLINSTRUCTIONS |

The control instructions are described below. L
[

(1) NOP (No Operation) RR afte]r operation: RR —

(D Format NOR :

(@ No operation is executed and the program advances to the next step.

The content of RR remains unchanged before and after the execution of the instruc-
tion.

(2) MCR (Master Control) RR after operation: RR —

(D Format MCR

(@ The instruction executes the sequence ladder when the both X1 and X2 contacts
are ON(RR = 1). !

If the X1 or/and X2 contacts are OFF (RR =0}, the ladder is executed to END in
the state of “RR = 0. '

X1
#14001 #14002
X3 Z1
— | O
#14003 #13010
X4
— k
#‘|x45004 1401
| 8
#14005 #14012
END

LD #14001 <Description>
AND #14002 If X1 and X2 contacts are OFF, 0" is output to the

MCR internal relays 21, 22, and Z3.
LD #14003

OUT #14010
LD #14004

OUT #14011

LD #14005

QUT #14012 |
END I

(® Itis possible to enter another MCR instruction between the MCR and END instrac-
tions (max. 7 levels). [

When a timer instruction is includedﬂ in the MCR instraction, the timer is cleared
when the MCR instruction is OFF. |
|

(3 Evenif the self-holding circuit is formed between the MCR and END instructions,
the circuit output is OFF when the MCR instruction is OFF.

(3) END (Master Contro!l End) RR after operation: RR —

(® Format END
@ The instruction indicates the end of the MCR instruction.

(4) RET (Return) = ~ RR after operation: RR—

(O Format RET
(@ The RET instruction indicates the end of a sequence program.
(5) RTI (Return Indirect) RR after operation: RR —

() Format RTI
@ The instruction executes the RET instruction when the ST contact is ON.

If the ST contact is OFF, the ladder of the next step is executed.

sT
—]

4011

b~ #1401
RTI

(6) SET (Set Result Register) RR after operation: RR—
(D) Format . SET

() The instruction forcibly sets “1” for “RR”.
(7) RTH (Retum High Sequence) RR after operation: RR—

(1) Format RTH _
(@) The instruction indicates the end of a high-speed processing sequence program.

6.6 CONTROL INSTRUCTIONS
e e e

(8) JMP (Jump) RR aftef operation: RR —

b

(D Format IMP XXX

T— Label number of jump destination

(@) The instruction executes jump to the ADRO12 when the ST contact is ON (RR =
1). {

If the ST contact is OFF (RR = 0), the ladder of the next step is executed.

ST :

{} JMP 012 b
#14000

I . H
1k

! 1
i
1
'

— ;
{ ADR 012 I—‘
LD #14000
JMP 012

(3 With the JMP instruction, the states of output coils up to ADR are retained when
RR =1. ‘

With the MCR instruction, however, the output coil state is not retained.

{9) ADR (Address) ' RR after operation: RR —-

}
(1) Format ADR XXX]

_T—— Lat;bel number

(@ The instruction indicates the destinaﬁon of jump called up by the JMP instruction.
(3 TheJMP and ADR instructions are always used in pairs. The label numbers speci-
fied by the JMP and ADR instructio;ns given in a pair must be the same.
]

“W.
6.7 MACRO INSTRUCTIONS

There are several machine control sequences that cannot be programmed easily if only basic
instructions (relay instructions, register instruction, etc.) are used. The macro instructions
are provided to simplify programming such sequences:

Macro instructions are written in the following format.
SUBP XXX

_1——— ‘Macro instruction number

(1) SUBP 003 (UP: Detecting rising edge of a signal)
(@) Function

The instruction detects the rising edge of a signal.
(b) Format o

"+ Working area address
1+———APSH| #1500 ji

. uP
ACT R1 | - Output of signal rise detection
IL |
#14000 ’ #11000
\ SUBP 003
Contact tc be detected

APSH #1500 Working area address

LD #14000 ., . Contactto be detected

SUBP 003 UP instruction

OUT #11000 ... Output of signal rise detection
(c) Control conditions

(D Working area address (APSH#X X X X)

Designate an address that is not used by other instructions. Prepare one byte for
one SUBP 003. . .

(2) Contact to be detected (ACT) and output of signal rise detection (R1)

) ACT = 0: -Rising edge of a signal is not detected; R1 =0
ACT = 1:. R1 value changes “0” — “1" —+ “0" at the detection of the rising edge.

-

ACT

:01: ! |

T :

o

(3) X “ACT = 1" when the power is turned ON, it is regarded as the rise.

6.7 MACRO INSTRUCTIONS

'

(2) SUBP 004 (DOWN: Detecting falling edge of a signal)

(@) Function ‘
The instruction detects the falling edge of a signal.

(b) Format

: ™ Working area address
t————] apsH| #1500]ﬁ:

DOWN !
A}?T F‘: 1 — Output of signal fall detection
#14000 #11000
SUBP 004 ‘
Contact to be detected !
APSH #1500 Working ared address
LD #14000..... Contact to be detected
suUBP 004 DOWN instruction
OUT #11000..... Qutput of signal fall detsction

il

{c} Control conditions ‘
(D) Working area address (APSH #X X X X)

Designate an address that is not used by other instructions. One byte is necessary
for one SUBP 004.

(@ Contact to be detected (ACT) and output of signal fall detection (R1)

ACT = 1: Falling edge of a signal 'is‘_not detected; R1 =0
ACT = 0: RI value changes “0” — “1” — “0” at the detection of the falling edge.

|‘
f

o [

ACT i

R K

- | 1

A
lol

}
(3 Evenif “ACT = 0" when the power is turned ON, it is not regarded as the falling
edge. ‘

|
i

(3) SUBP 005 (COUNTER)

-

(a} Function
The counter can be used for the following purposes to control machine tool operation
as indicated below according to the applications.
(D Ring counter
The counter is a ring counter. Accordingly, the counter value returns to the initial
value if a count signal is input after counting up to the preset value.
(@) Preset counter

_ The count-up signal is output when the count value reaches the preset value.

(® Up/down counter

The counter can be used for both up and down counters.

(b) Format
—Preset value
t——esn | o P N
- Counteraddress
L . "_'—'[APSHL #1500 g
] I~ Working area ad-
| APSHI #1510 g drass g
Controlconditions § | o - _)
CNO CIR
#14000
PDOWN -
#14001 [~ Count-upoutput
PﬁT #11000
#14002
CT
#14003 SUBP 005
IPSH OFH..... Presetvalue
APSH #1500 Counteraddress
APSH #1510 Working area address
I.D #14000 ... CNO
- STR #14001 ... UPDOWN .~
STR #14002... RST
STR #14003... ACT
SUBP 005...... Counterinstruction
QUT #11000... Count-upoutput

6.7 MACRO INSTRUCTIONS

(¢} Control conditions
(O Designation of preset value (IPSH X X)

besignate the preset value directly.

To designate a variable value, use the PUSH instruction instead of the IPSH
instruction. If the PUSH instruction is used, the contents of the designated address
are used as the preset value. f '

Example: PUSH #1550 '

With the designation indicated above, two bytes of #1550 and #1551 are used.
Even if only one byte is used, #1551, must not be used for other instructions.
(@ Designation of counter address (APSH#X X X X)
Designate the counter address.
If “APSH #1500” is designated, continuous two bytes (#1500 and #1501} are used

for the counter address.

(3 Designation of working area address‘ (APSH#X X X X)

Designate an address that is not used by other instructions. One byte is necessary
for one SUBP 005. ‘

If two or more SUBP 005 instructioné are used, it is necessary to designate an ad-
dress for each SUBP 005 instruction.

(@ Designation of initial value (CNO) ¢

CNO =0: Counting begins with “O’a;;. o,
CNO =1: Counting begins with “1°. (1,

(® Designation of up/down counter (UPDOWN)
|

UPDOWN = 0: Up counter ?i
The initial value is “0” with CNO = 0.
The initial value is “1” with CNO = 1.

]
UPDOWN = 1: Down counter
The initial value is the preset vq}ue.

® Reset (RST)

RST = 0: Reset released

RST=1: Reset - .
R1 is cleared to “0”. .
Counted value is reset to the initial value.

@) Count signal (ACT)

ACT = 0: The counter does not operate. Contents of R1 remain unchanged.
ACT =1: Counts at the rising edge (“0” — “17).

If the content of the counter is greater than the preset value, the counter operates
in the following manner. .

UP counter: The value returns to the initial value at the first ACT signal.
DOWN counter: The value is reduced at each input of ACT until the count value
is reduced to the preset value. After that the counter operates as
* anormal counter.

“gn

ACT

A K

COUNT COUNT

Count-up output (RI)

Up counter: %1” is set for R1 upon counting up to the preset value.
Down counter: = “1” is set for R1 according to the following condition.
(0100 15 0 J I
. Upon countmg down to “0” }
- CNO=1 B S R

. Upon counting down to “1”

6.7 MACRO INSTRUCTIONS

(4) SUBP 006 (ROTATION)

(a) Function

This instruction is used to control rotating units such as turrets, ATCs, and rotary tables.
It has the folowing functions:

* Determination for shorter-path when determining the direction of rotation
* Calculation of the number of steps between the present position and the target posi-

tion

* Calculation of the position one step before the target position or the number of
steps to the position one step before the target position

(b) Format

T ______._--—-—-‘ Caleulationresult address
({APSH; #1510J-'——"
"1~ Target position address
‘-—[APSHl #1520J—’ rostpos
L. Present position address
—
'——{APSH| #1530 '——
____‘_____.--—-' Number of positioning points in one tum
—“-i IPSHI 10H } i 1
4 ga 4
Control conditions RNO T
#14000
#14001
DIR
J A1
#140&(‘32
#14003 #11000
IHC
#14004 }
AGT |
i P i
#14005 SUBP 006 ;“
f
A
APSH #1510 Calculation resultaddress
APSH #1520 Targetposition address
APSH #1530 Presentpositionaddress
IPSH 10H...... Number of rotating unit positicning points
LD #14000 ... Position number; from “0" or from *1”
STR #14001 ... Position data; 1 byte or 2 bytes
STR #14002... Direction of rotation; fixed or shorter path
STR #14003... Target position or position 1 stap before the target position
STR #14004 ... Position number or the number of steps
STR #14005 ... Execution |
SUBP 006 ROT instruction
QUT #11000 ... Outputofdirection of rotation

{¢) Control conditions

©

Designation of calculation result storing addresses (APSH #X X X x)

The ROT instruction calculates the number of steps the rotating unit should rotate,

" the number of steps of the position one step before the target position, or the posi-

tion one step before the target position. The result of calculation is stored in the
designated address. :

Designation of target position address (APSH #X X X X)

Designate the address where the target position is stored: for example, the address
where the T command is output from the NC.

Designation of the present position address (APSH #x X X X)

Designate the address where the present position data are stored: for example, the
address of the counter where the position of the rotating unit is stored.

Designation of the initial value of the position number of the rotating unit (RNO)

RNO = 0: Position number of the rotating unit begins with “0”.
RNO = 1: Position number of the rotating unit-begins with “1”.

Designation of the niumber of bytes of the position data (BYT)

BYT =0: Binary 1 byte '

BYT =1: Binary 2 bytes

Designation of whether or not shorter-path rotation direction is determined (DIR)

DIR = 0: Determination is not made.
Rotation direction is only the FOR direction.
DIR = 1: Determination is made.

Designation of dperation conditions (POS) ‘ -

POS = 0: The number of steps to the target position is calculated.
POS = 1: The position or the number of steps to the position which is one
position or one step before the target position.

Designation of thé position number or the number of steps (INC)

INC=0: The poéition number is calculated.
INC =1: The number of steps is calculated.

6.7 MACRO INSTRUCTIONS

(® Execution command (ACT) .

ACT = 0: ROT instruction is not executed.
R1 is not influenced.
ACT = 1: ROT instruction is executed.
(Not by the rising edge of the signal.)

Output of rotation direction (R1)

R1=0: The rotation direction is *forward”.
Rl =1: The rotation direction is “reverse”.

FOR (forward) direction The direction m.whwh tht? r_:umber increases in

. reference to the index position.

REV (reverse) direction The direction ln.Wthh thrT r_mmbcr decreases in
reference to the index position.

2 .
A A’
) Index Position Index Position
+ If the number of steps to the position one step before the target position is calcu-
lated while the present position is eqbal to the target position (POS =1,INC = 1),
the result of calculation is “0”.

(5) SUBP 007 (CODE CONVERT)

(a) Function

This instruction converts the data by using the conversion table created on the PLC
table. _ :

DATA TABLE

Start address i
. No. in Table Conversion

. Data
Conversion standard data acddress XX X X 0

o EX XXX E\
3A

Conversion data o%acjcllre _ N__/‘E\\

e[GO D

#x XXX

O BYT=0

If “3” is specified for the conversion standard data address as shown above, the
instruction stores the “third data” from the start of the table to the conversion data
output address. . '

The start of the table is Oth.

@ BYT=1

Inthis case, the size of the conversion data table should be an even number of bytes.

DATA TABLE
_ - Startaddress | No. in Table | Conversion
BYT- -0| Data
Conversion standard data address XRXX 0 1 BYJ 0
1 2 __3A
3 4B
2
Convarsion data output address i :
#FX XXX 3A :
4B n-1 !
n n-1
n

(b) Format

Controlconditions §

Ve R

6.7 MACRO INSTRUCTIONS

- Number of conversion

{ IPSH |

14H dataitems

+——— apsH|

I~ Conversionstandard

#1500 1 dataaddress

—— apsH]

- The number of PLC table

’_‘_—___,_.-"
/
#1510 ‘———/-‘ gggr?srssm datacutput
|-‘/__."
“51

——1 TPSI-& #3000 containing the conversion
data
L BYT coDp
#14000
AST
ik #14010
#1 '4'002 SUBRP0OZ] |
PLCTable | No. inTable| Sor ™"
8000) 20H
1 30H
&2'—“‘—*
17 1AH
18 2BH
19 3CH
IPSH 14H...... Size of convarsion data table (number of bytes)
APSH #1500 Conversion standard data address
APSH #1510.... Conversion data output address
TPSH #8000 PLC table number containing the conversion data
LD #14000 ... Datainthe data table; 1 byte, 2 bytes
STR #14001... Resst
STR #14002... Execution
SUBP 007 COD instruction
OUT #14010... Erroroutput
~20H ‘
—30H p
—40H T
: &
Conversion datatable .
—1AH -
12BH :
-3CH]

(c) Control conditions :
(1) Designation of the number of conversion data iters (IPSH X X)

Designate the size of the conversion data table by the number of bytes. The maxi-
mum size is 256 bytes.

Designation of the conversion standard data address (APSH #X X X X)

The data in the conversion data table can be read out by designating the number
in the table. '

Designate the number in the table.

Designation of the conversion data output address (APSH #X X X X)
Designate the addréss where the data, stored at the number in the table which is

specified in item 2 above, should be output.

If “BYT = 17, the upper byte data are output to the address next to the designated
address. o

Designation of Lhe conversion data table (TPSH X X X x)

The size of table differs depending on the PLC table number.

* 9000 to 9007: Max. 256 bytes
* 9008 to 9023: Max. 128 bytes

_Designation of the data size (BYT)

Designate the size of the data in the conversion data table.
BYT =0: 1byte '
BYT =1: 2 bytes

Reset (RST)

Designate whether or not the error output coil R1 is reset.
RST =0: Not reset

RST=1: Reset

Execution command (ACT)

ACT =0: The COD instruction is not executed. R1 remains unchanged.
ACT = 1: The COD instruction is executed.

Error output (R1)

If an error occurs during the execution of the COD instruction (a numeric value
greater than the size of the table is set), “1” is set for “R1” (R1 = 1) indicating the
occurrence of an error.

6.7 MACRO INSTRUCTIONS
L e e e e

{6) SUBP 009 (PATTERN CLEAR) = |

v

+
9

{(a8) Function

3

The instruction writes the same numeric value repeatedly by the designated number of
bytes beginning with the designated address.

Wits patiem P TS %0
. 00
Number of bytes by which \ i 00
the same number is written ,..-/':._QU__J______ \ 20BYTES
repeatedly
00
00
; 00
. 0o J
b
(p) Format
T Write pattemn
TpsH| on = .
Number of bytas by which
- the same number is written
b—TPsn] a0 J=—""1 repeatedy
Controlconditions 4 - Startaddress
———{ APSi—{ #1500 }———/ forwriting
ACT -~ Bl
—It PCLR b Output of completion of write
#14000 #14010
SUBFP 009
PSH OH....... Writepattern -
IPSH 14H...... Number of bytas by which the same number is written repeatedly

APSH #1500 Startaddress for writing

LD #14000 ... Execution .
SUBP #009..... PCLR command

OUT #14010 ... Output of completion of write

(c) Control conditions” ™ -~
(D) Designation of the write pattern (IPSH X X)

Designate the pattern to be written.

To designate a variable pattern, use the PUSH instruction to designate the address
instead of using the IPSH instruction.

® Designatidn of the number of bytes by which the same number is written repeated-
Iy (IPSH X X). . T

Designate the number of bytes to clear the pattern.

(3 Designation of the start address of writing (APSH #X X X X)
Designate the start address of writing.

Pattern clear is executed beginning with this address by the designated number of
bytes.

(® Execution command (ACT)

ACT = 0: The PCLR instruction is executed.
ACT = 1: The PCLR instruction is not executed.

() Output of éomplétion of write R1) -

R1 = 0:; Writing not completed
R1 = 1: Writing completed

7N
(a)

(b)

(c)

6.7 MACRO INSTRUCTIONS

SUBP 011 (PARITY CHECK)

Function

The instruction executes parity check {(even parity or odd parity) for the data to be
checked (1-byte data).

If an error is detected, an error output is given.

Format
S /.——‘-— Check data address
}———iAPSH| #so0 |=—rd -
ot PARI
Control conditions #1 4- 6 00 . R1
RST ‘
#14001 ‘
ACT #14010
1t
#14002 SUBP 011
APSH #1500 Check data address
LD #14000 . .. Designation of parity scheme (even/odd)
STR #14001 ... Reset
STR #14002... Executioncommand
SUBP 011 PARIinstruction
OUT #14010... Erroroutput 4
Control conditions

(D Designation of check data address (APSH #FX XX X)
Designate the address where the data to be checked are stored.

Parity check is made for 1 byte (8 bifs) of data.

(@ Designation of parity scheme (OE) "
OE = 0: Even parity check ;
OE = 1: Odd parity check]

(® Reset (RST)
RST = 0: Error output R1 is not reset.
RST =1: Error output R1 is reset.

(9 Execution command (ACT)
ACT = 0: The PARI instruction is not executed. R1 remains unchanged.
ACT = 1: The PARI instruction is executed

(® Error output (R1) :}
If the result of parity check does not meet the designated parity scheme, “1” is set
for “R1” (R1 = 1).

i

" (8) SUBP 014 (DATA CONVERT)

{a) Function

The instruction converts the binary data to the BCD data and the BCD data to the binary
data. - :

(b) Format
- Inputdata address
—— APsH #1510 #
T Output data address
4{ APSHl #1510]_——‘
. B
Contral conditions WOOOL_ - DCNV
| B 1:JV1 OF"
_#F! $,P [
L #14010
#14002
ACT ,
-#1_ 4003 SUBP 014

APSH #1500 Conversiondataaddress
APSH #1510 Converted data storing address
LD #14000 ... 1-byte or 2-byte processing
STR #14001... BCD — BIN or BIN = BCD
STR #14002... Reset

STR #14003... Execution

SUBP M4 DCNV instruction

OUT #14010... Erroroutput

(c) Control conditions ,
(D Designation of the conversion data address (APSH #X X X X)

Designate the address where the data to be converted are stored.
“BYT=1", cpntinuoué two bytes are used. -

@ Designation of the converted data address

Designate the address where the result of conversion is stored.

If“BYT=1", continuous two bytes are used.

G Designz_;tioﬂ of the number-of bytés (BYT)

BYT = 0: The data to be processed are 1-byte data.
BYT =1: The data to be processed are 2-byte data.

6.7 MACRO INSTRUCTIONS

(@ Designation of the conversion type (CNV)

CNV =0: Conversion of binary data to BCD data
CNV = 1: Conversion of BCD data to binary data

(3 Reset (RST) :

RST = 0:- Error output R1 is not re#et.
RST = 1: Error output R1 is reset. '

(6) Execution command (ACT)

ACT =0: The DCNV instruction is not executed.
ACT = 1: The DCNYV instruction is executed.

(@ Error output (R1)

R1 =0: Normal

Rl =1: Emor ‘
(An attempt is made to convert the binary data when “CNV = 1", or the
byte length is exceeded when “CNV = {".)

(9) SUBP 017 (DATA SEARCH)

(a) Function

The instruction executes search in the table for the data identical to the input data and
stores the address where the identical data are found by the relative address from the

start of the table. If the identical data are not found, an error is output.
i

i
BYT=0: j BYT-1]BYT-0] P2t
inputdata address] o 5
#xXxx XICE \ 1
- 2
Output data address # - 3 3A
#X XXX E:aj ¢ 2 4 4C
| 5 30
3 ﬁ
BYT=1: x—‘-—-—,ﬁ'
input data address | n-1 n-2
#xxxx[__4C ' R
30 ‘I n
Quiput data address i
#X X xx lII }

Note 1: When “BYT = 1", the size of the table must be an even number of bytes.
2: If the data to be searched exist at more than one place; the data found first is regarded as the objective data.
3: The data address to be stored is in units of bytes if “BX:T =0" orin units of words if “BYT = 1".

[

. (b} Format -
_ . Data table size (the number of bytes)
fl iPSH l ZOH%' -
- Start address of the data table
+—— apsH| #1500 %
. - Inputdata address
Controtconditions < . Outputdata address
- APSH #1520
B DSCH
#14000 1 :
- L —E)——- Error output
#1 40.?1 #14010 . .
414002 SUBP 017
PSH 20H...... Data table size (the number of bytes)
APSH #1500 The startaddress of the data table
APSH #1510 Searchdataaddress
APSH #1520 Search result storing address
LD #14000 ... 1-byte or 2-byte processing
STR #14001... Reset -
STR #14002... Execution
SUBP 017 DSCHcommand
OUT #14010... Erroroutput

(c) Control conditions
(D Designation of the data table size (the number of bytes) (IPSH X X X X)

@

Designate the size of the data table by the number of bytes.

Designation of the start address of the data table (APSH #X XX X)

Designate the start address of the data table.

The data table can be crpated at any place.

Designation of the input data address (APSH #X X X 5()

Designate the address where the data to be searched are stored.

Designation of the output data address (APSH #X X X X)

When the specified data are found (R1=0), the number in the table where the found
data are stored is output. Designate the address where that number is stored.

6-60

6.7 MACRQ INSTRUCTIONS

G Designation of the data size (BYT) ;

BYT =0: The data stored in the data table are 1-byte data.
BYT =1: The data stored in the data table are 2-byte data.

(6 Execution command (ACT)
ACT =0: The DSCH instruction is executed.
ACT = 1: The DSCH instruction is not executed.
_ .;

(@ Reset (RST) !

RST =0: Error output R1 is not reset.
RST =1: Error output R1 is reset.

|
Error output (R1))‘
|

R1 = 0: The search data are found. ;
R1 = 1: The search data are not found.

|
(10) SUBP 018 (INDEX DATA MOVE) ;
(a) Function %

The instruction reads the data from the data table or rewrites the data in the data table.

#

(D Reading :E
To read the contents by designatingii“B” (the number in the table).

F

L

: Ne. in Table Data
Address storing the number in the table | 0
BX XXX E\ ’ 1
‘ 2
. b
Addrass storing the VO data - 4
{output data, in this case ﬂ __/""-"—'\
#HX XXX } .
; n-1

6-61

@ Rewriting

‘To rewrite the contents by designating “3” (the number in the table).

Address storing the /O
(input data, in this case)

5 . . No. in Table Data
Address storing the number in the table))
#xxxx:[_3 | N
' - \ >

- 3 30

data . \\%ﬁ

#x X x :
’ n-1
n

(b) Format
f——JPsH] 2o @
t——— apsH| #1500 Jé
_ —i APSHI #1510
Controlconditions L
‘ {p———apsH| #1520
LByt XMOV
#14000
Rt Ervoroutput
* 15619 > #14010
SUBP 018
#14003
IPSH 20H...... Data table size (the number of bytes}
- APSH #1500 The start address of the data table
APSH #1510 ..., Address storing the /O data
B APSH #1520 Address storing the number in the table
- LD #14000 . .. 1-byte or 2-byte processing
STR #14001 ... Readorrewrite
STR #14002... Reset
STR #14003... Exacution
- - SUBP 018...... XMOV command
. OUT #14010... Erroroutput

6-62

.- Data table size (the number of bytes)

L Start address of the data table

I~ /O data storing address

]..--—"'_;_.'-‘-d

| . .
l T Address storing the number in the table
.

6.7 MACRO INSTRUCTIONS

(c) Control conditions : » |
(U Designation of the data table size (number of bytes) (IPSH X X)

Designate the size of the data table by the number of bytes.

() Designation of the start address of the data table (APSH #X X X X)
Designate the start address of the da@ table.

The data table can be created any place.

(® Designation of the address storing the I/O data (APSH #X X X X)

RW =0: The address where the output data are stored,
RW =1: The address where the input data are stored.

(@ Designation of the address storing the number in the table (APSH #X X X X)

The data to be read or rewritten are designated by the number in the table. Desig-
nate the address where this number 1s stored,

(® Designation of the data size (BYT) L

BYT = 0: The data stored in the data table are 1-byte data.
BYT =1: The data stored in the data table are 2-byte data.
]

® Designation of read/write processing (RW)

RW =0:. Data are read from the data table.
RW =1: Datain the data table are rewritten.

(I Reset (RST) j

RST =0: Error output R1 is not reset.
RST=1: Error output R1 is reset. |
Execution command (ACT) ‘}
ACT =0: The XMOYV instruction is executed.
ACT =1: The XMOV instruction is not executed.

(® Error output (R1) i

R1 =0: Normal ‘

Rl =1: Error !
The address specified for stuoring the number in the table is outside the
allowable range. (Data table size is exceeded.)

1

6-63 '

(11) SUBP 023 (MESSAGE DISPLAY)

(a) Function '
' The instruction displays the message on the screen.

—

38 Characters Em) ———————f

-1—,-- eereenen e Ok kNP 777 :_f
S 12
21 : g
o) . HE
18 Display area of PLC message el
s 2
5| :Q
2| &
. LSK ALM |

(D The maximum number of characters per line is 38 characters.

Number Maximum . Quantity
#9024 to #9323 . 38 words 300 Messagetable

() If more than 14 message display requests are given for one dlsplay screen, 14 lines
of messages are displayed in order of priority (lower bit given highest priority).

(3 The message to be displayed or cleared can be selected by setting “0” or *“1” to the
corresponding bit. “1” for the message; to be displayed and “0” for the message

to be cleared.

The correspondence is iridicated below.

. 7 6 5. 4 3 2 1 |0 | #1500
Display request { -
151413121]10] 9 3 | #1501
. 7 6.1 5 4 3 2 1 0 | #1502
Display status —
1514|1312)11 |10] 9 8 | #1503

. 23 | 22 121 |20} 19.| 18 | 17 | 16 j #1504
Display request

31 |36 | 20| 28 |27 | 26 | 25 | 24 | #1505

23 | 22 (2120719 |18 117 | 16 | #1506

31 | 30 [29 128 [27|26 | 251 24 | #1507

Display status {

Note 1: If “1” is set for the bit where no message is stored, blank spaces are displayed.

2: This instractionis used to display messages on the screen. It cannot be used to place the NCin the alarm state (1-block
stop, stop after deccleration, immediate stop).

3: Do not write the data to #1502, #1503, #1506, and #1507, or output the data from these addresses by using the ouT
instruction. ’

6.7 MACRO INSTRUCTIONS

(@ The PLC system has two display screens for display of messages and they are con-
trolled by the DISP (SUBP 023) instruction.

Therefore, if the DISP instruction is sl’aecified more than one time for the same mes-
sage display screen, the display processing is executed more than one time in one
scan and the messages cannot be given correctly. (Messages will be written over.)

Even if the DISP instruction is specified more than one time, it will not cause a
problem when only one DISP instruction is processed in one scan by designating
a JMP or other appropriate instructions.

(b} Format

'
"
L
4

: - Messagse control address
|——[APSH #1500 —
: - Size of message control address
__I IPSH 1 %
J ~ Display screan number
“ L Start address of the PLC table
——{ TPSH #9216 F"——/ containing the messages
DISP
b
suBPOD23 |
Table Address | Db, } Message
#9216 - #15000, SPINDLE ALARM
#9217 #15001: M06 ERROR
#9218 #15002! TAPPING ERROR
#9219 #15003. / e

#9229

#15015; UNUSABLE S-CODE

#9230

#15016| UNUSABLE M-CODE

#9231

#15017| PARAMETER ERBOR

APSH #1500....
IPSH 1H.......
IPSH 1H.......

f
Message control address

Size of message control address

Dispiay screen number

TPSH #9216 Start address of the PLC table containing the messages

SUBP 023......

DISP instruction |

- {¢} Control conditions

®

®

Designation of the mes:;age control address (APSH #X X X X)

Designate the start a&_ldress of the'addresses that request the message.

Designétion of the size of message control address (IPSH X X}

Desigligte the size of the message control address by the number of bytes.

Example:' APSH #1500
IPSH 1H

With the demgnatmn indicated above, contiguous four bytes sta:tmg from #1500
are used. '

If“IPSH2H" is designated instead of “IPSH 1H”, contiguous eight bytes starting
from #1500 are used.

Note: If “IPSH 1H” is designated, a2 maximam of 16 kinds of messages is used.

®

®

Designation of the display screen number (IPSH X)
De51gnate the display page number to be used.

Actotal of two pages (No. 1 and No. 2) can be used for both the h1gh speed proces-
smg and low -speed processmg sequence programs.

Demgnatlon ‘of the start address of the PLC table containing the messages (TPSH
X X X X)

8.7 MACRO INSTRUCTIONS

(d) Example of the application of the DISP instruction

‘When the contact of AL1 to AL4 is turned ON, the message corresponding to the ON
bit is displayed on the screen and the machine operation stops after deceleration.

L]

The display is cleared when the reset signal is input.

i, #3018

f——wsa [4 }——
——wpsH]| 1 |-—
t——TPsH| #0088 ———t

DISP -

AL1 oAy
T #1400 " -
52 3
#1 Aég1) ’m’ Display request
T rdooe , #1002
A4 &
#14003 #5003
RST
pealy CLRW #1500 |—————1 Displayreset
cmw{ #1504 }—
ERR
~—LCMP 1#1500, 01]—O—— Stop after deceleration

sSuBsP 023 |

o

}
(e) Selection of the USER MESSAGE screen
On the USER MESSAGE screen, the mé;ssage sent from the PLC is displayed.

® 6

Press the [COMMON] process soft»%cey.
Press the [ALM] job soft-key. !

Press the FUNCTION SELECT key;,

6-67

User’s messages are displayed from'the Ist to the 14th line.

For the display of user’s messages, two pages exist. To change the display page
between No. 1 and No. 2 pages, use the page keys.

(12) SUBP 025 (Binary Decoding)

(a) Function
The instruction executes decoding of binary data (1 byte or 2 bytes length).

Inthis decodmg, the code data are converted into b1ts and written to the designated area.

#bbbb

sasaa . d15d14 d1do
: Designated 0to15
nnnn | decodetable 16 o 31
' 321047
Tuming ON bit “n” 481063
i
1008 t0 1023
#9999
(b} Format)
. APSH #aaaa Code data area
APSH #bbbb Start address of the decode table
IPSH g-. : Max. decode number
LD #cccee | Selection of byte or word
0 = Byte
STR #eecee Reset
STR #fffff - Execution
SUBP 025 7
OUT #ddddd . Error outpat
Byte (#ccee.c)

=0: Codedata ... 0to 255
=1: Code data ... Oto 1023

¢ Decode table start number
* Max. decode number: 1 to 1023

;
|
4
(c) Control conditions !

(D Designation of the data code area (APSH X X)

Designate the address of the code tol‘ be decoded.
!
Two bytes are used. !

@ Designation of the start address of the decode table (APSH X X X X)
Designate the start address of the table to be decoded.

(3) Maximum decode number (IPSH X X X X)

Designate the maximum number of the decode bits.

(@ Designation of the size of the data in the decode area (LD x X)

LD =0: The size of the data in the conversion table is 1 byte.
LD =1: The size of the data in the conversion table is 2 bytes,

[

(3) Reset (RST) ’

RST =0: Error output R1 is not reset.
RST =1: Error output R1 is reset.

+

(® Execution command (ACT)

ACT =0: The binary decode instruction is executed. R1 remains unchanged.
ACT = 1: The binary decode instruf:tion is not executed.

@ Error output (R1) ‘

il

R1 =0: Normal }

R1 =1: Error '
A numeric value greater than the table size is set.

|

(d) Example of ladder

APSH
APSH .
IPSH
LD

STR
STR
SUBP
ouT

#aaaa - - Code data area
#bbbb - Start address of the decode table
#oppg Max. decode number
#ecec.c Selection of byte or word
0 = Byte
feeee.e Reset
#Tff.f) Execution
025 L
#dddd.d Error output

#bbbb

- —

#eeece

—_-{ }— - SUBP025

#ooo00

___O_

#Qdddd

i

#ifEff

4

(13) SUBP 027 (Binary Code Conversion) -

(a) Function

(b)

The instruction converts the data by using the conversion table created on the PLC

table.

From the contents of data “0” to “n” (= “ ”) of the conversion standard data address,
the data in the “m”th line from the start of the table data are read and output to the con-

version data output address.

For the type of output data, selection is possible from byte, word, and double-word.

The relationship between the number in the table and the table is as indicated below

il
I

according to the data length.
Double-word Word Byte Table
0
0
1
0
P2
1 .
3
1 2 it 4
- . 'l "
n n ‘n
Format ‘
IPSH a Size of the conversion table (number of bytes)
APSH #bbbb Conversion standard data address
APSH #ccee Conversion data output address
TPSH #9ddd Table number of the conversion data
IPSH ¢ e=0: Byte !
1: Word |
2: Double-word
LD #ifHE.f Reset L
STR #ggege o Execution "
SUBP 027]
OUT #hhhhh Error output !

(¢) Control conditions. - S

®

Designation of the size of the conversion data table (IPSH X. X)
Deéignate the size of the conversion data table by the number of bytes.

The maximum size is 256 bytes.

Desig'nation of the conversion standard data table address (APSH X X X X)

The data in the conversion data table can be read By designating the number in the
table. :

Designate this number in the table.
Designation of tlie‘ conversion data output address (APSH X X X X)

Designate the address where the data stored at the number in the table designated
in item (2) above are output.

Designation of the number of conversion table (TPSH X X X X)

The size of the table differs depending on the PL.C number.
9000 to 9007: =~ Max. 256 bytes
9008 to 9023: - Max. 128 bytes

Designation of the size of the data in conversion table (IPSH X X)

e=1: 1byte
e=2: 2bytes
e=3: 4 bytes
Reset (RST)

RST =0: Error output R1 is not reset.
RST =1: Error output Rl is reset.

Execution command (ACT)

ACT = 0: The binary code conversion instruction is executed.
R1 remains unchanged.
ACT = 1: The binary code conversion instruction is not executed.

Error output (R1)
R1 =0: Normal
R1 =1: Error

A numeric value greater than the table size is set.

&
i
|
|
|
’
b
;
|

(d) Example of ladder)
IPSH a Size of the conversion table (number of bytes)

APSH #bbbb Conversion standard data address
. APSH #ccec Conversion data output address
TPSH #9ddd Table number (}f the conversion data
IPSH e = 0: Byte
=1: Word ‘
= 2: Double-word
LD #1TE.f Reset
STR #ggep.g Execution
SUBP 027 -
OUT #hhhh.h Error output

#bbbb

i

' ~

@
—— f
#tifee #hhhhh
I { SUBP027

#99g9gg

(14) SUBP 031 (Double-word Data Convert) .

(@)

®)

()

Function ..
The instruction converts the binary data to BCD data and the BCD data to binary data.

Format
APSH #asaa _ Conversion data address
APSH #bbbb " Converted data address
LD #ceee.c =1: 4 bytes

_ . =0: Skip)
STR = #dddd.d BCD — BIN or BIN — BCD
STR #eeee.e ‘Reset ’
STR #fTH £ Execution
SUBP 031 _
OUT #ggggg - Error output
Control conditions

@ Desigr{ation of the convergion data address (APSH X X X X)
Designate the address where the data to be converted are stored.
" Both the binary and BCD data use 4 bytes.
The sign of the BCD data is set at the most significant bit position.

Therefore, the expression of a numeric value within the range of 39999999 is pos-
sible. :

(@ Designation of the converted data address
Designate the address where the result of conversion is stored.
Both the binary and BCD data use 4 bytes.

® Designation of the number of bytes
LD ={0: No conversion

(® Designation of the conversion type

STR = 0: Conversion of binary data to BCD data
STR = 1: Conversion of BCD data to binary data

(5) Reset (RST)

RST =0: Error output R1 is not reset.
RST=1: Error output R1 is reset.

(d)

(® Execution command (ACT) i

ACT =0: The double-word data conversion instruction is not executed.
ACT = 1: The double-word data conversion instruction is executed.

(@ Error output (R1)

R1 =0: Normal
R1=1: Error

Example of ladder

APSH #aaaa Conversion data address
APSH #bbbb Converted data address
LD #ceee.c =1: 4 bytes
=0: Skip -
STR #dddd.d BCD — BIN or BIN - BCD
STR fleeee.e Reset :
STR #fEf Execution
SUBP 031
OUT #gggs.g Error output

#bbbb |

| | Y
I /
#ccece . #9999
— —— susrost |
#ddddd |
I | ‘
I .
#ecoee)
—— %
S ‘F
|
|
i\
!
|
i
[
|
1
6-75

(15) SUBP 032 (Binary Comparison)

(a) Function

(b)

(¢

The instruction executes comparison of the 1-, 2-, or 4-byte length binary data and out-
puts the result of comparison. Both the input data and the data for comparison must

be the data of the specified length.
Format
APSH #asaa Input data address
APSH #bbbb = Comparison data address
APSH #hhhh Comparison result output address
IPSH n =0:1byte. ‘
' = 1: 2 bytes

. _ =2: 4 bytes

LD L Execution command

SUBP 032

Control conditions

0

5

Designation_ of the input data address (APSH X X X X)
Designate the address where the data to be compared are stored.

Designation of the comparison data address

Designate the address where the comparison data are stored.

Designation of the size of the data

=0: 1 byte
=1: 2bytes
=2: 4 bytes

Execution command (ACT)

ACT = 0: The binary data comparison instruction is not executed.
ACT = 1; The binary data comparison instruction is executed.

Result of comparison

#hhhh

d0=1 aaaaz=Dbbbb
dl =1 aaaa > bbbb
d2=1 aaaa < bbbb

(d) Example of ladder "
APSH #aaaa Input data address

APSH #bbbb Comparison data address
APSH #hhhh Comparison result output address
IPSH n =0: 1byte 3
. = 1: 2 bytes
=2: 4 bytes
LD #1ffE.f Execution command
SUBP 032 :
'
; #aaaa E

| |

I
#ifife]
SUBPQ32

(16) SUBP 034 (Binary Data Search)-

(a) Function

The instruction executes search in the table for the data identical to the input data and
stores the address where the identical data are found by the relative address from the
start of the table. If the identical data aré not found, an error is output.

The relationship between the numbers in the data table and the designated table is as
indicated below according to the data length.

Double-word 7 Word Byte Table
: : 0
o
. 1
0
2
1
j 3
1 2 4
n n n
{b) Format
IPSH a The size of the data table (number of bytes)
APSH #bbbb - Start address of the data table
APSH #hhhh Search data address
APSH #ccce Search result storing address
Ipsh e =0: Byte
' =1: Word
) = 2: Double-word
LD #fTHT.f Reset
STR #ggge.g Execution
SUBP 034 .
OUT #hhhhh Error output

(c) Control conditions

©

@

Designation of the size of the data table (number of bytes) (IPSH x X)

Designate the size of the data table by the number of bytes.

¢
Designation of the start address of the data table (APSH X X X X)
Designate the start address of the data table.

The data table can be created at any place.

Designation of the input data address (APSH X X X X)

Designate the address where the data to be searched are stored.

Designation of the output data addre%ss (APSH #xX X X X)

When the specified data are found (R1=0), the number in the table where the found
data are stored is output. Designate the address where that number is stored.
Designation of the data size (IPSH x x)

=0: The data stored in the data table are 1-byte data.
=1: The data stored in the data table are 2-byte data.
=2: The data stored in the data table are 4-byte data.

Reset (RST) ‘

RST = 0: Error output R1 is not reset.
RST =1: Emor output R1 is reset.

Execution command (ACT) *
. !
ACT =0: Thebinary-data search ingtruction is executed. R1 remains unchanged.
ACT =1: The binary-data search instruction is not executed.
i

Error output (R1) i!

R1 = 0: The search data are found. :l
R1 = 1: The search data are not found.

'T

|
|

6-79 g

(d) Example of ladder . _
IPSH .a ~+ The size of the data table (number of bytes)

APSH . #bbbb Start address of the data table-

APSH #hhhh Search data address

APSH #ccee - Search result storing address

Ipsh e © =0 Byte T
=1: Word

7 =2: Double-word
1D #f £ - - Reset

STR #gggg.g- * Execution
SUBP 034 o .
OUT #hhhh.h Error output

s

#bbbb - -
— #hhhh :

— #eoce
11 O :
i]

#Effff #hhhhh

—| —— sueroas

#9g9999

(17) SUBP 035 (Binary Index Modifier Data Transfer)

(a) Function ;
The instruction reads the data from the data table or rewrites the data in the data table.

For the output data, selection is possible'from byte, word, and double-word.

The relationship between the numbers in the data table and the designated table is as
indicated below according to the data length.

Double-word Word Byte Table
0
0
1
0 .
2
1
© 3
1 2 1 4
. j
n n .
1
(b) Format ‘
i
IPSH a The size of the data table (number of bytes)
APSH #bbbb Start address of the data table
APSH #iiii I/O data storing address
APSH #ccce Address storing the number in the table
IPSH e =0: Byte .
= 1: Word .
= 2: Double-word
LD #fffff Reset !
STR #dddd.d Read or rewrite
STR #ggog g Execution !
SUBP 035 y l
OUT #hhhh.h Error output |

't

(c) Control conditions

®

Designation of the size of the data table (number of bytes) (IPSH X X)

. Designate the’ s1ze of the data table by the ndmber of bytes.

@

®

®

Designation of the start address of the data table (APSH X X X X)
Designate the start address of the data table.

The data table can be created at any place.

Designation of the address storing the I/O data (APSH X X X X)
Des:gnate the address where the data to be searched are stored.

Designation of the address storing the number in the table (APSH X X X X)

The data to be read or rewritten are designated by the number in the table. Desig-
nate the address where this number is stored. .

Designation of the data size (IPSH X X)

=0: The data stored in the data table are 1-byte data.
=1: The data stored in the data table are 2-byte data.
=72: The data stored in the data table are 4-byte data.
Designation of read}write processing

=0: Data are read from the data table.

= 1: Data in the data table are rewritten.

Reset (RST)

RST =0: Error output R1 is not reset.

RST = 1: Error output R1 is reset.

Execution command (ACT)

ACT = 0: The binary-index modifier data transfer instruction is executed
R1 remains unchanged.
ACT = 1: The binary-index modifier data transfer instruction is not executed

(® Error output (R1)

If an error occurs when this instruction is executed, “1” is set for “R1” {R1=1)
10 indicate the occurrence of an error. -

An error occurs in the following cases:

* A numeric value greater than the size of the data table is set.
* The size of the data table is not a multiple of the designated data size.

Example: Data size = Byte 1 X N bytes

(d) Example of ladder

IPSH a
APSH #bbbb
APSH #iiii
APSH #ccee
IPSH e

LD #fHfE.£
STR #dddd.d
STR #ggge.g
SUBP 035
OUT #hhhhh

Word "2 % N bytes
Double-word 4 X N bytes
3
L
The size of the data table (number of bytes)

Start address of the data table

" YO data storing address

Address storing the number in the table
=0: Byte ¢

=1: Word

= 2: Double-word

Reset -

Read or rewnite

Execution

Error output

|

o
L

§

Y

S
#hhhhh

|
|

— < |—
|
|
|

e

SUBPO35

(18) SUBP 036 (Binary-data Addition)

" (a)

(b)

(©)

Function N .

The result of operation is set to the registefs: the numeric value of operation result is
set to the register designated by the operation result output address and the sign in-
formation to #2999. ~) o -

Format

APSH - -- ilazaa Augend data address
APSH(ipshd) #bbbb . Addend data address

APSH #ccee - Operation result output address
IPSH n Operation type

LD #dddd.d Reset

STR . .~ #eeeee Execution

SUBP 036 a

OUT '~ . #fffff Error output |

Control conditions)

(D Designation of the augend data address
Designate the address where the augend data are stored.

(@) Designation of the addend data address
Designate the address where the addend data are stored.

(® Designation of the operation result output address
Designate_ the address where the result of operation is output.

The address is stored as 4-byte data..

(® Designation of the type of operation
Designate the data length and the data type of augend/addend.

1st digit: =0: 1byte
-=.1:. 2 bytes
=2: 4bytes
2nd digit: =0: Constant data
=1 Addressdata -

®

Execution command (ACT)

ACT =0: The binary-data addition;}instmction is executed.
R1 remains unchanged.
ACT =1: The binary-data addition ‘instruction is not executed.

Error cutput

= 0: Normal
= 1: Error

#2999

Operation status is written.

d0=1: 0
dl = 1: Negative
d5=1: Overflow

(19) SUBP 037 (Binary-data Subtraction).

(a) Function ,

(b}

(c)

The instruction executes subtraction of the 1-, 2-, or 4-byte binary data.

The result of operation is set to the registers: the numeric value of operation result is
set to the register designated by the operation result output address and the sign in-

formation to #2999,

Format

APSH #aaaa Minuend data address
APSH(ipshd) #bbbb Subtrahend clpta address
APSH #ceee Operation result output address
IPSH n Operation type

1D #dddd.d Reset !

STR #eeee.e Execution

SUBP 037

OouUT #ffit . Error output

Control conditions

®

@

Designation of the minuend data address

Designate the address where the minuend data are stored.
Designation of the subtrahend data address
Designate the address where the sub}rahend data are stored.

It is also possible to subtract the designatcd data.

(3 - Designation of the operation result output address
Designate the address where the result of operation is output.

The address is stored as 4-byte data.

(@ Designation of the type of operation

- ‘Designate the data length and the data type of minuend/subtrahend.

Ist digit: =0: 1byte

=1: .2 bytes

=2: 4 bytes
2nd digit: =0: Constant data
© =1: Address data

G) Execiition command (ACT) i

ACT = 0: The binary-data subtraction instruction is executed.
R1 remains unchanged.)
ACT = 1: The binary-data subtraction instruction is not executed.

(® Error output

= 0: Normal
= 1: Error

@ #2999

Operation status is written.

do=1: 0 .
dl =1: Negative ' © T
d5=1: Overflow

(20) SUBP 038 (Bina'ry-data Multiplication)

(a)

(b)

©

Function :
The instruction executes multiplication c?f 1-, 2-, or 4-byte binary data.

The result of operation is set to the registers: the numeric value of operation result is
set to the register designated by the operation result output address and the sign in-
formation to #2999.)

Format !

APSH #aaaa Multiplicand data address
APSH(ipshd) #bbbb Multiplier data address

APSH #ecee Operation result output address
IPSH n Operation type

LD #dddd.d Reset '

STR #eece.e Execution

SUBP 038 o

ouT #1ftf.f Error output -

Control conditions L

(D Designation of the multiplicand-data: address

Designate the address where the multiplicand data are stored.
@ Designation of the multiplier data address

Designate the address where the mu}tiplier data are stored.

(3 Designation of the operation result oﬁtput address
Designate the address where the result of operation is output.
The address is stored as 4-byte data.gi
(® Designation of the type of Operation;j
Designate the data length and the d%ta type of multiplicand/multiplier.
st digit: =0: 1 byte

i

=1: 2bytes

=2: 4 bytes i
2nd digit: =0: Constant data |

=1: Address data

(® Execution command (ACT)

ACT =0: The binary-data mulﬁpliéation instruction is executed.
R1 remains unchanged. ,
ACT =1: The binary-data multiplication instruction is not executed.

(6) Error output
= 0: Normal
= 11 Error)
@ #2999
Operation status is written.
do=1: 0) -
dl =1: Negative) '
d5 = 1:- Overflow
'(21) SUBP 039 (Binary-data Division)
{a) Function

The instruction executes division of 1-, 2-, or 4-byte binary data.

The result of operation is set to the registers: the numeric value of operation result is
set to the register designated by the operation result output address and the sign in-
formation to #2999.

(b) Format
APSH #aaaa Dividend data address
APSH (ipshd) #bbbb Divisor data address
APSH #ceee Operation result output address
IPSH n Operation type :
LD #dddd.d Reset
STR #eeee.e Execution
SUBP 039

ouT #TfL .. Error output

- -

(c) Control conditions

®

Designation of the dividend data address

A besignate the address where the diviiden.d data are stored.

©)

@

Designation of the divisor data address
Designate the address where the div;isor data are stored.

Designation of the operation result output address
Designate the address where the result of operation is output.

The address is stored as 4-byte data,

Designation of the type of operation
Designate the data length and the data type of dividend/divisor.

Ist digit: =0: 1byte 1

=1: 2bytes .
=2: 4 bytes ‘

2nd digit: =0: Constantdata
=1: Addressdata

Execution command (ACT)

ACT = 0: The binary-data division instruction is executed.
R1 remains unchanged. |
ACT =1: The binary-data division instruction is not executed.

i
= 0: Normal [
= 1: Error

Error output

|

#2999

Operation status is written.

do=1: 0

dl =1: Negative
d5=1: Overflow
Division by “0” causes overflow. l

(d) Example of ladder

- APSH

APSH -

APSH
IPSH
LD

.STR .

SUBP
. OUT

#aaaa
#bbbb
#ccee

n .
#dddd.d -
#eeee.e

036 to 040 .
#EfE.f

_ #bbbb
n

Augend data address
Addend data address
Operation result output address

Operation type

-Reset

Execution

-Error output

Y

#ecesn

|
I B
dddd

H
o

p—

suspoas | *fifff

SUBP039

(22) SUBP 040 (Binary Constant Definitidn)

(a) Function ;

(b)

()

The instruction defines 1-, 2-, or 4-byte data

_ Setaconstant (decimal) to the constant output address by the specified number of bytes

in the binary number.

Format ;
APSH #aaaa Output address’
IPSHD 12345 Setting data l
IPSH n Byte length |
LD #bbbb.b Execution
SUBP 40 i

Control conditions

®

o

Designation of the constant output address
Designate the address where the dat? are output in binary format.

Designation of setting data :t

Set the constant in decimal.

Data length must be within the spemﬁed byte length. The range of setting data is
+ 999999999,

Designation of byte length
=0:1 byte

= 1: 2 bytes
= 2:4 bytes ;

Execution command (ACT) [

b, . _
ACT = 0: The binary constant definition instruction is executed.
R1 remains unchanged.
ACT =1: The binary constant deﬁmtlon instruction is not executed.

\
i
%
|
i
i

]

(d) Example of ladder

APSH #aaaa Output address
IPSHD. b " Setting data
IPSH n. . - Bytelength
LD #bbbbb - - Execution
SUBP 40 T

Tt

——

#bbbbb
SUBP040

(23) Auxiliary Instruction of Macro Instruction

(a)

(b)

(c)

(d)

(e)

IPSH (Immediate Pus) RR afteif operation: RR-—
@ Format PSH x x X xH
E »Numeric value (Hexadecimal)
(@ Directly designate the numeric value which i is used by SUBP.
APSH (Address Pus) RR aftel: operation; RR —
(D Format APSH #x X X X
[Register
(@ Designate the address of the register to be used by SUBP.
PUSH (Push) RR after operation: RR —
® Format PUSH #x x X X
E Register
(@ Designate the address where the numeric value to be used by SUBP is stored.
TPSH (Table Push) RR after operation: RR —
@ Format TPSH #X X X X
E Table number
(@ Designate the table number of the PLC table which is used by SUBP.
IPSHD RR after operation: RR —
@ Format PSHD X X X X

1

r{

= Constant
which is used by SUBP 036 to 040,

@ Directly designate the numeric value
i
)
|

4
i
nl
i
it

6-93

JXSD OFFLINE SYSTEM

Chapter 7 describes the J?(SD offline system.
|

7.1 QUTLINE OF THE JXSD OFFLINE

SYSTEM .o, 7-2
!
72 SOURCEFILE .. \oooneeeeneeeanns, 7-6
7.3 COMPILER R FORUUUURRRRS 7-18
7.4 LINKER ..o i 7-21
75 REMOTE CONTROLLER
OPERATION o' e oo 7-24
|
7.6 LIST OF ERROR MESSAGES
AND WARNING MESSAGES 7-33
J

7.1

7.1.1

712

713

OUTLINE OF THE JXSD OFFLINE SYSTEM

The JXSD offline system is used to create the sequence ladder by using the compiler, linker,
and download tools among the utilities provided for the development of PLC sequence pro-
grams. These tools run on the MS-DOS.)

Operating Environment

Hardware:- IBM PC compatibles
Os: - MS-DOS Ver. 6.2 or above
Memory: 400K bytes minimum

Execution Files i

The JXSD offline systems consists of the following software packages.

« IXLCOMPEXE Ladder language compiler
« IXLLINKEXE Linker
* JXPCCOM.EXE JXSD remote controller

QOutline of the Execution Files”

(1) Ladder Language Compiler

The compiler compiles the source file, coded using the ladder language, to generate the
object file.

The processing objective data by the compiler is indicated below.

* Version No. ‘
*» High-speed scar ladder program
» Low-speed scan ladder program . .
» Low-speed ladder stop count
* Conversion data table
" » Message data table * : o
« Symbol data - o : '

(2) Linker

The linker generates the binary file in the executable format from the object file which
is output by the compiler. ' '

(3) JXSD Remote Controller .

. By connecting the PLC and the IBM PC compatiblé'p‘ersonal computer with the
RS-232C interface, the JXSD remote controller executes the following processing.

* Display of the PLC’s ladder execution status
* Downloading the binary file to the PLC (PC — PLC)
» Execution/stop control of the ladder

7.2

7.1 OQUTUNE OF THE JXSD OFFLINE SYSTEM

7.1.4 Ladder Program Development Procedure

The following chart shows the procedure for tieveloping the ladder program.

j
— | Editor I Creatingthe source file
I}

|

| YOOOX.SRC —] Complaﬁonof!ﬁ'iasourceﬁle

l i

| compier | Compiles the source fle by JXLCOMP.
¢
| XOOX.0BY I Completion of the object file

[xoooocoss L|—|

I Object files already completed
¥ i "

] Linker | Generates the file in the executable format by JXLLINK.
| *BIN | :
— 1
Remote Controller Flash ROM boot,
[JCPCCOM] fBootmoede]
Downioading to the PLC
¢ To flash ROM
Checking the ladder by
exscuting it

'

If corraction is necessary

|

i

(D Create the source file in the ladder language.

Any editor that can create a DOS file can be used for creatmg the source file in the
ladder language. -

Create the source file by using an appropriate editor_.
For details of the ladder lan guage format, refer to the explanation on the compiler.

YELADDER SRC

{ A L) el il LIN \
Tl x _YELADDER.SRC * '

RNk Rk R kKRR R R R RARRRRERREE
»

VERSION JX$D LADDER
LOWSTOPCOUNT1 ; Low-speed scan iadder program stop count

HIGHSEQUENCE ; High-speed scan ladder program
INCLUDE LAD.HI ;
ENDP

LOWSEQUENCE ; Low-speed scan ladder program
INCLUDE LAD.LOY

INCLUDE LAD.LO2 .

INGLUDE LADLO3 . -- :

ENDP o ' -
CONVERSION s Conversiondata

INCLUDE CONV.DAT

ENDP

MASSAGE ;. Messagedata
INCLUDE MESSAGE.DAT '

ENDP

SYMBOL ; Symboldata
INCLUDE SYMBOL.DAT ‘ :

ENDP
. : J

(@ Compile the created or modified source file.
Generate the object file by using the JXLCOMP.

For the operation procedure, refer to the explanation on the compiler.

7.1 OUTUNE OF THE JXSD OFFLINE SYSTEM
_

(® By consolidating the object files into a single file, generate the executable file.
Use the JXLLINK to generate the executable file.
i

For the operation procedure, refer td the explanation on the linker.

This link processing is always necessary even if only one object file has been gen-
erated.

The executable file (*.BIN) generated by the linker is the binary file having the
same configuration as the file written to the PLC’s flash ROM.

Download the executable file (* BIN) to the PLC,
®@

Connect the Personal Computer to the JXSD with an RS-232C cable and start the
JXPCCOM. Use the object download function of the JXPCCOM to download the
generated executable files to the PLC.

i
For the operation procedure of the JXPCCOM refer to the explanation on the re-
mote controller. \

® Execute and check the ladder. |

After downloading the ladder, execuite it to check the contents.

!
If an error is found in the ladder, correct the error by returning to step () above.
To reduce this debugging time, it is recommended to divide the source file into sev-
eral files so that the compiling time can be reduced.

'

(® Boot the sequence ladder to the flash ROM.

After finishing debugging, boot the r.i;orrect sequence ladder by using the NC boot
mode.

7.2 SOURCE FILE

The format of the source file input to the compiler is described below.

7.2.1 *Source File Format -

(1) Definition of Character Codes

* All data including the comments and character data must be ASCIL.
Although upper case and lower case characters can be used, they are not distin-
guished for the internal processing. When entering characters in ladder prograrms,
pay attention to this point:
« Note that all characters are processed in upper case characters.
(2) Definition of Num'érip Values

o Decimal number T 19,1234

» Hexadecimal number _ 1234H, 0ab12H, OFFH (note)
» Characters aBc,a, Z

¢ Contact/ladder table number #1000, #10012, #9024

- Note: Place “0” at the beginning of a hex:;deci.ma.l number which begins with A to F.
(3) Pseudo Instructions .

The following characters are processed as pseudo instructions. These pseudo instruc-
tions can be used only once in one source file.

* version

« lowsequence
* message

¢ include

¢ highsequence -
* lowstopcount
* endp

* conversion

(4) Definition of Versioh Number

For one object file where high-speed scan ladder, low-speed scan ladder, tables and
symbols are consolidated, one version number is assigned.

7.2 SOURCE FILE

- - 0 DU

(5) Nesting in the Source File

The source file of a ladder program will Ei1sua.lly be a very large file and editing is not
a simple task. :

In compilation, the included file function allows the several divided files to be compiled

in one file, r

[Main]{High-speed scan sequence] [Low-speed scan sequence 1] [Low-speed scan sequence 2]

LADDER.SRG LADHI b

T
v

N High-speed
INCLUDE LAD.HI scan sequence
INCLUDE LAD.LO "

Low-speed scan LADLO2
sequence 1

. LAD.LO

INCLUDELAD.LO2 | - ---. Low-spaed scan
) sequence 2

'
i

Fig. 7.1

* As illustrated above, nesting of the files is possible up to two levels.

* Pseudo instructions for the start and end of a high-speed scan/low-speed scan lad-
der (HIGHSEQUENCE, LOWSEQUENCE, ENDP) must always be written in a

main file.

(@) Main file

The format of a source file is described below using this as an example.

YELADDER.SRC (main file)

(H *ﬂ*;l_ LA L L *k 2 ;- . _\
- YELADDER.SRC .
_ ; t******‘tt"* H
(D | VERSION JXSD LADDER .
® LOWSTOPCOUNT2- ' ; Low-speed scan ladder program stop count
- ® | HIGHSEQUENCE : High-speedscan ladder program
@ | INCLUDE LADHI
® | enop. :
LOWSEQUENGE ; Low-speed scan ladder program
® | NGLuDE LAD.LOY '

INCLUDE - LAD.LO2
INCLUDE LAD.LO3
ENDP

Q

CONVERSION -. : Conversiondata
INGLUDE CONV.DAT ' -
ENDP .

MASSAGE ~ .- ; Messagedata
INCLUDEMESSAGE.DAT -

ENDP :

® | symsoL. : Symboldata

INCLUDE SYMBOL.DAT

ENDP ..

Fig. 7.2
1) Source file name
Source file name can be assignea as required by using an extension of “.SRC".
._S_RC
2) Source file format
. " Therte are no restrictions on start position, the number of lines and the number of

columns for entering the pseudo instructions, sequence program, and data.
» Characters appearing after *;” in a line are regarded as a comment.

7.2S0URCEFILE

3) Pseudo instructions

Q) VERSION

¢ Set a version number.
* A version number should be set in up to 20 characters using the following format.
*» VERSION AAAAAAAAAAAAAAAAAAAAA
* If no entry is made, spaces occupy 20 columns.
[

() LOWSTOPCOUNT

* Set the low-speed scan ladder sequence processing stop count.
0: The compiler sets “1”.
1to 127: Stop count (4 msec per count)

* If no entry is made, the default value of “1” is set.

() HIGHSEQUENCE o

¢ This indicates the start of a high-spéed scan ladder sequence.

* An object file is generated as a high-speed scan ladder up to the ENDP instruction.
* Format: HIGHSEQUENCE ENDP

* If no entry is made, a high-speed scan ladder is not generated.

* This pseudo instruction must always be written in a main file.

(¢ INCLUDE

* This instruction calls up the files to:be included.
* Format: INCLUDEB : LAD.LO1 ;

File name of the file to be included

Drive number of the device where the file
to be included is stored

. Entry of a path name preceding the ﬁle name of an included file is possible.
INCLUDE B \LPROG\LOW\LAD LO1

(> ENDP

¢ This indicates the end of a hlgh-specd scan ladder sequence, low-speed scan ladder
sequence, conversion data, and rnessage data.

* Format: ENDP ‘

* This pseudo instruction must always be written in a main file.

(6) LOWSEQUENCE

* This indicates the start of a low-spe!éd scan ladder sequence.

* An object file is generated as a low-speed scan ladder up to the ENDP instruction.
* Format: LOWSEQUENCE ENDP

« If no entry is made, a low-speed scan ladder is not generated.

* This pseudo instruction must always be written in a main file.

7-6

(b)

@ CONVERSION o -

* This instruction generates the object file as the conversion data in the table.
* Format: CONVERSION ENDP
. If no entry is made it is regarded as there bemg no message data.

MESSAGE

¢ This instruct.ion indicates the start of setting of message data in the ladder table.

* The instruction generates the object file regarding the data up to ENDP as the mes-
sage data.

« Format: MESSAGE ENDP

* If no entry is made “it is regarded as there bemg no message data.

® symBOL . - . -

* This defines the names for individual coils.

* Definition is possible in up to 8 characters.

* In the display of ladder the first 5 characters of the sPeclﬁed symbol name are dis-
played. -

. Reg1strat10n capacity of the symbol names is 5000.

. Format SYMBOL ..ENDP . ©

Included files

Files shown in (D) to () below are examples of high—speed scan ladder, low-speed scan
ladder, conversion data, and message data that are included in the main file (YELAD-
DER.SRC).Pseudo instructions such as HIGHSEQUENCE, LOWSEQUENCE,

- CONVERSION, MESSAGE, SYMBOL and ENDP must not be written in the source

files @ to . They must be written in a main file.

(D) LADHI
(_ ’ 3 L2 2 2] S 3R o o e e 3 3 ok ok \
;¥ High Speed Ladder *
H el ook ok er kE
LD #10000
ouT #11000
RTH
. J

7.280URCEFILE

@ LAD.L01
[
(4 e e o o ok g ok e R ok ok ko ok ok ok j
. ¥ Low Speed Ladder (Lead) =
4 u*s*mﬂ:tmﬁ!*tttttt*ttrt****t**t*t**
LOWSEQUENCE)
LD #14000
INR #1500
- 1]
ouT #11010¢ ;
. ' Y,
b
(® LAD.L02)

(f

; SR ek i ok ok ok kol oK 3k ke ok ok ok ek ok R kK
: * LowSpeed Ladder2 {Intermediate) *
H tES L L T LIRS EEEE L]
LD #14056 :
DST #1552, #1532,0FFH ;
out #14033
o /
(@ LAD.L03
[H L 12 LE] PRSI L £ 2 13 \
i Low Speed Ladder3 (End) =
4 Rk ER ok L
LD #10012
ouT #14500
ouT #14010 !
RET |
\ ‘ _/
!
(5 CONVDAT 1
f H #llnk*-t***tt***.***i*i*ljt*lt#tlmml#i** \l
. Conversion Table Data *
: #!*ﬂ##***'t’*#t**l*'ﬂ-ttttttt*t#t#-
N900O O, 1H, 2H, 3H, 4H , 5H, 6H; 7H
|
NS023 OFAH, OFBH, OFCH, OFDH, (:‘EFEH. OFFH
\. /

m—
(® MESSAGEDAT
(_ ’ 03300 0 300 20 o e ok e o o o o R R
. (* Messags Data *

.k FEwEkE kxR

N9024 . 'SPINDLE ALARM'

N9323 "TROUBLE IN EXTERNAL DEVICE'

\.
(@ SYMBOL.DAT
r : 3ok ek kkkkk %
; Ty Symbol Name *

h ; * Rk ok ok KRRk Kok

-| #10000 JOG - ; Jog

#79990 OIL - . ; Cooiant
N

7.250URCEFILE

(¢} Source files
(D High-speed scan ladder, low-speed §can ladder source files

* Write the sequence source ladder programs which should be processed at high- or
low-speed.)

* Although there are no restrictions on start position, the number of lines or the num-
ber of columns for entering characters, at least one space must be placed between
an instruction and address.

@ Conversion data source file

* Write the conversion table which is used by macro instruction SUBP007.
+ Although there are no restrictions on the data start line or column, at least one space
must be placed between the table number and data.
* A table number must begin with “N”.
* Delimiter “,” is used between data.
« The table numbers that can be used are indicated below.
#9000 to #9007: 256 bytes
#9008 to #9023: 128 bytes
* In normal format, data are stored in the ladder table as byte data.

N9000 1,2,3,4,5

N2000[0] 1
)] 2
[2) 3.
3l 4
[4] _ 5 ;

C) . .
* To store word data, place an underscore preceding the numeric values.
)

N9OOO _1,_2,_3 !
N9000{0] :
1 ‘\
)| !
2 ‘ﬁ
2 .‘
3])
|
4 f‘
3

(5}

* To store double-word data, blace two undersqbres pfeceding the numeric values.

N9000[0]

IR

{2

e

4

B

[6].

(7}

* Entry of the data should be only the necessary data. :
If the number of data to be converted is specified as “5” using the SUBP007
instruction (N9000 °1, 2, 3, 4, 5°), entry of 5 data is necessary, and it is not neces-
sary to enter 256 data.
Omission of entry is treated as OH.

(3) Message data source file

» Write the message data to be used by the macro instruction SUBP023.
» The message data must be within 40 characters.
» The message data must be enclosed by “”
« Although there are no restrictions on the data start line or column, at least one space
must be placed between the table number and “*”
* A table number must begin with “N™.
" o The allowable range of the table numbers is indicated below:
#9024 to #9323: 40 words .
#9024: " *Spindle error occurred’

7.2 SOURCE FILE

(d) Recommended source file format

The explanation has been given using examples in which source files are consolidated
in one file using the include function. In practical programming steps, the source file
is created in several sections to reduce ladder execution/check cycle time. By creating
the source files in several sections, necessary correction should be made only for the
source file which is involved with errorsé thus compiling time can be reduced.

Examples of source file division are indicated below,

KANKYOU.SRC

o AEmR o N R S e ol o e ok e Ok
o* EnvironmentSetting *
H

H 00 0 000 0 o o ol o e ok ok R Ok

VERSION JXSD LADDER

LOWSTOPCOUNTY
LAKDHI.SRC
(: k% e Be ke ok K ok KERE \

o* High Speed Ladder *
| 0 et o ok sk 2k sk o e ol ke ke o e o ol ok sk ok e aje e ke ok 3 ol K oKk K K

HIGHSEQUENCE !

LD #14000 !

INR

out #11010

ENDP
. S
LADLOW1LSRC ;
I
4 s e sk ek fa ™
o w Low Speed Ladder(Lead) =
ORREREEEEEEERR EERR R R Rk
LOWSEQUENCE I
LD #14000 |
INR lt

- i
ouT #1010 !
ENDP |

LADLOW2.SRC
.o r_ - ;t* 3 REE ’
. *Low Speed Ladder2 (Intermediate) *
H * R
LOWSEQUENCE
LD #14056 -

DST #1530, 1532, OFFH

out #14033

ENDP .
\.
LADLOW3.SRC -
(4 e e Ak kR dook i ok
’ i * Low Speed Ladder3 (End) +
y wEEER *¥ . T
LOWSEQUENCE
LD #10012

ouTt #14500

ouTt #1410

RET
kENDP
CONV.SRC
(_ L R *k ‘:
; L * Conversion Table Data *
H EE L2 ‘ kRkk
CONVERSION

NGOOO OH, 1H, 2H, 3H, 4H , 5H, 6H, TH
N9023 -OFAH, OFBH, OFCH, OFDH, OFEH, OFFH
ENDP. a

MESSAGE.SRC
/_ ; 3020 A O oK 3 3 ok e R R R e R ak dk
L Message Data *
_ ; **t*.t kR ol t*#_##**#
MESSAGE -

\.

N9024 = 'SPINDLEALARM

- N9323 "TROUBLE IN EXTERNAL DEVICE'

ENDP

7.2 SOURCEFILE

SYMBOL.SRC
_ (;- LIE T EE L] W \

* Symbol Name *
: lﬁlll*!lt*t***t*l#**tt*t***t“*t*#****

SYMBOL

N10000 JOG ; Jog |

N19930 OIL ; Coolant

ENDP !

e

! R B
7.3 COMPILER

7.3.1 Compiler Operation

By executing the JXLCOMP instruction, the source file which has been created or edited is
- compiled to generate the object file. _

(1) Starting the JXLCOMP
The JXLCOMP is started by the following procedure.

IXLCOMP file-1 [.SRC]
[file2 [OBIT] . .
[file-3 [ERR]] [ENTER]

(2) Description of Parameters

file-1: Source file name (input)

file-2: Object file name (output}
file-3: Error file name (output)
Entry for the items in [] can be omitted.

« If the entry is omitted for file-2 and file-3, a default file name is set.

« If only “JXLCOMP” is input, the guide messages for inputting the parameters are
displayed. .

e Example: JXLCOMP B: LADTEST [ENTER]
The LADTEST.SRC file is input and compiled. If an error occurs, LAD-
TEST.ERR file is created. When the source is compiled without errors, LAD-
TEST.OBJ file is output. -

o When the include function is used, compilation is required only for the main file.
The files included in the main file are compiled automatically.

7.3 COMPILER

7.3.2 Compiler Error List b

7.3.3 Compiler Check Items

)

)
If an error occurs during compilation, the compiler outputs the error list file having the exten-
sion of “.ERR” with the same main file name as the input file.

Itis also possible to designate the file name of the error list file at the start of the JXLCOMP.
In this case, the error list is output in the designated file name.

[«
The compiler error information is stored to the error list file.
W

If the file has the same name as the error list file name, the existing file is deleted when the
error list file is generated. |

Error list file:)

LAD.HI 40 llegal charactars are used
LAD.LO1 33 Invalidoperator '
LAD.LO1 56 Insufficient number of cperands
T———— =
1]]
)) ' t=--.-. Errormessage
]]
! L i I I Errorling number
1 3
R Error file name

The compiler checks the source file for the format whether it is written in the processing per-
mitted format. In addition to this check, it also checks the following items.

(1) Instruction Check

(® Operand code check ' !

Permitted: LD, LD-NOT, AND ... |
Not permitted: ABS, XOR-NOT ...]
(@ Operand number check %

Permitted: DEC #1001, OFFH ... |
Not permitted: DEC #1001 ...

b

() Operand address designation range check

i
Permitted: LD #10001 ... (

Not permitted: LD #10 ... ;

(® Operand constant designation rangefcheck

Permitted: MV1 #1405, 55H ~ '
Not permitted: MV1 #1405, OFFFFH

l‘

@

(3)

(4)

)

(6)

@)

(8)

(9)

The number of Setting Characters

For the characters to be set to the ladder table, the compiler checks the number of charac-
ters whether it is within the upper and lower limits.

‘Output Contact Check’

e The comprler checks the output addresses of the OUT instruction whether they are
all unique.
* It also checks the output contact addresses whether they are within the specified
range:
Check on MCR/END and Nest Level

The cornpller checks the correspondence between MCR and END, and also the nesting
level. .

Timer Check __

¢ The compiler checks the range of registers used for timers.
« Tt also checks the interference in the addresses of the timers (#1700s and #1300s).

Label Check

« The compiler checks the ADR label names for overlapped defimition.
¢ The correspondence between the JMP and ADR is also checked.

STR and AND- STR Check

The compiler checks the correspondence between the STR (STR—NOT) and AND-STR
(OR-STR). =~ -

SUBP Calling Sequence Check
* The compiler checks the correspondence between the SUBP and PUSH (APSH,
TPSH, IPSHD). * -
e [t also checks the correspondence between the SUBP and STR
Exlstence Check for RTH and RET
The compiler checks the RTH and RET for the following:

« Only one RTH exists.
e Either RET or RTI exists.

7.4 LINKER

74 LINKER

The linker reads the object files in the order in which they are designated in the link module
designation file and maps the data contained in these files in the executable format that is
the same format as in the flash ROM. !

7.4.1 Object Data and Linker Processing = |

Linker processing for the data contained in the object files is described below.

(1) High-speed Scan Ladder Data (HIGHSEQUENCE Data)

* Execution order of the high-speed scan ladder is determined in the order of link
object. :
If the object data are divided into multiple objects, they are stored additionally
starting from the first address of the ladder storage area in the order of link object.

* If the high-speed scan ladder data appear after the low-speed scan ladder data, it
€auses an erTor. !

* The linker executes the max. check for the ladder storage area.

* An error occurs if there is no RTH.

* The linker checks the ADR label names for overlapped definition.

(2) Low-speed Scan Ladder Data (LOWSEQUENCE Data)

« Execution order of the low-speed scan ladder is determined in the order of link ob-
ject. !
If the object data are divided into multiple objects, they are stored additionally
starting from the first address of the ladder storage area in the order of link object.

* The linker executes the max. check for the ladder storage area.

* An error occurs if there is neither RET nor RTI.

* The linker checks the ADR label names for overlapped definition.

(3) Conversion Table Data (CONVERSION Setting Data)

¢ The designated message data are storred to the address (N90OO to N9023) corre-
sponding to the variable number.)
* An error occurs if the same variable;tdata exist in more than one object file.

(4) Message Table Data ' i

* The designated message data are stored to the address (N9024 to N9323) corre-
sponding to the variable number.
* An error occurs if the same variablef‘data exist in more than one object file.

!
f

o
i

7-21 ¢

~

(5)" Version Number Data (VERSION Setting Data) -

« The linker stores the version number data to the de31gnated address.
« An error occurs if a version number is defined in more- than one object file.

(6) Low-speed Scan Ladder Stop _Count (LOWSTOPCOUNT Setting Data)
« The linker stores the low-speed scan ladder stop count to the designated address.

* An error occurs if the Iow-speed scan ladder stop count is defined in more than one
object file:- -

'7.42 Linker Operation’

The linker generates the lmk binary file from the object file output from the compiler by us-
ing the JXLLINK instruction. . .

(1) Link Module File

It is necessary to create the link module file before starting the JXLLINK. The object
files to be linked are de31gnated by this file.

(a) Link modu[e file name
FILEL.LNK ‘

"

File name can be assigned as required. However, the extension must be “.LNK”.

(b) Link module file format

» Designate all object files to be linked as indicated below.

« There are no restrictions on the start line/column for the entry of characters. (The.
maximum number of characters per line is 80 including the path name.)

» Designation of the link module file must be made in one line, within 80 characters
including path name. -

* The high-speed and low-speed scan ladders are executed in the order they are des-

ignated in this file.

YELAD.LNK

3 KANKYOU.OBJ
' ' LADHI.OBY
- LADLOW1.08)
LADLOW2.08)
. LADLOW3.08/ T
MESSAGE.OBJ
DATA.OBJ
SYMEOL.OBJ

7.4 LINKER

(2) Starting the JXLLINK

JXLLINK FILE1.LNK [FILEZ] [ENTER]

« Description of parameters: o
FILE!l: Link module designation file name (input)
FILE2: Binary file name) (output)
Entry for the items in [] can be omitted.
If the entry is omitted for FILE2, the same file name as FILEI is assigned.

t
[t

e Ifonly “J XLLINK” is input, the guide messages for inputting the parameters is dis-
played. ‘
7.4.3 Linker Output File

The result of link by the execution of “JXLLINK" is generated in one output file.
Example: JXLLINK YELAD.LNK[ENTER]

Output file
YELAD.BIN Ladder execution file

7.5 REMOTE CONTROLLER OPERATION

By using the JXPCCOMZ qomfnunication between the personal computer and PLC is pos-
sible.

751 Connecting the JXSD to PLC |

Connect the CN3 port in the JXSD to the standard RS-232C port in the PLC. Itis not neces-
sary to use the SWITCH command to set the communication parameters; they are automati-
cally set at the start up of the JXPCCOM. '

Connection between Personal Computer and JXSD (CN3):

. Personal . -) JXSD (CN3)
Computer N ’ ’

TXD - XD
RTS . : A RTS
CTs >C cTS
DSR - : - DSR

7.5 REMOTE CONTROLLER OPERATION

7.5.2 Starting the Remote Controller -

JXPCCOM [ENTER] g
By the entry as indicated above, the start-up screen is displayed and the JXPCCOM waits
for the key entry. ;

0

{1) PLC Status Display Area

ROM STATUS: VERSION NUMBER:
RAM STATUS: VERSION NUMBEF:
LADDER RUN STATE: + NUMBEROF
» EXPANSION SYMBOLS:
feeeemmccamresecsssmcmamemomeecsanacnen~ -
[N :
X (2) Operation Guide Display Area :
e e e e e cccececesescmman—eameeeacenna p
feemmmmcmsesnccmcmmmmmsamescccmemraaueo- .
L] L]
: {3) Message Display Area .
» 1

{4) FunctionKeys T

OBJ | BITMEM Enp || BUN
DOWN]} | CLR i STOP

7.5.3 ‘Description of Screen Display Information

(1) PLC Status Dlsplay Area <L n

(2)

3

In thls area, the status of PLC is displayed at the start-up of JXPCCOM and at the
completion of operation.

0

®

ROM STATUS
VALID:- Ladder program exists in the flash ROM

. INVALID: Ladder program does not exist in the flash ROM.

RAM STATUS -

VALID: Ladder program exists in the RAM area used for editing.
INVAL]D Ladder program does not exist in the RAM area used for editing.

VERSION NUMBER -

The version number of the stored data is displayed only when the contents of edit-

-ing RAM are correct.

LADDER RUN STATE

STOP: Ladder program is stopped.
RUN: Ladder program is run.

NUMBER OF EXPANSION SYMBOLS

The number of expansion symbol cases stored in the ladder edit RAM area.

Operation Guide Display Area

Guide messages for key entry are displayed whenkey operanon becomes necessary due
to pressing a function key

Message Display Area

The results of operation having been conducted according to the guide messages are
displayed.

7.5 REMOTE CONTROLLER OPERATION

(4) Function Keys -

The function keys are used to select the operation.

®©

®

OBJ TRANSFER i
The operation mode enters the downloading of the ladder object files to the PLC.
BITMEM CLR ;

The bit memory is cleared to “0”.

The operation quits the PCCOM. i .
EDIT ;
The operation mode enters the ladder edit mode.

RUN STOP J

The operation mode enters the mode for switching run/stop of the ladder.

754 Opération of Remote Cohtroller
(1) Downloading thé ij-éc‘t Files
Use the pr-oceciure indicated below to download thg objecf files.
@ Press the [OBJ Dom_\i] function-key.
' The followiﬁg screen is displayed.

ROM STATUS: Mounted VERSION NUMBER: JXSD Ladder 1
RAM STATUS: Valid VERSION NUMBER: JXSD Ladder2
LADDER RUN STATE: Stopped .. . NUMBEROCF
! - EXPANSION SYMBOLS: 0

nput Binary File Name
Name:
e - - Executewith [ENTER] (Cancel with [ESC])

(4) Function Keys .-

OBJ |BITMEM | ~ END ' - ; RUN
DOWN| | CLR sSTOP

7.5 REMOTE CONTROLLER OPERATION

*

(@ Designate the file name of the object file to be downloaded.
The file which has been output by the linker can be designated.

Example B : LADTEST.BIN

.
i

It is not allowed to omit the extension “.BIN™ in the designation of a file name.
Press the [ESC] key to return the screen to the start-up screen.

ROM Status: Mounted Version Number: JXSD Ladder 1
RAM Status; Valid VarsionNumber: JXSD Ladder 2
} Number of
Ladder Run State: Stopped Expansion Symbols: 0
Select the write data

LadderProgram

Ladder Table

Symbo! Table

Selectand specify [SPACE] with the cursor keys [$] and [}].
Execute with [ENTER)] and cancel with [ESC].

Function Keys
QBJ | BITMEM 11 enD) RUN
DOWN: | CLR . STOP

b

©) Designate the data to be downloaded.

Move the cursor to the data to be downloaded by using the cursor up/down keys

and press the space bar. ‘

The data displayed in highlighted characters are downloaded.

Selection by the space bar is toggle.! {
. f

The data actually downloaded in res{bonse to the selection of the data name on the

screen are indicated below. !

* Ladder Program Specification
New/old ladder classification
Low-speed scan ladder stop count
High-speed scan ladder
Low-speed scan ladder
Conversion ladder
Label ladder
Version number

* Ladder Table Specification
Conversion table
Message table

* Symbol Table Specification

P

et o e e e

7-29

(@ ' In the first downloading operation -all of the data that are used for the operation
must be transmitted. If conversion data and message data are used, it is necessa:y
to transmlt the ladder tablé in addition to the ladder program.

The operation procedure to be followed When transmitting the ladder table in addi-
tion to the ladder program is indicated below.

Move the cursor to “Ladder Program”
(The “Ladder Program’” will be highlighted.)

Move the cur_;gr‘to “Ladder Table”.

|

Press the space bar.
(Both the “Ladder Program and “Ladder Table” are hlghhghted)

|

Press the [ENTER] key.
(Download starts. The following message appears in the message display area.

“SENDING OBJECT™)
Downloading is complete if the following message is displayed.
“ENDED NORMALLY”
(5) If the ladder is modlﬁed after it has been downloaded, only the modlﬁed data re-
quire downloadmg

If the contents of the ladder program are modified while the conversion data and
the message data remain unchanged, only the ladder program should be down-
loaded and it is not necessary to download the ladder table.

- (&) .After the completion of downloadiné, RAM Status information and the informa-
tion of Number of Expansion Symbols will be changed. -

(@)

Run/Stop of Ladder

7.5 REMOTE CONTROLLER OPERATION

I
|
I

By pressing the [RUN STOP] function key, operation starts. If this function key is
pressed after the execution of the ladder has started, it is stopped. Conversely, when
it is pressed while the ladder execution is stopped, it starts.

After the execution, the Ladder Run Stagc‘infonnation is changed.

The procedure to run the ladder while }ll'p ladder stop status is indicated below.

(D Press the [RUN STOP] function-key.
i

The following screen is displayed.

ROM STATUS: Mounted
RAM STATUS: Valid
LADDER RUN STATE: Stopped

VERSION NUMBER: JXSD Ladder 1
VERSION NUMBER: JXSD Ladder 2

NUMBER OF
EXPANSION SYMBOLS: 0

Run ladder

Y

Run with [ENTER] (Cancel with
[ESC)

OBJ
DOWN

BITMEM
CLR

END

RUN
STOP

(@ Press the [ENTER] key.

.
4
.

Operation is complete if “ENDED NORMALLY” is displayed in the message dis-

play area. The Ladder Run State information changes from “Stopped™ to “Run

|

”

The screen returns to the start-up sc;}een when the [ESC] key is pressed.

-3

i
:
|
1
!

|

(3) Clear:ng the Bit Memory

-The operation starts in response to pressing the [BI'I'MZEM CLR] funcnon—key After
the execution, the bits of the /O signals and the internal relays are cleared to “0".The

operation procedure.is indicated below.

(@) - Press the [BITMEM CLR] function-key.-
The following screen is displayed.

ROM STATUS: Mounted VERSION NUMBER: JXSD Ladder 1
RAM STATUS: Valid VERSION NUMBER: JXSD Ladder2

LADDER RUN STATE: Stopped] NUMBER OF :
. EXPANSION SYMBOLS: 0

Clear bit memory'to 0.

" Executewith[ENTER](Cancel with{ESC]) -

OBJ |pITMEM | END : RUN
DOWN| [CLR) STOP

(@ Press the [ENTER] key.

Operatlon is complete if “ENDED NORMALLY” is displayed in the message dis-
play area.

7.6 LIST OF ERROR MESSAGES AND WARNING MESSAGES
.

7.6 LIST OF ERROR MESSAGES AND WARNING MESSAGES

7.6.1 Error Messages

1-line characters over
Illegal character is used.
Over the nest of source-file. ‘
Hlegal character is used instead of pseudo-instruction.
A pseudo-instruction is used duplicatedly.
’ENDP’ cannot be found. §
Characters of a word is too long. o
Invalid operator.
Object-file memory size over.
Operand of an instruction is not enough.
Operand-address is not correct.
Operand-byte-data is not correct.
Operand-word-data is not correct.

" Label define error.
SUBP number is not correct.
Labe] define error.
Total number of defined-label exceeds 256.
Stop-count-setting-range is not correct. .
Table-number define error.
Table-number-setting-range is not correct.
Character data define error.
Character data range define error.
Character data lines over.
Variable number error.
Out instruction address range over.
Timer-register range error.
Number of MCR & END is unmatch.
Byte data define error.
Word data define error.
Data range define error.
Number of Operands are too large, or Include val:d characters.
Nest of MCR over.
There is no version number character.
Duplicatedly define of label-characters. :
JUMP & CALL are used too much. }
Duplicatedly use of variable number. !
Stop-count of low-speed-scan must be defined.
Symbol-case-number exceed 6500.)
SUBP calling sequence error. :
Number of SUBP & PUSH is unmatch. \
Nest of STR over. "
Number of stack instruction by STR is not comrect.
SUBP parameter error.
Operand double word data error.
Nesting filr open error.

'
“

7.6.2 Waming Messages

Output contact of OUT-instruction is defined duphcatedly.
Symbol-case-number exceed 5000.

7-33

O

4
Chapter 8 describes online editing operation.

8.1 OUTLINE OF ON;LINE EDITING

8.2 FUNCTION TREE AND DISPLAY
SCREENSiveovviviniiinnnnns,

8.3 LADDER DISPLAY FUNCTION
8.4 NET EDITING FUNCTION
8.5 TABLEEDITFUNCTION

8.6 INPUT/QUTPUT ,I[zUNCTION

8.7 SEQ STS (SEQUENCE STATUS)
FUNCTIONoiuiuienenn.

i
8.8 LISTOFMESSAGES................

LINE EDITING

8.1 OUTLINE OF ONLINE EDITING

It is possible to edit the sequence ladder directly at the NC operation panel instead of using

- a personal computer. Sequence ladder edit operation procedure differs slightly depending
on whether the sequence ladder is newly created or the sequence ladder is created based on
the existing sequence ladder.

8.1.1 Creating a Sequence Program Newly

The sequence program development flow chart for newly creating a sequence program isde-
scnbed below. :

| After setting 26W on JCPO1 to *4”, tum the powar ON. J

!

| Press the [INITT function soft-key. [
| by
F
| Carry out editing operation. I _

YES

Error?
NO

. Selectthe run mode for the sequence program.

o : : YES
Error? - ——

NO

l Run and check the sequence program.

: : e " YES
Bugs? bs

NO

| Comp!ehon ofsequence prograrn creation I

The following processing is executed when the [INTTI] function soft-key is pressed.
(D" “TEST" is set for “VERSION.
@ “3”issetfor “LOW-SPEED STOP COUNT”.

(3 Sequenceareais ‘cleared and the following program is mserted automatically from
the begmnm 8. .

. HIGHSEQUENCE
* RTH

« ENDP :

« LOWSEQUENCE
* RET .

« ENDP

(9 The message data area is cleared.
(5) The conversion data area is cleared.

" (6 The symbol data area is cleared.

8.1 QUTLINE OF ONLINE EDITING

8.1.2 Creating a Sequence Program by Modifying the Existing Sequence Program

1

The operation steps to be followed when creating a sequence program by modifying the ex-
isting sequence program are described below.,i
i

| Adter setting 25W on JCPO1 to “4”, tum the power ON. |
| ™
I

I Carry out editing operation. ‘ —|

‘ YES
Error? -

NO

Select the run mede for the sequence program.

. YES
Error? -

NC J

L Run and check the sequence program. S —l

YES

Bugs?
NO

Completion of sequence program creation :

g§-3

8.2 FUNCTION TREE AND DISPLAY SCREENS

8.2.1 Function Tree

LADDER

|-=1_| BTITOP A

| Fi1 | @DDERAI—-{ Fi

e le_s'mpsp

[e |

F4 |

;I F2 | NﬁEDT

| F4
% Fs
F3 TBLED+ -|.F1| CNVTBL
F2| MSGTEL
Pl |
=[]
Hgukil
g
#3| |
i F4)
R
SEQSTS

“{F1] :
—E INITH -

A
[~

B

\
s

' The tree of functions called by selectmg the ladder job are indicated below.

Function Display A

Conditions for Calling Up
the Function

" | Always displayed

In sequence program
debugmode

While the JPXCCOM is
notconnected.

While the JPXCCOM

- Is not connected with

sequence program -
stopped. :

8.2 FUNCTION TREE AND DISPLAY SCREENS:
"

8.2.2 Ladder Display Screen

F

v

An example of the ladder display screen is shpwn in Fig. 8.1.
|

Displays the net number of the ladder at the top line in the presently displayed ladder.
Displays the number of selected nats.

Displays the sequence pro-
| ——1 gram execution status (run/
N stop).

Displays the selectad mods:
DSP (display)
CHG (change)
INS (insert)

> | Displays 5 lines of fadder |

f‘ .
LADDER] MNT J Oxorckx NOOOOO —
NET-NO.: 1 ;QUNT O <DSP> <STOP>)
MﬁA‘—{ Displays the symbol name of #10000. | ' o
#1000 , #11001
bl \ Displays the status of contact.
#1 OIOIO1 Displays attribute when the contactis ON. |
BBBBE ’
—— —r—{ Mvi] #700 T 30H] —O
#10002 ' #11002
1]
1
#10003
CCoec
R
#10004 #11003
MEM _ ‘sTP LK
| PARAM INFOUT INFOUT DATA [{EADDERY I
WTADDERy" | NETEDT TBLEDT SEQSTS
N J
., >
oW .
Displays a maximum of 13 points of contacts.
Fig. 8.1 Ladder Display Screen

8.3

8.3.1

832

LADDER DISPLAY FUNCTION

“ The ladder display function displays the sequence program stored in the NC in ladder form.”
One line of ladder can contain a maximum of 13 contacts; the maximum number of contacts
that can be displayed in a sequence ladder is 100. There are no limits on the number of lines
as long as the maximum number of contacts is within the limit.

Each instrucﬁon indiééted in Table 8.1 is counted to have the specified number of contacts.

Table 8.1 List of Instructions That Have Multiple Nurriber'of Contacts

Instruction hg’&tt:crt:f l_nsfructio;1_ %J;?:ééf Instrﬁcﬁon Ngg?:;g
N |2 "ANR 3 | oMRw | - 2
DCR 2 | ORR 3 CORW
CLR 2 © XRR 3 CPRW 3
CMR 2 CPR 3 .| MVIW 3
ADI 3 COR 3 DSTW 3

_ SBI 3 MOV 3 IMP 2
ANT 3 DST 3 ADR 2-
ORI 3 DIN 4 IPSH p
XRI 3 ADC 3. APSH 2
DEC 3 ADDW .3 PUSH 2
cor | 3 SUBW 3 TPSH 2
CMP - 3 MULW "3 IPSHD 3
CPL 3 DIVW 3 TMR 3 -
MVI 3 INRW 2 ™M 3
ADD 3 DCRW 2 SUBP 3
SUB 3 CLRW 2

BT/TOP (Bottom/Top) Function

The function searches and displays the top line or the bottom line of the sequence ladder.
This key is a toggle. ~

SYM DIS (Symbol Display) Function -

This function displays the symbol name of the contact which is set by‘ the symbol pseudo
instruction “SYMBOL”.

This key is a toggle - each time the key is pressed, the symbol display is given and cleared.

8.3 LADDER DISPLAY FUNCTION

8.3.3 NET SEL (Net Selection) Function
E
The function displays only the selected nets. This function is used when the nets to be refer-

enced are separated from each other so that d13playmg them on one display page is impossi-
ble.

This function is executed in the following procedure.

(D On the sequence ladder display screen press. the {WR] key when the net number
to be selected is displayed.

(2 The selection symbol (see Fig. 8.2) is displayed and the net is set in the selected
status.

Selection is possible for up to ten nets. If an attempt is made to select the net ex-
ceeding this limit, a warning message is displayed.
“SELECTION OVER”

Press the [NET SEL] function soft-key.

® ®

While the selected nets are collected, the message “COLLECTING” is displayed.

After the completion of net selection, the ladder of the collected nets is displayed
and the message is cleared. }

T

(5) Press the [NET SEL] function soft-key once again, and the screen returns to the
normal sequence ladder display screen.

The selected status of the nets is cleared when the power is turmed OFF,

F LADDER MNT . Ok NOOOOO w
NET-NO.: 1 SELCOUNT: 1 @ <DSP> <STOP>
[Il » o
%) |1 B i et
#10000 i #11001
i
_I | i
SG!BCﬁonsymbol #10001 i
. l[
| | { Mvi] #700 T 30H | ﬂ O
#10002 | #11002
|1 iy
il *
#10003
|1 P W
|| S
#10000 ! #11003
MEM g STP LSK
_ [_PARAM INFOUT INFOUT - DATA TUADDER l
ET/TOP SYMDSP | B¥NETSEL:) GO/STP
e = v
Fig. 8.2

8.3.4 GO/STP (Run/Stop) Function

By using the [GO/STP} function soft-key, the sequence program execution (run, stop) can
be controlled. R : -

At the start of sequence program execution, correctness of the sequence program is checked.
During this check, the message “LADDER CHECKING?” is displayed. If an error is found
during this check, the sequence program cannot be executed eveén if the [GO/STP] function
soft-key is depressed. The content of the error found during the check is displayed by the
corresponding warmning message. ‘

Note that the [GO/STP] function soft-key is not validiwhile the NC is running.
After the start of the sequence program; message <EXEC:> is displayed on the screen.

PLC processing flow at the start of sequence program execution

_ Checking the correctness
< . Error? N\ YES -
: /o
x . = NO «

Calculating the total sum

te

[Start of sequence program execution] [Sequence program execution stop]

, : ™
LADDER - .- MNT. - Osctokok NOOOOO
NET-NO.: 1 SEL COUNT: 0 <DSP> <STOP>
[Ny
1§ A4
#10000 | . . © #1001
#10001
Mvi | #700 | 30H —— O
#10002 | i : #11002
#10003
] |
| - A
#10000 . _ #11003
[LADDERCHECKING . |
MEM STP LSK
[PaRAM INFOUT INJOUT DATA | [FEADDER: I
BT/TOP SYMDSP | | NETSEL GOSTRY

\. : —
Fig. 8.3)) '

8.3 LADDER DISPLAY FUNCTION

(1) Checking the Correctness of Sequence Program

. U - .
Before the execution of the sequence program, its correctness is checked.

Table 8.2 Sequence Program Correctnqss Check

No. Check Items . Description
1 JMP - ADR comrespondence check There must be an ADR entry corresponding to JMP
instruction.
Warmning message: A pair of IMP and ADR designation must exist within
NO JMP-ADR the program of the same processing type (high-speed
scan or low-speed scan). \
2 | SUBP calling up sequence check The order and argument of the following are checked:
5 APSH, TPSH, IPSH, IPSHD, and PUSH
Warning message: The third argument of SUBP023 must be either “1” or
SUBP CALL ERROR “2"

.) -,,
If an error is found in the correctness check, the sequence program is not executed.

When the execution status shifts from “stop” to “run”, the total sum value is created in
addition to the correctness check. The total sum value can be confirmed by the SEQ
information function.

8.4 NETEDITING FUNCTION

When the [NET EDT] function soft-key is pressed after placing the sequence program in the
stop status, the pop-up menu showing the net edit items is displayed as shown in Fig. 8.8.

The objective of the net edit function is the net number (NET-NO) displayed at the upper left
part in the screen. The net number indicates the net presently displayed on the screen.

— — - - ™ -
LADDER MNT Ok NOOOOD
NET-NO.: 1 - SELCOUNT: 0 <DSP> <STOP>
I E— -0
: : #10000 : [EEcaGE] #1001
- ' |- - - [INS
- ' o #10001, _) DEL
1 - - "
) — — : @,
-}] #0002 |- #1002
| #1003 - -)
|) : I
I A
#10004. : S #11003
MEM _ _ STP LSK
_[PARaM DIAGN INFOUT DATA | [FEADDER:] I
k LADDER | [FNETEDT| | TBLEDT SEQSTS | ¢)

Fig. 8.4 Net Edit Function Screen

1. During the execution of a sequence program, if the objective of editing is either the
RTH or RET instruction, editing (change, insert, delete) is not allowed. If the [NET
EDT] function soft-key is depressed during the execution of-a sequence program,
the following warning message is displayed. _ .

“LADDER CHECKING”
2. The contact status is not displayed during net editing.

8.4 NETEDITING FUNCTION

8.4.1 Selection of Edit_ Mode

!

When selecting an edit item, either a net edit key or an action key on the NC operation panel
can be used. ‘ :

(1)

(2)

Selecting the Edit Mode by Net Edit;_Key

Select the net edit mode from the menu items in the pop-up menu.

}
i

Net edit items:

CHG (change): This mode is used to change the net.
INS (insert): This mode is used to insert a new net.
DEL (delete): This mode is used to delete an existing net.

Selecting the Edit Mode by Action Key on the NC Operation Panel

P
Selection of an edit mode is possible without displaying the pop-up menu screen. To
clear the pop-up menu from the screen, press the [NET EDT] function soft-key once
again.

Without using the pop-up menu, change, insert, and delete modes can be selected by
using the action keys on the NC operation panel.

[ALT] key: This selects the change mode.
[INS] key: This selects the insert mode.

[ERASE] key: This selects the delete mode.

(3) Description of the Edit Modes

(a) Change mode

In this mode, a selected net can be changed. When the change mode is selected, change
is possible for one selected net. If the change mode is selected while the net number
“1” is displayed on the screen (NET-NO: 1) as inFig. 8.4, the screen displays only the
ladder of net number “1” as shown in Fig. 8.5. The shaded block in this screen indicates
the edit cursor (blinking). When the change mode screen is displayed first, the cursor

appears at the contact displayed in the upper left

to <CHG>,

-

area and the mode indication changes

Osfeskeokeokeok .
<DSP>

NOCOOO
<STOP>

#110C1

]

MEM

~

FARAM

* DIAGN . INJOUT

DATA

«— The cursor
moves
within this
area.

Fig. 8.5

8.4 NET EDITING FUNCTION

(b} Insert mode A .

In this mode, a new net is inserted precéding the selected net. When the insert mode
is selected, the edit screen is opened for insertion operation. Since anew netis inserted,
the opened screen does not show the ladder and the mode indication changes to <INS>.

o

f .
LADDER MNT | Ossackk NODOOO
NET-NO.: 1 SEL COUNT: 0 <DSP> <STOP>
t
¥
MEM ’ STP LSK
_ [Pamam DIAGN INJOUT . DATA TLADDER. I
\. L £ e J
Fig. 8.6

. (c) Delete mode S
= - In this mode, the selected net 1s deleted. Atthe mode dlsplay area, is displayed.

‘The “DELETING” is displayed.

Figs. 8.7 and 8.8 show the delete mode screens before and after the deletion of a net.
Upon completion of deletion, thc new Iadder chart is dlsplayed with the following mes-
sage dlsplayed

“DELETION COMPLETED”

Operation for deletion:
Select the contact to be deleted by moving the cursor onto it, select DEL POP-up menu
and press thé [WR] key. This deletes the selected contact.

- ' ')
LADDER . MNT Ok NOGOOO
NET-NO.: 1 SELCOUNT: 0 <DSP> <STOP»
1 T
I . Ay
#10000 CHG #11001
| o INS |
#1 0'001 - : %ﬁﬁﬁi%?ﬁ
- - o
L) : 1\,
#10002 ' #11002
#10003
11 ' o~
11 S
#10004 #11003
| DELETION COMPLETED ‘
MEM T STP LSK
_ [__PARAM DIAGN | | INOUT DATA TLADDER: I
'k LADDER | [CNETEDT | | TBLEDT _SEQSTS y

Fig. 87 Delete Mode Screen (Before Deletion)

8.4 NET EDITING FUNCTION

s L]
. (_ . e
LADDER MNT (o} NC000O
NET-NO.: SELCOUNT: © <DSP> <STOP»
I Lo FaaY
A NS
#10002 #11001
#10001
1t i
|] A
#10002 #11002
11
L
#10003
|1 Yy
11 S
#10006 #11003
MEM STP LSK
. |_PARAM DIAGN INFOUT - DATA S LADDER. | l
9 LADDER | [uNETELT .| | TBLEDT, SEQSTS g

Fig. 8.8 Ladder Display‘ Screen (After' Deletion)

8.4.2 Keys Used for Editing the Ladder

' The net edit screen is displayed when either the insert or the delete mode is selected. On the

net edit screen, editing is possible for one net.

A contact instruction can be input by using a function soft-key. The same restrictions as ap-
plied for displaying the ladder are also applied for editing the ladder: a maximum of 13 con-
tacts in one line, no limitations on the number of lines in the vertical direction, and the maxi-
mum of 100 contacts. If the number of contacts exceeds 100, the following warning message
is displayed.

“CONTACT OVER”

If the number of contacts exceeds the limit, reduce the number by d1v1d1ng the net into two
or more nets or some other appropriate method and create a net again.

Register instructions other than contacts can be input in the conversational mode by entering
the first character of the instruction. To mput contacts and register instructions, move the
cursor to the position where the input is poss:bie If an attempt is made to input them at a
position where input is not possible, the followmg warning message is displayed. In this
case, move the cursor to the position where the input is permitted and input them again.,

“INPUT ERROR” |

In the net edit mode (change or insert), the followmg function soft-keys are provided as the
secondary function soft-keys.)

L=l = 1[O J[— |[[—]

F1 F2 F8 1 F4 F5

 The functions of the keys are indicated below.

(1) Cursor Keys

(@ Cursor down key:

(® Cursor up key:

(3 Cursor right key:

® Cursor left kej:

Moves the cursor up by one line.
If the cursor is in the top line in the net, the cursor does not
move even if the cursor up key is pressed.

Moves the cursor down by one line.

If the cursor is in one line below the bottom line in the net,
the cursor does not move even if the cursor up key is
pressed. o

Moves the cursor right to the next device.
If the cursor right key is pressed when the cursor is at the
right hand end position, the cursor moves to the left hand

'~ ‘end position.

Moves the cursor left to the next device.

If the cursor left key is pressed when the cursor is at the left
hand end position, the cursor moves to the right hand end
position.

Lo

8.4NET EDITING FUNCTION

(2) Function Soft-keys

O 4
@ —+
® -o-
@ —

: Replacesthe block whete the cursor is positioned with the NO con-

tact. !

If this key is pressed when the cursor is positioned on the block
which includes a register instruction, the remaining block is deleted
as indicated below.

—{ADD | #7000 | #7002 | > —f

Replaces the block where the cursor is positioned with the NC con-
tact. ' !

If this key is pressed when the cursor is positioned on the block

which includes a register instruction, the remaining block is deleted
as indicated below.

—{ ADD | #7000 | #7002 |— ——» —H—

Replaces the block where the cursor is positioned with the OUT
coil.

If this key 1s pressed when the cursor is positioned on the block

which includes a register instruction, the remaining block is deleted
as indicated below.

Note: An OUT coil can be input only at the 13th contact. If it is
input at any other position, an error occurs and “INPUT ER-
ROR” message i; displayed.
—T ADD | #7000 | #7002 b— —>» —O—
Replaces the block where the cursor is positioned with a horizontal

¥

line “ —™.

If this key is pressed w]hen the cursor is positioned on the block
which includes a register instruction, the remaining block is deleted
as indicated below.

—— ADD | #7000 | #7002 | >

If this key is pressed whien the cursor is positioned on the block of

the horizontal line “ —_. *, the horizontal line is deleted.
]
—[ADD | #7000 | ' #7002 } > —
|
8-17

(3) Other Key

: Draws a vertical line on the block where the. cursor is posmoned and

also on the block above this block.

How the vertical line is drawn is explamed below:
If a vertical line does not exist in the upper right of the cursor, a ver-
tical line is drawn.

= —
= — .

_ If a vertical line exists in the upper right of the cursor, the vertical

line is deleted.

—
AT T T

Display method of a vertical line varies depending on the cursor
position and the information of the lmes drawn above and below the
cursor.

For details, refer to 8.4.4, “Inputting Vertical and Horizontal

‘Lines”.’

‘D ERASE: Deletes the instruction on which the cursor is positioned.

8.4NET EDITING FUNCTION

8.4.3 Inputting Contacts : Co

(1) Inputting Contacts)
!
(D When a function soft-key representing a contact is pressed, the message asking the
input of the contact (switch) number is displayed as shown in Fig. 8.9.

\
NET EDT MEM Ok NOOOOO
NET-NO.: 1 SELCOUNT: © <INS> <STOP>
i
|
| INPUT SWITCH NUMBER l
MEM : STP LSK
- PARAM DIAGN INFOUT - DATA Lo ADDERY I
+ JF 1o 1 —JC—= 1}

\.
Fig. 8.9 Contact Input Screen ;

i

(@ Input the contact number.
{
It

(3 The relationship between the contact instruction and the registers that can be input

is indicated below. '
#

—H— : #1000 to #1063, #3500 to #3699, #7000 to #7999

—H— : #1400 to #1699, #13001&[) #2999

O . #3000 to #3159, #7000 ti; #7999, #1100 to #1163
" #1200 to #1299, #1400 to #1699, #1800 to #2999

d
If a contact number which does not correspond to the designated contact instruc-
tion is input, an error occurs and the following warning message is displayed.

“INPUT ERROR”

If this warning message is displayed, check the contact number again and input the
correct one.

(2} Example of Contact Input

® Whenany of ﬁmctmn soft-keysf1,f2,orf3is pressod the screen givesthe message
requiring the input of the contact number. Key-in'a ‘contact number and press the
[WR]key to input the contact number.

When inputting a contact number, it is not necessary to input “#”.

Examples:

10000 [WR]: Correct input
#10000 [WR] _Incorrect input (input error)

(@) Whena contact number is input correctly, the hlghhghted functlon soft-key returns
to the normal display.

To cancel the input during key operation, press the [RST] key.

NETEDT = MEM Oskskckix NOOOOO) -
NET-NO.: 1 SEL COUNT: 0 <INS> <STOP>
. MEM [~ 7 INPUTSWITCHNUMBER __| .
10000 _ STP LSK
_ [rAram DIAGN INOUT DATA | [fCADBER I
T =1l =1}

Fig. 8.10 Contact Input-Screen

8.4 NET EDITING FUNCTION

©) By the key operation of [1}{0][0] [O]J[O] [WR], the LD instruction is input and the
contact number is input correctly. The cursor position is not changed before or af-
ter the input of the LD instruction.

(" NeTeor MEM L Oskrk NOOOOO
NET-NO.: 1 SEL COUNT: © <NS> <STOP>
— | ‘
#10000 ‘
4
MEM [INPUTSWITCHNUMBER |
— STP LSK
_ | PARAM DIAGN INOUT DATA LADDER::| I
I o L=l 1Y

Fig. 8.11 | Screen Display after lnputting; LD Instruction (#10000)

!
'

8.4.4

Inputting Vertical and Horizontal Lines

By using _the function soft-keys [——] or [—J], a vertical line or a hoﬂzontal line can
be input at the cursor position. '

When mputtmg a vertical line, the content of Ime display varies depending on the cursor
position and the instructions existing around the cursor. -How the vertical line is input is
shown below.] -

After the correct input of the vertical or horizontal line, the input instruction is reflected to
the ladder chart. The cursor position is not changed before or after the input of the vertical/
horizontal line.

The example of the screen below shows the vertical line input operation.

Since a horizorital Ijrfe‘cl_oés notexist in the upper right of the cursor, the vertical line is drawn
upward. ' i

e ' ~

NET EDT "MNT Ok NOOOOO
NET-NO: 1 SELCOUNT: 0 <INS> <STOP=>

'—i}-—l WA | #7000[30H'

#10000 T -
/Cursorposiﬁon

MEM -

_ _ STP . LSK

_ [(PARam DIAGN INJOUT DATA | [FUADDERT l
‘—H'— _.ﬁ_ —O— JR |

-

Fig. 8.12 Drawing a Vertical Line

8.4 NET EDITING FUNCTION

8.4.5

Inputting Register Instructions

By kéying in the first letter of a register instruction, pop-up menu for the selection of the reg-
ister instruction appears on the screen. ’

{1} Items Given in Pop-up Menu

&

The items displayed in the pop-up menu are indicated in Table 8.3. In response to the
character keyed-in to the key buffer area, the corresponding list of register instructions
is displayed in the pop-up menu. Select the required instruction by moving the cursor
on it and press the [WR] key. The required register instruction can be written in this

manier.

Table 8.3 List of Register Instructions Displayed in Pop-up Menu

Keyed-in
Character Cormresponding Register Instnf‘ctlons Displayed in Pop-up Menu | Quantity
A ANI, ADI, ADD, ANR, ADC, ADDW, ADR, APSH 8
CLR, CMR, COI, CMP, CPi, CPR, CIR, CLRW, CMRW, CORW,
C 11
CPRW ‘
D DCR, DEC, DST, DIN, DIVW, BSTW, DCRW 7
I INR, INRW, IPSH, IPSHD } 4
M MVI, MOV, MULW, MVIW, MCR 5
SUB, SBI, SUBW, SET, SUBP3, SUBP4, SUBP5, SUBP6, SUBF7,
s SUBPY, SUBP11, SUBP14, SUBP17, SUBP18, SUBP23, SUBP2S, 2
SUBFP27, SUBP31, SUBP32, SUBP34, SUBP35, SUBP36, SUBF37,
SUBP38, SUBP39, SUBP40 |
T TIM, TMR, TPSH i
o ORR, ORI .
X XRI, XRR, XOR, XNR ' i

8-23

(2) Contents of Pop-up Menu -

The pop-up menu displ}ajed in response to the Keyed—in character is indicated below.
In the pop-up menu, it is not possible to move the cursor to the empty area.

{A] : [C] oy . . m : M
ADI - cMrR | - | | DEC INRW 1 Mov
ADD " | | cor . DST . | psH - MULW
. ANR cmp | - DIN IPSHD MVLW
ADC. . «CP1 - -DIVW - -, ~ MCR
ADDW ' CPR DSTW '
ADR COR | | pcrw
APSH | - CLRW - B | -
- CMRW | —
CORW * i
A CPRW - L
- (sl -o.m. . (o I (¢
SUB . SUBP23 ™ B ORR _ . _ XR1
“SBI | suBP2S’ T™MR- |- ~ | ORI I XRR
SUBW. | SUBP27 | | TesH N ' XOR
SET ° | SUBP3I] R XNR
SUBP3 | SUBP32 !
SUBP4 | SUBP34
SUBP5 | SUBF35
SUBP6 | SUBP36
SUBP7 | SUBP37
SUBP9 | SUBP38
SUBP11 | SUBP39
SUBP14 | SUBP40
SUBP17 i
SUBP17
SUBPi138

8.4 NET EDITING FUNCTION

If the following characters are keyed-in, the pop-up menu is not dlsplayed but the corre-
sponding instruction is input.

N: NOP

E: END

J. IMP ,
P: PUSH

R:

RTI ' !
(3) Register Instruction Inputting Procedure
S
(D Key-in the first character of the register instruction to be input.
The pop-up menu screen is displayed.

(2 Move the cursor to the required register instruction and press the [WR] key.

When the register instruction is input, the next pop-up menu screen is displayed
for the input of the necessary operand Input the contact number, register number,
or numeric value.

Note that it is not necessary to input “#” when inputting a register number.

(3 Press the [INS] key to insert the input register to the ladder.

(4). Example of Input —:MVI1 Instruction

The operation and screen display are explained below ﬁsing the input of M V1 instruc-
tion as an example. '

(@ Key-in “M” to the key buffer area.

The pop-up menu showing five instructions beginning with “M"” is displayed. The
character “M” which has been keyed-in is not displayed in the key buffer display
area.

To cancel the pop-up menu, press the [RST] key. _

\
(NET EDT _ MNT _ Ok NOOOOO
NET-NO.: 1~ SELCOUNT: 0 <INS> <STOP>
— | . —]
#10000 s
o - MVIN
MCH
MEM
- STP LSK
_ [[Panam DIAGN NOUT DATA mm;%ll
~i— —— —O— — — | g

.
Fig. 8.13 Pop-up Menu Screen after Keying-in ‘M’

8.4 NET EDITING FUNCTION

(2 The MVI instruction format is displayed in the pop-up screen when “M” is input.

Select the instruction to be input from the pop-up menu by moving the cursor onto
it and then input the numbers by using the keyboard.

The screen given below is an example of a screen when the MVTI instruction is se-
lected. If another instruction is.selected, the pop-up screen meeting the input

instruction is displayed. j

After inputting the operand, depress the [INS] key to insert the input instruction
to the ladder. If the operand has been input comrectly, the input instruction is in-
serted to the ladder and displayed in the manner as shown in Fig. 8.20. However,
if the operand has not been input correctly, the following warmning message is dis-
played.

“INPUT ERROR”)
The system enters the state where the input of operands is waited for.

To cancel this operand input waiting status, depress the [RST] key.

' ™
(NET EDT MNT o Okt NOOOOO
NET-NO.; 1 SELCOUNT: © <INS> <STOP>
—] |- TR
MOV
#10000 AW
MVIN
MCR

MV #{70001[30)H

MEM ‘
— y STP LSK
_ [_PARam DIAGN INOUT DATA | [(ADDER: [
—= —H— —O— — —

\. : y

Fig. 8.14 MVI Instruction Input Screen .

(3 Press the [INS] key.

The input instruction is inserted to the ladder in the manner as shown in Fig. 8.15.
* The cursor position remains unchanged before or after the input of the MV instruc-

_tion. . —
)) N .
NET EDT MNT : - Osiexserk NODOOO
© NET-NO.: 1 SEL' COUNT:. 0 .- <INS> <STOP>
—| V[#7000 [80H]
#t0000 < - - 7 -
. MEM
— STP LSK
- PARAM DIAGN INFOUT DATA READDER
== —— —O— ——— Fw———' I ')

Fig. 8.15 Ladder:DispIay after Inputting MVI Instruction .

(5) Operand Input Pop-up Box Screen

(a) Types of operand input pop-up box

8.4 NET EDITING FUNCTION

es

Depending on the input register instruction, the corresponding operand input pop-up
box appears on the screen.

For the operands, check is made whether or not the input is allowed.

JMP {1}
IPSH [7000]

@ 0O ®©OO

(@) DIN # [7000]. # [7000], [JH

INRW N [7000]

INRW N [9023)
CPI#[7000], #[H

ADDW # [7000], #[]

(b) Registers that can be input

JMP, ADR
IPSH, IPSHD, SUBP

INR, DCR, CLR, CMR, INRW, DCRW,
CLRW, APSH, PUSH, XOR, XNR

TPSH

TMR, ADI, SBI, ANI, ORI, XRI, DEC,
COl, CMP, CPI, MVI

TIM, ADD, SUB, ANR, ORR, XRR, CPR,
COR, MOV, ADC, ADDW, SUBP, MULW,
DIVW, CORW, CPRW, MVIW

DST, DIN, DSTW

i
4

The registers that can be input in the operé.nd input pop-up box for the individual regis-

ter instructions are indicated in Table 8.4.

t

If a register outside the allowable range is input, the following warning message is dis-

played.

“INPUT ERROR”

Table 8.4 Range of Registers that can b

P

i
1

é Input for Individual Register Instructions

Registerinstruction Input Permitted Registers Range Group
TIM #1300 to #1399, #1700 to #1799 A
TMR #1300 to #1399, #1700 to #1799
TPSH NS000 to N9323 ! B

. . #1000 to #1063, #1100 to #1163, #1200 to #1299
Otherinstructions | 41 400 to #2099, 43000 to #3159, #3500 to #3699 ¢

i

(©)

Input range g

With each register instruction, the mput range is determined for individual operands.
If a value out51de the allowable range ‘is mput the following waming message is dis-

played. =~ - .
“INPUT ERRO ”

The ranges of registers and rea.ls that can be input for 1nd1v1dua1 reg:sters are indicated
in Table 8.5. ,

8.4NET EDITING FUNCTION

H
t

Table 8.5 Range of Registers and Realé of Register Instructions

No. 1 Operand Check Range | No. 2 Operand Check Range
(A, B, C = Range Group in Table 8.5}
. 0-FFH
C

Instruction No. 3 Operand Check Range

SBI

ORI

olo|jo|o|o|o|o|o|e|e
f}

33

ajoialo|alapo|af 0ol o o o alal ool ol o o] o o o] Ol o 0 O O] A Al ol al ol Gl a o G A | x>

C 0- FFFFH

IMP Numeric value of 1to 256 !
ADR Nuimeric valug of 1 to 256 f
IPSH 0-FFFFH i
APSH C |
[
1

PUSH C
TPSH B
IPSHD ~999999999 to 999995999 A

5.6,7,9, 11, 14, 17, 18, 23, 31, I
SUBP 3234, 35, 36, 37, 38, 39

8-31

@

(6)

-Operand input procedure (decimal, hexadecimal)

In the operand input pop—up box, a real can be input in either decimal or hexadecimal.
If “H” is entered after entering a real; it is regarded as a hexadecunal number.

Examples: 64H_ Regarded as “100”
64_ Regarded as “64” .

Moving the Cursor on the Register and SUBP Instructions

There are cases in which the cursor movement is not allowed when the register or SUBP

instruction is on the edit screen. - -

The cursor movement on the register or SUBP insn'uction is executed in the following
mannet. S o .

Table 86 - -

" Cursor Position Description on Cursor Display Position

When the cursor is positioned in the area within a
PUSH| #7000..) - frame, cursor movement is possible only within the
- . instruction display area.

— 1PUSHD [- 9999998 |— : #7000
) If the cursor up key is pressed,
the cursor moves to the posi-

— MOV #7000 | #7100 — tion as indicated below.
— I—'—i I—— '

—{ DsTW [#7000 | #7100 | 10H |— . Cursorposition

SUBP?? |—

- #10001 #10002

" 8-32

8.4 NET EDITING FUNCTION

(7) Patterns that does not Allow Register instruction

Input of a register instruction is not allowed in the positions indicated below.

4 NET EDT MNT Ouesesskk NOOOOD)
NET-NO.: 1 SEL COUNT: ¢ <INS> <STOP»
— ——i} O-
#10000 #10000 : : #11001
B
#10000

If the number of contacts that can be input is two, the
registerinstruction that canbeinputis the one thathas
up to two blocks. [f a register instruction that uses
morethan three contactisinput, thewamingmessage
of “Input error” is displayed.

MEM i

. STP LSK
- PARAM DIAGN INFOUT DATA LEADDER: I
N S B N < | =

Fig. 8.16 |)

8.4.6 Canceling the Net-Edit Function

- Itis possible-to cancel {(quit) the contents of net edit daring editing.- Key-in “Q” and press
the [WR] key. : .

8.4.7 Exiting the Edit Function -
(1) Operation Procedure

(O Press a process, job, or function soft-key other than [NET EDT] to exit the net edit
function. :

‘When exiting ti"iéhet edit function, the NC executes thé check on the fbllowing six
. items. . :

(@) Check 1: ‘ Checking the connection status in one net

The NC checks whether all lines are connected. If the edit has been finished with
an open line remaining as shown below, the “NOT CONNECTED” error occurs.

Example 1: Net is not conneéted. B

\
_ NET EDT MNT Onicskokskese - NOOOOO |
NET-NO.: 1 SEL COUNT: 0 <INS> <STOP>
- —— Mvi] #700 [30H | —O
—
#10001
MEM
_ STP LSK
PARAM DIAGN | [INOUT DATA | [LADDER I
\ —H— = —0— — —)

Fig. 8.17 Line Disconnection Error

8.4NET EDITING FUNCTION

L . - R

Example 2: Inthe case of the ladder shown in Fig. 8.18, the ladder is not one net
and therefore connectmn €1TOT OCCUrs.

NET EDT MNT T Ok NOOOOD
NET-NC.: 1 SELCOUNT: 0 <INS> <STOP»
| —MV1] #700 | 30H | O
#10000 I #11001
—— |
#10001
A
MEM
_ j STP LSK
. | PARAM DIAGN |.[INnOUT DATA HEADDER l
. : == Y,

i

Fig. 8.18 Incormect Net (More than One Ladder)

(3 Check2: Start instruction check

The NC checks whether any of the instructions indicated below is designated at
the start of a net. If not, the “START INST ERR” is displayed.

CMP, DEC, PUSH, ADR, SET, RET END, POP, IPSH, NOP, LD LD-NOT,
TPSH, APSH, SUBP23, IPSHD

(@ Check 3: Double—mstmctlon chcck

The NC checks that no instruction is demgnated with any of the following instruc-
tions. If designated, the “DOUBLE INST ERR” is displayed.

END, RET, RTH, IPSH, APSH, P?USH, TPSH, ADR, IPSHD
f

(3 Check4: Single-instruction check

The NC checks whether some mstructlon is designated with any of the following
instructions. If not designated, the “SINGLE INST ERR” is displayed.

TIM, TMR, INR, DCR, CLR, CMR, AD], SBI, ANI, ORI, XRI, DEC, COL,
CMP, CPL, MV], ADD, SUB, ANR, ORR, XRR, CPR, COR, MOV, DST, DIN,
ADC, ADDW, SUBW, MULW, DIVW, INRW, DCRW, CLRW, CMRW,
CORW, CPRW, MVIW, DSTW, MCR, RTI, JMP

@ Check:5:° -~ Analysis possibility check
The NC checks if the edited net can be converted into a sequence program. If con-
'yersxon is not po_s51ble, the “INVALID NET” is displayed.

(@ Check 6: Sequence program size check -
The NC checks thata sequence program is w1thm the allowable size.

The maximum size of a ‘Sequence program js 131,055 bytes which are approxi-
mately 32,700 steps (1 step =4 bytes). If the size of the sequence exceeds 131,055
bytes, the “SIZE OVER” is dlsplayed

After the completion of the check indicated above, the screen changes.
Dunng net check, the “NET CHECKING” is dlsplayed on the screen as shown in

Fig. 8.19.
— ™~
NETEDT .. MNT Okt NOOQOO
_ NETNO. 1 SEL COUNT: 0 <INS» <STOP>
L ——] MVi] #700 .] 30H |- O-
#10000 . #11002
| NET CHECKING H
MEM
— _ _ STP LSK
_ [_PARAM | [DIAGN IN/OUT DATA | FFEADDER: I
% LADDER_|-[INETEDT:3| | TBLEDT . SEQSTS)

Fig. 8.19 Screen during Net Check -

8.4 NET EDITING FUNCTION

(2) Warning Mességes

L

If an error is found in net check, a correéponding warning message is displayed.

Table 8.7 b
Warning Message Description Corrective Action
NOT CONNECTED The net has not been completed. Check the created or edited net and con-
“ nect the line.)

SIZE OVER The size of sequence exceeds the allow- Review the program and delete several
able Limit.) codes.

START INST ERR An instrection that must be placed at the Designate an instruction that must be
beginning of a net is not designated. placed at the beginning of a net.

SINGLE INST ERR An instruction that must be designated ina | Refer to the PLC instruction manual and
net with another instruction is designated make corrections.
without other instruction.

DOUBLE INST ERR In one net, some instruction is designated | Delete an instruction that is designated

with an instruction that must be designated
in a net without another instruction.

with the instruction that must be desig-
nated in a net without other instruction.

(3) Forced stop of net check

If the power is turned OFF during net chéck, the information might not be updated en-
tirely. Therefore, the sequence is automatically initialized (booting from flash ROM
to CMOS) when the power is turned ON next.

Edit the sequence again.

8.5 TABLE EDIT FUNCTION

The table data editor is provided to edit the table data. -
The data of the following three tables can be edited..
o Message table

= Conversion table
¢ Symbol table

8.5.1

8.5 TABLE EDIT FUNCTION

Editing the Data in the Conversion Table ...

W

The conversion data that have been set by using the pseudo instruction “CONVERSION™
can be edited.

The data can be edited in units of bytes' The data for which word or double-word designation
has been made in the conversion table of the source program are also dlsplayed in units of
words 1n this screen. o .:'

Conversion data are set in hexadecimal. |

The conversion data numbers are indicated below:
N9000 - NoOO7 256 bytes
N90GOB - N9023 128 bytes
“FFH” is displayed for undefined conversion data.

The conversion data number changes by pressing the page key. (Néooo —+N9001)

Qatadisplayarea: Thecursormoves tothis areawhenthe [INS]keyispressed.

. - “
(l TBLEDT / MNT : Ok NODOOO

<STOP>

N9000 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF .
*10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E ¥
.20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F |

.30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F,
140 41 42 43 44 45 46.47 48 49 4A 4B 4C 4D 4E 4F «
' 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E SF
, 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F |
V70 71 72 73 74 75 76'77 78 79 TA 7B 7C 7D 7E 7F.
'+ 80 81 82 83 84 85 86 87 B8 89 BA 8B BC 8D BE 8F
190 91 92 93 94 95 96 97 98 99 9A 9B SC 9D 9E 9oF
| AD A1 A2 A3 A4 A5 AG A7 A8 A9 AA AB AC AD AE AF,
 BO B1 B2 B3 B4 B5 B6.B87 B3 B89 BA BB BC BD BE BF.
€0 C1 C2 C3 C4 C5 C6 C7 CB C9 CA CB CC CD CE CF'
, DO D1 D2 D3 D4 D5 D6-D7 D8 DY DA DB DC DD DE DF,
. E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF.
- FO F1 F2 F3 F4 F5 F6:F7 F8 F9 FA FB FC FD FE FF:

MEM -

— STP LSK
PARAM DIAGN IN/OUT DATA = LADDER I
CNVTBL MSGTBL | [SYMTBL

\. ; J

Fig. 8.20 Conversion Data :
i
The conversion data editing procedure is exple:fined below.
!
(D After displaying the conversion data page of the required conversion data number,
press the [INS] key. !

The cursor appears on the first byte position in the data display area.

8-39

@ Move the cursor to the data to be changed. Key-in the requ:red numeric value and
press the [WR] key.

. . Example: [4][2][WR]
(3 Press the [INS] key.

852 Editing the Data in the Message Table
The message data that have been set by using the pseudo mstructlon “MESSAGE” can be
edited.

Up to 40 characters can B_e iﬁput as message data. :

Fig. 8.21 shows the message data edit screen..,.' .

The message data number is mdlcated below:
‘ #9024 to #9323

TBLEDT -~ MNT : Oscskskoks NOODOD
: . <STOP>

#9024

" SPINDLEALARM .
#9025 =
TOOL SETOK -
#0026 ‘ ‘ :
0123456789123456789012345678901234567890
#0027 - .

#9028

MEM N
— STP LSK

- PARAM DIA-GN INJOUT DATA F,_DERE”; I

* [TCNVTBL MSGTBL SYMTBL |-
L — - . S

Fig. 8.21 Messége Data Edit Screen
The message data editing procedure is explained below.

" (D ‘Move the cursor to the message data number of the message that should be
changed .

. (@) Key-in the required message and press the [WR] key.

8.5 TABLE EDIT FUNCTION

8.5.3 Editing the Data in the Symbol Table

The symbol name that has been set by using’ the pseudo instruction “SYMBOL” can be
edited. -

As a symbol name, a character-string of up to five characters can be set for one contact. Reg-
istration of a symbol is not possible in the byte register.

When registering symbol names, there must be no blank in the contact number area. If there
is a blank, it is regarded as the end of registration and the symbol data registered after the
blank, if any, is not output in text output operation.

_Serial symbol numberarea: Up to 5000 numbers are displayed.
Therefore, up to 5000 symbol names can be registered.

Contactnumberarea: The contact numbers for which symbol names are defined are
d:splayed The numbers must be five-digit numbers.
The cursor can be moved in this area.

Symbol name area: Symbol names are displayed corresponding to
thecontactnumbers. Symboinames shouldbe
setin up to five characters. The cursor can be
moved in this area.

(Lot MNT sk NODOOO
" <STOP»>
A]
50001 #3000 RAPID
$0002 #3000 JOG
S0003 #3000 HNDL
S0004 #3000 8TP
$0005 #3000 TAPE
$0006 #3000 MDI
50007 #3000 MEM
S0008 #3000 EDIT
S0009 3 : «— Nothing is displayed when
$S0010 L, symbol nama is not defined.
h
MEM
—_ STP LSK
- PARAM DIAGN INJOUT DATA, LEARDER I
\ CNVTBEL MSGTBL SYMTBL i J

Fig. 8.22 Symbol Name Edit Screen

The symbol name editing fqrocedure is explained below. - -
® Move the cursor to the contact number area and input the contact number to be set.

The -maximum serial number is 5000.

@ Movc the cursor 16 the symbol name area and mput the symbol name. A symbol
name should be input in a maximum of five characters.

- -

1. When inputting a reglster number it is not necessary to-input “#”.

2. For a register number, only a numeric value is allowed. If a character other than a
nurneric value is input “INPUT ERROR” is displayed.

~ 3. A symbol namie is a character-string of up to five characters. If a character—strmg
longer than five characters is input, “INPUT ERROR” is displayed.

8.6 INPUT/OUTPUT FUNCTION

8.6 INPUT/OUTPUT FUNCTION

The IfO fonction uploads the created sequence to a PC card and downloads the sequence
stored in a PC card to the NC.

8.6.1 Downloading the Sequence Program

The procedure used for downloading the sequence program (execution module * BIN)
stored in the PC card to the NC is explained below.

(O Save the sequence execution modulé to be downloaded to the PC card.

(@ Select the maintenance job and select the “SEQUENCE DATA” by the IN/OUT
PARM function. See Fig. 8.23.

(® Select the sequence execution module to be downloaded from the list of files in
"~ the PC card. See Fig. 8.24. B

If a file other than a sequence file is selected, the following waming message is
displayed.

“FILE DATA ERR”

Press the [WR] key.

© ®

The following message starts blinking and download starts.
“INPUTTING” ?

(6) Upon completion of downloading, the following message is displayed.

“INPUT COMPLETED”
4 ™
INNOUT PARM ~ MNT - Ok NOOOOO
INPUT <STOP>
ALL PARAMETER SETTING
PARAMETER
SEQ. PRM & KEEP MEM
PITCH ERROR PRM.
OPTIONAL PARAMETER
OFFSET *SEQUENCE DATA
TOOL LIFE '
MACRO - COMMON
EDT :
— j STP LSK
- PARAM DIAGN INFOUT I
3 [INeUT | [outPuT || EDIT | [INOUT | [OSRCH | ’

7

Fig. 8.23 IN/OUT PARM Function Screen

§-43

(. INNOUT PARM MNT Ok NOOOOD
PC CARD DIR (A: \YASNAC)
. <DiIR> XO00(X09 BIN
.- <DIR> - XOOOKXX10 BIN
DIRECTO1 <DIR> XO00XXX 11 BIN
. DIRECTOZ <DIR> . XOO0OX12 BIN
“000XX01 BIN - XO00XXX13BIN
- . 00002 BIN . X000 14 BIN
— J0000X03 BIN i X0000X15 BIN
- JOOXXXX04 BIN - XXXXXX16 BIN
‘ . 000005 BIN 23000017 BIN
= . X0000KX06 BIN XHXXXX18 BIN
XOOOXX07 BIN XXXXXX19 BIN
XOOXOCKX08 BIN . JOOOOCX20 BIN
_ REMAINING 3,123,456BYTES
EDT
— STP LSK
_ __PARAM DIAGN INJOUT I
L [INPUT | [OUTPUT | EDIT [NnvoUT] | OSRCH |)

Fig. 8.24 PC Card File Directory Screen

8.6 INPUT/OQUTPUT FUNCTION

8.6.2 Uploading the Sequence Program

It is possible to upload a sequence program from the NC to a PC card. The file format of
the upload file can be selected from the execution module format (the same format as in
downloading) and the text format.

Text format: The ladder sequence program (object file) in the NC is reversely converted
to the state before compilation.

The sequence program consisting of multipte modules which are linked is output in one file.
If such a file is compiled, the object file capacity exceeded could occur (one object file is
greaterthan 64K.). In this case, divide the sequence program into two or more files and create
the execution module by using the JXSD offline system software package.

The procedure used foruploading the sequence program stored in the NC is explained below.

(® Prepare a PC card having sufficient f;ee area.
(@ Select the maintenance job and select the “SEQUENCE DATA (TEXT)” or "SE-
QUENCE DATA (BIN)” by the IN/OUT PARM function. See Fig. 8.25.
@ Key-in the sequence execution module name to be uploaded. See Fig. 8.26.
(9 Press the [WR] key.
(® The following message starts blinking and upload starts.
“OUTPUTTING” !
(® Upon completion of uploading, the following message is displayed.
“QUTPUT COMPLETED” ‘
(INOUT PARM MNT i Osoloioxse NODOOO)
OUTPUT _ <STOP>
ALL PARAMETER SETTING
PARAMETER
SEQ. PRM & KEEP MEM
PITGH ERROR PRM.
OPTIONAL PARAMETER
OFFSET *SEQUENCE DATA (TEXT)
TOOL LIFE SEQUENCE DATA (BIN)
MACRO- COMMON [
|
EDT I
_ i STP LSK
PARAM DIAGN INJOUT I
\:‘ NPUT | [OUTPUT | [EDIT | [IN/OUT | [OSRCH | J

Fig. 8.25 IN/OUT PARM Function Screen

4 INOUTPARM MNT “ Osokwokx NOOOOO)
SEQ OUT (TEXT)

PC NAME: ™=+

EDT
STP LSK

PARAM - DIAGN VOUT

C [TINPUT -] [OUTPUT | EDIT [mnout][O SRCH | 1 g

- Fig. 8.26 Sequence Execution Module Name Input.Screen

(@ If the file having the same name as the file to be uploaded already exists in the PC
card, the following message is displayed. -

“OVERWRITE? (Y/N)”

Press [Y] to overwrite. If the existing file must not be overwritten, press [N].

- ‘Warning Related with PC Card

There are cases that input/output using a PC card is not p0551ble due to defective PC
card, writing error, or other problems If input is not p0351b1e the relevant warning
message is dlsplayed

“DEVICE NOT READY'” A PC card is not installed.

“FORMAT ERROR!": The PC card is not formatted.
“ACCESS ERROR!™: Read/write is attempted while a file in the PC card s
: input/output. _

“PC CARD FULL!. PC card free area is insufficient.

8.7 SEQ STS (SEQUENCE STATUS) FUNCTION

8.7 SEQ STS (SEQUENCE STATUS) FUNCTION

8.7.1 Display of Sequence Status

ir

On the SEQ STS screen, sequence memory status and sequence scan speed can be displayed.

It is also possible to change the set values. -r

The SEQ STS screen is shown below.

SEQSTS MNT © " Osokosk NOOOOO
<STOP>
SEQUENCE STATUS
SEQ FREE 12000 BYTE
TOTAL SUM T AAAA H
LSCANTIM 32 MS
SET : VALUE
[VERSION 1 TEST
STOP CNT 2
|
EDT : L
NEWTEST_ ,j STP LSK
. [_PARAM DIAGN | [IN/oUT - HLADDER.]
L LADDER NETEDT TELEDT SEQSTS
Fig. 8.27

(1) SEQ FREE
The size of the free area for storing seqﬁénce programs is displayed.

(2) TOTAL SUM

Total value of the data stored in the CMOS area, including sequence programs and

tables, is displayed. "
¢
- {3) LSCANTIM - !L .

The time required to execute a low—speed{scan sequence program once 15 displayed in

a multiple of 4 msec.

I
1 pass time {msec) l‘i

Saancoprogam N7
oo 0 LA
Time 5 & 9 _j2

e >

1 pass time of iow-speed scan
sequeance program (12 msec)

‘(4) VERSION -
The version name of the sequence des1gnated by the pseudo instruction “VERSION”
is chsplayed . :

The sequence version can be changed while the sequence is stopped.

"The version name can be set in up to eight characters. If more than eight characters are
input, an error occurs and the following message is displayed. ‘

- “INPUT ERROR” - R

(5) STOP CNT .
The stop count des1gnated by the pseudo instruction “LOWSTOPCOUNT’ is dis-
played.

The STOP CNT can be changed while the sequence is stopped

Setting range is from 1 to 20: if a numeric value outside this range is set, an error occurs
and the following message is displayed.

“INPUT ERROR” ~
8.7.2 INITI (Initialization) Function

The function 1n1t1a11zes the sequence programs in the NC The table related data is also
cleared.

When the [INITI] functlon soft-key is pressed the PLC manager executes the following pro-
. cessing.’
e Sets “TEST” for VERSION.
. » Sets “3” for “LOW-SPEED STOP COUNT”. = -
» Clears the sequence program area and inserts the following programs from the be-
© ginning. .
I-IIGHSEQUENCE
RTH,
LOWSEQUENCE,” ~
RET, '
" ENDP, -
e Clears the message data area.
e Clears thé conversion data area.
Clears the symbol data area.

8.7 SEQ STS (SEQUENCE STATUS) FUNCTION

(D Press the [INITT] function soft-key. :
The following message is displayed.

“INITIALIZE SEQ.? (Y/N)”
- R
SECSTS MNT _ Otk NOODOO
' <STOP=
SEQUENCE STATUS
SEQ FREE _ < 12000 BYTE
TOTAL SUM AAAA H
LSCANTIM 32 MS
"SET 2 VALUE
VERSION . i TEST
STOP CNT ' 2
INITIALIZE SEQ.? (Y/N)
‘MEM
- ; STP LSK
PARAM DIAGN INOUT TTADDERL [
iNIT "
\ /

' Fig. 828 Sequence Initialization Screen

(@ Press [Y] and [Enter] keys.
The sequence programs in the NC are initialized and the following screen is dis- -

played.
- . (- SECSTS’ ~ MNT Ok NOOOOO A
- <STOP>
L — ~SEQUENCE STATUS
- R I SEQ FREE 12798 BYTE
- -1 TOTAL SUM 727? H
e o - LSCANTIM IR 12 - MS
[sEr : VALUE
_ “VERSION TEST
i STOP CNT - .3
MEM v
o STP LSK
_ [_PARAM DIAGN INOUT - L ADDER l
E INIT: _ :
_ : _/

Fig. 8.29 Sequence Initialization Screen {After Initialization)

Vg _
N % :
: @ .- 1. Tnitialization operation initializes all data being edited.
— 2. Before executing initialization, make sure that the data can be initialized.

8-50

8.8LIST OF MESSAGES

8.8 LIST OF MESSAGES

Messages’ displayed during online editing are éiven in Tables 8.8, 8.9, and 8.10.

8.8.1 List of Messages

Table 8.8 List of Messages

Message Description
COLLECTING The nets are being sclected. -
DELETING The net is being deleted.
DELETIONCOMPLETED | Net deletion has been completed.
NET CHECKING Entire sequence program is being checked during the exccution of a sequence program,
INPUTTING Sequence program data are being input from a PC card,
INPUT COMFLETED Inputting of sequence program data has been completed correctly.
OUTPUTTING Sequence program data are being output to a PC card.
OUTPUT COMPLETED QOutputting of sequence program data has been completed correctly.
SEARCHING Search processing is being executed on the ladder screen.
INPUT CONTACTNUM- | The message requesting the infut of a contact number when the contact fanction is se-
BER lected. |
OVERWRITE? (Y/N) When outputting a file to a PC card, the same file name as the one already existing in the
PC card is designated.
INITIALIZE SEQ.7 (Y/N) | This message is displayed when the [INITI} function soft-iey is pressed.

M

8.8.2 List of Warming Messages

Table 8.9 List of Wamning Messages

Dascription

Message _

i SELECTION OVER In net selection, more than 10 nets are selected. .
INPUT ERROR Error in data input
CONTACTOVER . More than 100 contacts are setinonenet. .

o DEVICENOT READY | PC card is not set.
- FORMAT ERROR! PC card is not formatted.
ACCESS ERROR! PC card read/write error]
PC CARD FULL! PC card free area is insufficient for writing the data.
NOJMP-ADR “I" ADR instruction is not designated corresponding to JMP,
NO STARTINST An instruction that must be designated at the beginning of aladder is not desig-
o ' nated. -
NOT CONNECTED "Line connection is incomplete.
- SUBPFORMAT . . Format error in the SUBP instruction)
ERROR - -
EXECUTING " An invalid function is selected during sequence execution. -
DOUBLE INSTERR - | An instruction which must not be designated with another instruction is desig-
nated in a net. '
SINGLE INST ERR An instruction which must be designated with another instruction is designated
without other instruction in a net. :

SIZE OVER The size of sequence exceeds the allowable linit.
FILE DATA ERROR The data input to the PC card are not the sequence file for JX.
DOUBLE LABEL There is more than one label for IMP instruction. '
INVALID NET A net which cannot be analyzed is edited.

8.8.3 . List of Alarm Messages

Table 8.10 List of Alarm Messages

Message Description -
BACKUP THE After editing the sequence program, the system has been started with the system number
SEQUENCEPROGRAM switch set at “0" or “A” without backing up the sequence program.

PLC CMOSERROR The CMOS (hardware} in the JCPO2 has been destroyed.
RESETTING HAS BEEN ° | Since the sequence data in the JCPO2 have been destroyed, the contents in flash ROM
MADE! have been transferred to the CMOS.

DOWNLOADING AND UPLOADING
LADDER PROGRAM

. t
Chapter 9 describes the procedure for downloading and
uploading the ladder program using flash ROM.

‘.
9.1 DOWNLOADING/LADDER PROGRAM
(PC CARD — FLASHROM) 9-2

9.2 UPLOADING LADDER PROGRAM
.~ (FLASHROM —PCCARD) 9-4

9.1 DOWNLOADING LADDER PROGRAM (PC CARD — FLASH ROM)

The procedure for downl}:;ading the sequence program from PC card to flash ROM is indi-
cated below. - o

(® Turn ON the SW1 on the JCP01 board.

SW1

. ™I SW2
€) Turn ON the _pp\&'er. :
® -Insert a PC card to CNO3 (CARD) in the JCPO1 board.
® Th; fo}lc;wiﬁg sc;‘éen is displayed. -

SYSTEMLOAD -
<MODULENAME TOTAL FILE> <MODULENAME TOTAL FILE >
MAIN : OPTION .
“SH ‘ COM NONE COMU.BIN
SYSTEM NONE SHSYSBIN - ACGC NONE ACGC.BIN
APL . NONE SHAPLBIN
LANG NONE SHLANBIN USER
~ DRAW NONE SHDRWBIN *[PLCLADDER] NONE
PLC NONE PLC.BIN, AGGCAPL NONE
INT _ NONE INTBIN ACGCFILE NONE Message
MOT - NONE MOTIONBIN CLANGAPL NONE display area
AXIS NONE AXIS.BIN . /
MAN OPTION USER DOWNLOAD UPLOAD

Move the cursor to “PLC LADDER” of USER by using the cursor up/down keys
and press the [WR] key. '

The “*” symbol appears to the left of “PLC LADDER” and the cursor moves to
the file name input area.

The message “INPUT FILE NAME” appears.

®0 ® ©

Input the file name of the ladder program.

9-2 .

_t'\

LY

9.1 DOWNLOADING LADDER PROGRAM (PC CARD — FLASH ROM)

(® Press the [DOWN LOAD] function soft-key.
The following message is displayed.
* “TRANSFERRING”

After the completion of transmission, the following message is displayed.

“COMPLETED”

@) Return SW1 to OFF and turn OFF the power.

(D

9.2 UPLOADING LADDER PROGRAM (FLASH ROM — PC CARD)

The procedure for uploadiﬁg the sequence program from flash ROM to PC card is indicated
below.) B

(D Carry out steps 1-to 8 described in section 9.1.

@ Press the [UP LOAD] function soft-key. -
The following message is cjiéplay_ed._
“TRANSFERRING”

() After the _coxﬁpleﬁon of transmission, the.following ﬁlessage is displayed.

“COMPLETED”

(® Retarn SW1 to OFF and turn OFF the power.

YASNAC J300
PLC PROGRAMMING MANUAL

TOKYQ OFFICE New Pigr Takesiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo 105 Japan
Phone 81-3-5402-4511 Fax 81-3-5402-4580

YASKAWA ELECTRIC AMERICA, INC.

Chicago-Corporate Headquaniers 2942 MacArthur Bivd Northbrook, IL 60062-2028 US A
Phone 1-847-291-2340 Fax 1-847-458-2430

Chicago-Technical Center 3160 MacArthur Blvd, Northbrook, IL 60062-1817, U S A
Phone 1-847-291-0411 Fax 1-847-281-t018

MOTOMAN INC.

805 Liberty Lane West Carrofiton, OH 45449, LIS A

Phone 1-513-847-6200 Fax 1-513-84?-6?77

YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.

Avenida Brigadeiro Faria Lima 1664-5°C.J 504/511, Sdo Pavlo, Brazil

Phone 55-11-815-7723 Fax 55-11-870-3849

YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2. 656824 Schwalbach, Germany

Phone 49-6196-569-300 Fax 45-6196-888-301

Moteman Robotics AB

Box 504 538525 Torsas. Sweden

Phone 46-486-10575 Fax 46-486-41410

Motoman Robotec GmbH

Kammerfeldstrage 1. 85391 Allershausen. Germany

Phone 49-8166-900 Fax 49-8166-903%

YASKAWA ELECTRIC UK LTD.

3 Drum Mains Park Orchardion Woods Cumbernauld, Scotiand, G68 9LD U K

Pnone 44-1236-735000 Fax 44-1236-468182

YASKAWA ELECTRIC KOREA CORPORATION

Paik Nam Bidg 201 188-3, 1-Ga Euljiro. Joong-Gu Seoul, Korea

Phone 82-2-776-7844 Fax 82-2-753-2639

YASKAWA ELECTRIC {SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-01. New Tech Park Singapore 556741, Singapore

Phone 65-282-3003 Fax 65-289-3003

YATEC ENGINEERING CORPORATION

Shen Hsiang Tang Sung Chiang Building 10F 148 Sung Chiang Road, Taiper, Taiwan
Phone 888-2-5683-0010 Fax 886-2-567-4677

BEIJING OFFICE Room No 301 Office Building of Beiling International Club. 21 Jianguomenwar Avenue. Beijing 100020, China
Phoneg 86-10-532-1850 Fax 86-10-532-1851

SHANGHA! QFFICE Room No. 8B Wan Zhong Building 1303 Yan An Road (West}), Shanghai 200050, China
Phone 86-21-8212-1015 Fax 86-21-6212-1326

YASKAWA JASON (HK} COMPANY LIMITED

Rm 2918, Hong Kong Plaza, 186-191 Connaught Road Wesl, Hong Kong

Phone 852-2858-3220 Fax 852.2547-5773

TAIPEI OFFICE Shen Hsiang Tang Sung Chiang Bullding 10F 146 Sung Chiang Read. Taiper, Taiwan
Phone 886-2-563-0010 Fax 886-2-587-4677

YASKAWA ELECTRIC CORPORATION

YASKAWA

NOTICE: To enable ongoing product madifications and improvements,
spectfications are subject to change witheut notice.

SIE-C843-13.1
© Printed in Japan August 1996 96-31.5 <D

	CONTENTS
	1. System Configuration
	2. Sequence Program Development Procedure
	3. PLC Program Specifications
	4. Sequence Control Method
	5. Address Numbers and Address Map
	6. PLC Instructions
	7. JXSD Offline System
	8. Online Editing
	9. Downloading and Uploading Ladder Program

