L T

MEMOCON GL120, GL130

SOFTWARE USER'S MANUAL
VOL.2

X -y

éag.ﬁ 82 /2

R R
z" $00016

/10,1

1000918 480001
|/ F—UCTR |-
pOBB1S 460067

YASKAWA MANUAL NO. SIEZ-C825-20.128

Manual Contents

This manual describes the ladder logic programming instructions used to program the MEMOCON GL120
and GL130 Programmable Controllers (PLCs). Please read this manua! carefully and be sure you under-
stand the information provided before attempting to program a MEMOCON PLC.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

[]? Indicates references for additional information.

IMPORTANT | |ndicates important information that should be memorized.

<«AEXAMPLEp Indicates application examples.

OIIIEJD . Indicates supplemental information.

» SUMMARY Indicates a summary of the important points of explanations.

Note Indicates inputs, operations, and other information required for correct operation
but that will not cause damage to the device.

indicates definitions of terms used in the manual.

i

NOTICE

The following conventions are used to indicate precautions in this manual. Failure to heed precautions
provided in this manual can result in injury to people or damage to the products.
&WAFINING Indicates precautions that, if not heeded, could possibly result in loss of life or
serious injury.

&(:aution Indicates precautions that, if not heeded, could result in relatively serious or minor
injury, damage to the product, or faulty operation.

©Yaskawa, 1999

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to
change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes
no responsibility for errors or omissions. Neither is any liability assumed for damages résulting from the use of the
information contained in this publication.

Introduction and Precautionsccovviivennnnnn. cerersresana .. Intro-1
11 Overviewof Manual i e e Intro-2
12 Safety Precaltions irit ittt i i e e Intro-4
L3 UsimgthisManual ittt it e e Intro-5
I4 Reference Numbers i i Intro-6

CHAPTER 1 Basic Instructions feeeaarrreneanaane ceeranas 1-1
Ll Relays . ..o e e e e e 1-2

IL1.1 - RelayElements it 1-3
1.1.2 Normally Open (N.O.} and Normally Closed (N.C.} Contacts 1-4
1.1.3 Positive and Negative Transittonal Contactsc0uu... 1-5
1.1.4 Horizontal and Vertical Shorts ittt inannn. 1-6
LIS Coils oo e 1-6
IO Link Colls ..ot i it e e e 1-14.
1.1.7 MCCoilsand MCControl Coils i, 1-15
1.1.8 Relay Circuit DesignExample ittt 1-16
[.1.9 Building Relay Circuits i, 1-17
O 117 - A 1-25
121 Timer Instriuctionsoivttitinr e ie ettt 1-25
122 1-SECOND TIMER (T1.0) ... oottt et iee ettt ie i 1-25
123 0.1-SECOND TIMER (TO.1)ottt e it 1-28
124 QOI-SECOND TIMER (T.01) . ..ot i et eae e . 1-30
125 0.001-SECOND TIMER (TIMS) ..\ ittt iiiiie et iia e ciinneann, 1-32
1.2.6 Building Timer Circuilsiie ittt iee e ineaa, 1-35
O T 11 . A 1-39
131 Counter INSErUCHONS v ottt ittt ettt e e e e 1-39
132 UPCOUNTER(UCTR)ccviunn... e e 1-39
133 DOWNCOUNTER(DCTR)................ e 1-42
134 Building Counter Circuitscviuuteiiie i ireiiieennnn. 1-44

CHAPTER2 MathInstructions........ovovviverennnne. ciesreenas cee 21
2.1 MathInstructionsoiiiiiiniii i e ettt e 2.3
2.2 Expressing NUMbBEIS i i et e 2-6

22.1 Numeric EXpressionscooeuiennnnnnn.. e 2-6
2.2.2 - Converting Numeric Expressionsoiiiemiinainnninnnn... 2-12
2.3 Unsigned, Four-digit, Decimal Arithmetic Instructionscovireenrnnnnn.. 2-15
230 INSHUCHON .\ttt ettt et e ittt et e e e 2-15
2.3.2 UNSIGNED SINGLE PRECISION DECIMAL ADDITION (ADD) 2-16
2.3.3 UNSIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SUB) 2-19
23.4 UNSIGNED SINGLE PRECISION DECIMAL MULTIPLICATION MUL) .. 2-22
2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION (DIVY 2-25
23,6 Building Programsot e e 2-32
2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructionsccovvuue. ..., 2-34
241 IS OIS . o v vttt s e e e e e e 2-34
242 UNSIGNED DOUBLE PRECISION DECIMAL ADDITION (DADD) 2-35

CONTENTS

243 UNSIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (DSUB}) ... 2-38
24.4 UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION (DMUL) 2-42
245 UNSIGNED DOUBLE PRECISION DECIMAL DIVISION (DDIV) 2-45

— Y

CONTENTS

2.4.6 Building Programs P
2.5 Signed, Four-digit, Decimal Arithmetic Instructionsty
251 ImStIUCHONS . o v v e vttt e e e et e e e
252 SIGNED SINGLE PRECISION DECIMAL ADDITION (SADD)
253 SIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SSUB)
2.54 SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION (SMUL)
255 SIGNED SINGLE PRECISION DECIMAL DIVISION (SDIV) S
25.6 Bullding Programst e e
2.6 Signed, Eight-digit, Decimal Arithmetic Instructions ooint.
2.6.1 INSIUCHOMS . o v v v ottt vt et et et ie e s e e e ce i ia e e e
262 SIGNED DOUBLE PRECISION DECIMAL ADDITION (SDAD)
2.6.3 SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (SDSB)
264 Building PIOBIAINS\ttt eat e et a s
2.7 Decimal Square Root Instructions o.oiii i s
271 INSITUCHOMS - o v oottt e et i ia e e e
2.7.2 SINGLE PRECISION DECIMAL SQUAREROOT(SQRT)
2.7.3 DOUBLE PRECISION DECIMAL SQUAREROOT (DSQR)
274 Building Programscuoiuorari it e
2.8 Decimal Trigonometric Instructiono iioiiiiin i
281 IOSHUCHONS . . ot o v vt e et et e et iaameasa et e a e
282 DECIMAL SINE (SIN)ttt ittt iia i iie e anaannan
283 DECIMALCOSINE(COS) ...ttt iiiani et aiannnananas
284 Bullding Programst iinn e mm et aaaanaaaaaeans
2.9 Sixteen-bit Arithmetic INSITUCHIONSottt v e eeea s
291 INStICHONS -« oottt ittt e
292 16-BITADDITION (AD16)ovviiiii e ettt an e
293 16-BITSUBTRACTION (SULB) ... oo ittt as
294 16-BITMULTIPLICATION (MUISY0ttt iiiiiiaennrann s
265 16-BITDIVISICN (DVI16)ttt e e et i i e aane s
206 Bullding Programs i it
2.10 Thirty-two-bit Arithmetic Instructions it
2101 INSETUCKEOMS .« vt v v e e ee e e e e e e ettt s be e e i ey
2.10.2 32-BITADDITION (AD32)ttt et ie it aaaaannns
2,103 32-BIT SUBTRACTION(SU32)t
2,104 32-BITCOMPARE(TEST)ovvvrri i iiarana s
2.10.5 BuildingPrograms i e e
CHAPTER 3 Data Transfer Instructions cheereransanonn
3.1 DataTransfer InSTUCHONSottt ittt e e e es s et itatatat s ennnas
3.2 Data Transfer Instruction Terminology een.n,
321 DataTablesttt e i e e
322 DataTable S1Ze5o vi ittt it et e e
323 Sourceand Destination Tables o e
324 POIMIEIS ot ite ittt e
3.3 Data Transfer Instruction Detailst
33.1 REGISTER-TO-TABLEMOVE(R-T) ...
33.2 TABLE-TO-REGISTERMOVE(TSR)........covivreiii i,
333 TABLE-TO-TABLEMOVE(T-T)oiiien i

-—] —

CONTENTS

334 FIRSTIN (FIN) .ot e e e e e e e e e e e e 3-34

335 FIRSTOUT(FOUT) . ..o e e i 3-42

336 TABLESEARCH (SRCH)ottt i 349

337 TABLE SET (TSET) ...ttt e e e e e e e et e 3-56

338 BLOCKMOVE(BLEM) ...t 3-58

339 BLOCK-TO-TABLEMOVE (BLKT}00''rreeeiminainnn, 3-65
3.3.10 TABLE-TO-BLOCKMOVE(TBLK)ccviovieie ., 3-72

33.11 INDIRECTBLOCKWRITE(IBKW) - 3-79
3.3.12 INDIRECTBLOCKREAD(BKR) e 3-86

3.4 Building Programs 3-93
3.4.1 Storage Locations on Networksttt i, 3-93

342 InPUES . e 3-94

343 OUIPUES L e e 3-94

344 Duplicate Coil Usagecccoioii... e 3-95

345 OperationofDisabled Coils o.iiiiuiiiii.. 3-96
CHAPTER 4 Indexed Block Transfer Instructions0000euun. ces 4-1
4.1 Indexed Block Transfer Instructionsot innnnne i, 4-2
4.2 Indexed Block Transfer Instruction Terminologyovuueinninn... - 4-4
42,1 DataTablesand Table S1zeoviiiiiiii e 4-4

422 Sourceand Destinationunniiiir it 4-4

423 POIMMEIS ...ttt e e 4-4

4.3 Details of Indexed Block Transfer Instructionsvuuuereennne i 4-6
43.1 DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT) 4-6

43.2 DESTINATION INDEXED BLOCK TRANSFER2(DIBR) 4-15

433 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT)uveo. ... 4-22

434 SOURCE INDEXED BLOCK TRANSFER2(SIBR)c.cvvvunn... 4-38

4.4 Buillding Programs ...t e 4-44
44.1 Storage LocationsonNetworks i 4-44

442 IMPUES ..o e e e e 4-45

443 OUIPULS . e e 4-45
CHAPTER 5 Matrix Instructions Cerraraans Cresesieuseena 5-1
5.1 Matrix InStrUCHONSottt it et e e e e e 5.2
5.2 Basic Information on Matrix InStructionsc.oeeteeeen e, 5-6
521 DataTablesand Table Sizeottt i, 5-6

522 BitNumbers e 5-6

523 Source Tables and Destination Tablescooviivinnnrnnnnnans 5-7

524 POIMIETS ... 5-9

5.3 Matrix InStuctionsot e 5-11
531 LOGICALAND(AND) ...t s 5-11

532 LOGICAL OR(COR) ... e e e 5-16

533 LOGICALEXCLUSIVEOR (XOR) ..ottt 5-20

534 LOGICAL COMPLEMENT (COMP)c.covvriiiii e, 5-24

5335 LOGICALCOMPARE (CMPR)cooiiiii et e 5-29

536 LOGICALBITMODIFY (MBIT)ooiiiiiiiiaiiee i, 5-38

537 LOGICAL SENSE (SENS) ...ttt e 5-44

CONTENTS

53.8 LOGICAL BITROTATE (BROT)}t ns

539 LOGICALMULTI-BITROTATE MROT)

53.10 LOGICALBITCOUNT(BCNT) ... e

5.4 Building PrOgramscccooo it

5.4.1 Storage Locations on Networks N

542 INPUIS ...t e

L B T 6 1111 -

544 Duplicate Coll Usage

5.4.5 Operation of Disabled Coils R
CHAPTER 6 Bit Manipulation Instructions freesiarenas

6.1 Bit Manipulation INSIUCHONS o0 vt vttt e

6.2 Details of Bit Manipulation InStructionsc.ieeeniiiiiinean i

6.2.1 NORMALLY OPENBIT{NOBT) ...t

622 NORMALLY CLOSEDBIT(NCBT)ci i iiiiie e iciianas

623 NORMALBIT(NBIT) ..ottt it iie e

624 SET BIT(SBIT) ..ottt e ittt e nnas

625 RESET BIT(RBIT) ...ttt et iiiit e einaaannan

6.3 Building PIOSTAINSttt tiiiiiir s iaaama e aa e e araaeeraan s

6.3.1 Storage LocationsonNetworksttt

B.32 INPUIS oo e e

633 OUIPULS . ..ottt e e e
CHAPTER 7 Data Conversion Instructions ceraraesesanas

7.1 DataConversion InStuCHONSo oottt iit it rasrar o e s

7.2 Details of Data Conversion Instructionsc i

7.2.1 BCD-TO-BINARY CONVERSION(BIN)t

722 BINARY-TO-BCD CONVERSION(BCD)t

723 ASCI-TO-BINARY CONVERSION (ATOB) ..ot

7.2.4 BINARY-TO-ASCILCONVERSICN (BTOA)c.oiviiiana. 1

725 16-BITCONVERSION(CAST)vii e

72.6 32-BITCONVERSION(DCST) ..ot

7.3 Building PrOZramsceeuntimnn e iiiiririinaraae e

7.3.1 Storage Locationson Networks oo

25 T U1 1 £

2 T B 1T o7
CHAPTER 8 Other Data Manipulation Instructions Ciesareans

8.1 Other Data Manipulation InStUCHONS oottt iiiaeinaana,

8.2 Data Setting INSIUCHONS . . oo vt vnie e ettt ariaa s s ennaareeeenss

82.1 SETWORDDATA(SDAT)iiiiii it aas

8.2.2 SETDOUBLEWORDDATA(SDDT)coiiiiiiiiineenininnns

823 Building Programst ie i i i

8.3 Data Rearrangemeni InStructionst tier ittt

8.3.1 LOGICAL BYTE REARRANGEMENT (TWST)

832 SWAP(SWAP) ...

B33 SORT(SORT) ...ivrie i ettt et

5-51
5-58
5-65
5-65
5-69
5-70
5-70
5-71
5712

6-1
6-2
6-3
6-3
6-5
6-7
6-9

6-11

6-14
6-14
6-15
6-15

7-11
7-17
7-23
7-27
7-36
7-46
7-46
7-46
7-46

CONTENTS

834 Building Programs i 8-32

8.4 Data SplitCombine Instractions 8-33
841 BYTESPLIT(BYSL)ottt e 8-33

8§42 BYTECOMPOSITION (BYCM)t 8-37

843 NIBBLESPLIT(NBSL) ...ttt 8-40

844 NIBBLECOMPOSITION(NBCM) it 8-46

8.4.5 Building Programs 8-51

8.5 Block Addition and Check Calculation InStructionso..... 8-52
85.1 BLOCKADD (BADD) ...ttt it e 8-52

852 CHECKSUMI(CKSM) ...ttt e B-56

853 Bullding Programs 8-62
CHAPTER 9 System Status Monitoring Instruction ceersans ceaes 9-1
9.1 System Status Monitoring Instruction ...t 9-2
9.1.1 SYSTEM STATUS MONITORING (STAT)veeieaeiiivaeeenn 9-2

9.1.2 Bullding Programst e 9-7

9.2 SystemStatusTableo e 9-9
021 WordNo.and Items ottt et 9-9

922 SystemStatusTable Details, 9-14
CHAPTER 10 Sequence Control Instructions Cerectiienaees . 10-1
10.1 SeqUENCEIS ...ttt e e e e 10-2
10.1.1 Sequencers e 10-2

10.1.2 Stepping Sequencer Application Examplec.o..... 10-4
CHAPTER 11 Program Control Instructions cenresavane 11-1
11.1 SkipNode INSIUCHONSottt e e e et 11-2
11.1.1 Skip Node INstructions oot iee e 11-2

11.2 Subroutine InSTUCHONS it 11-7
11.2.1 Subroutinesciueiiniiti et e e 11-7

1122 SUBROUTINEJUMP (JSR) . ..ot e et 11-9

11.2.3 SUBROUTINELABEL (LAB) ..ottt 11-11

11.2.4 SUBROUTINERETURN(RET)oiiiiiritiinniinnriananns, 11-12

11.2.5 ApplicationExample i 11-13

11.3 Master Control INStrUCHONS\ttt e ittt e e e 11-15
11.3.1 Master Control INSTUCHONS\ttt e nns, 11-15

11.3.2 MASTERCONTROLON (MSON) . ..ottt 11-16

1133 MASTER CONTROLOFF(MSOF)iiiiiiiiiiininnnnn.. - 1121

11.34 Application Exampleooo i 11-22

1135 Building Programs o uiv i 11-24

APPENDIX

A Index of Ladder Logic Elements and Instructionsovuiininnennn.. .. A-1

Introduction and
Precautions

This chapter introduces general information, including basic informa-
tion precautions for the use of this manual and the software. You must
read this chapter before attempting to read the rest of the manual

or using the product.

L1 Overview of Manual
1.2 Safety Precautions
1.3 Using this Manual
I.4 Reference Numbers

«— Intro-1 —

Intro-2

Intro-4

Intro-5

Intro-6

Introduction and Precautions

.1

Overview of Manual

« This manual describes the programming instruction used to create ladder programs for ME-
MOCON GL120 and GL130 Programmable Controllers. Expansion math, program control,
communications, and motion control instructions, however, are described in other manuais.

« Read this manual carefully in order to use the instructions properly. Also, keep this manual
in a safe place so that it can be used whenever necessary.

s Refer to the following related manuals.

Manual Name

Manual Number

Content

CcPU
Module

MEMOCON GL120, GL130
Hardware Uset’s Manual

SiEZ-CB25-20.1

Describes the following for the
GL120 and GL130:

1} System configuration

2) System components

3) Functions and specifications

4) Installation and wiring

5) Panel layout and hole dimensions
6) External dimensions

MEMOCON GL120, GL130
Software User's Manuali,
Vol.1

SIEZ-C825-20.11

Describes the following for the
GL120 and GL130.

1) Operating principles

2) IO allocation

3) Qverview of instructions

4) Instruction processing times

MEMOCON GL120, GL.130
Software User's Manual,
Vol.3

SIEZ-C825-20.13

Describes expansion math
instructions (floating point math
instructions, etc_} used for the
GL120 and GL130.

MEMOCON GL120, GL130
Software User's Manual,
Vol.4

SIEZ-C825-20.14

Describes process control
instructions used for the GL120 and
GL130.

[{e]
Modules

MEMOCON GL120, GL130
120-Series I/O Modules
User's Manual

SIEZ-C825-20.22

Describes the functions,
specifications, and usage of the
120-Series /O Modules.

Special
Purpose
Modules

MEMOCON GL120, GL130
120-Series High-speed
Counter Module User’s
Manual

SIEZ-C825-20.24

Describes the functions,
specifications, and usage of the
120-Series High-speed Counter
Module.

MEMOCON GL120, GL130
120-Series Uniwire
Interface Module

User's Manual

SIEZ-CB25-20.26

Describes the functiens,
specifications, and usage of the
120-Series Uniwire Interface
Module.

Motion
Modules

MEMOCON GL120, GL130
Motion Module MC10
User's Manual

SIEZ-C825-20.41

Describes the functions,
specifications, and usage of the
MC10 Moticn Module (1 axis).

MEMOCON GL120, GL130
Motion Module MC20
Hardware User's Manual

SIEZ-CB25-20.51

Describes the functions,
specifications, and usage of the
MC20 Motion Module (4 axes).

MEMOCON GL120, GL130
Motion Module MC20
Software User's Manual

SIEZ-C825-20.52

Describes the Motion Instructions
and motion program language for
the MC20 Motion Module (4 axes).

e Intro-2 —

LI Overview of Manual

Manuzl Name

Manuai Number

Content

Man- MEMOCON GL120, GL130 | SIEZ-C825-60.3 | Describes the functions,

machine | Teach Pendant TB120 specifications, and usage of the

Interface | User’s Manual TB120 Teach Pendant.
MEMOCON GL120, GL130 | SIEZ-C825-60.7 | Describes the functions,
MEMOSOFT for P120 specifications, and usage of the
Programming Panel P120 Programming Pane! with
User's Manual MEMOSOFT,
MEMOCON GL120, GL130 | SIEZ-C825-60.10 | Describes the features and
MEMOSOFT for DOS operating procedures of the DOS
User's Manual version of MEMOSOFT.

Commu- | MEMOCON GL120, GL130 | SIEZ-C825-70.4 | Describes the functions,

nications | PC Link Module specifications, FBUS

Modules | User's Manual communications instructions, and

usage of the PC Link Module for the
GL120 and GL130.

MEMOCON GL120, GL130
MEMCBUS PLUS BASICS
User’s Manual

SIEZ2-C825-70.5

Describes the functions,
specifications, and usage of the
MEMOBUS PLUS. :

MEMOCOCN GL120, GL130
Coaxial Remote /O System
User's Manual

SIEZ-C825-70.8

Describes the functions,
specifications, and usage of the
Coaxial Remote I/0 System for the
GL120 and GL130.

MEMOCON GL120, GL130
MEMOBUS
User’s Manual

SIEZ-CB25-70.13

Describes the functions,
specifications, and usage of the
MEMOBUS,

MEMCCON GL120, GL130
COM Instructions
User’s Manual

SIEZ-C825-70.14

Describes the functions,
specifications, and usage of the
COM instructions. It also describes
the specifications and usage of the
MEMOBUS Module,

* Thoroughly checkthe specifications and conditions or restrictions of the product before us-

ing it.

— Intro-3 —

Introduction and Precautions

1.2

Safety Precautions

» MEMOCON was not designed or manufactured for.use in devices or systems that concern
human lives. Users who intend to use the product described in this manual for special pur-
poses such as devices or systems relating to transportation, medical, space aviation, atom-
ic power control, or underwater use must contact Yaskawa Electric Corporation before-

. hand.

« This product has been manufactured under strict quality control guidelines. However, if this
product is to be installed in any location in which a failure of MEMOCON involves a life and
death situation or in a facility where failure may cause a serious accident, safety devices
MUST be installed to minimize the likelihood of any accident.

e Any illustrations, photographs, or examples used in this manual are provided as examples
only and may not apply to all product to which this manual is applicable.

« The products and specifications described in this manual or the content and presentation of
the manual may be changed without notice to improve the product and/or the manual. A
new version of the manual will be re-released under a revised document number when any
changes are made.

» Contact your Yaskawa representative or a Yaskawa office listed on the back of this manual
to order a new manual whenever this manual is damaged or lost. Please provide the docu-
ment number listed on the front cover of this manual when ordering.

« Contact your Yaskawa representative or a Yaskawa office listed on the back of this manual
to order new nameplates whenever a nameplate becomes worn or damaged.

« Yaskawa cannot make any quality guarantee for products which have been modified.
Yaskawa assumes no responsibility for any injury or damage caused by a modified product.

— Intro-4 —

L3 Using this Manual

M

1.3 Using this Manual

This manual is written for the following people:

» Workers responsible for designing GL120 or GL130 ladder programs.

» Workers responsible for testing GL120 or GL130 ladder programs.

+ Workers responsible for debugging GL120 or GL130 ladder programs during trial opera-
tion.

» Workers responsible for maintaining GL120 or GL130 ladder programs.
+ Basic Terms
In this manual, the following terms have the meanings described below.
, » PLC = Programmable (Logic) Controller
¢ PP = Programming Panel

* GL120, GL130 = MEMOCON GL120 and/or MEMOCON GL130 Program-
mable Controller

¢ Technical Terms

The bold technical terms in this manual are briefly explained in the Glossary provided at
the bottom of the page. An example is shown below.

Glossary

The following types of terms are described.
» Specific sequence control terms required for explanation of functions.
» Terms that are specific to programmable controllers and electronic devices.

— Intro-5 —

Introduction and Precautions

.4 Reference Numbers

The types and ranges of reference numbers that can be used with each instruction are pro-
vided in this manual under the heading Structural Elements, as shown in the following exam-
ple. These reference numbers are specified as follows:

1) The ranges listed in the tables are for initial values.

2) Two systems are used for reference numbers for coils, input relays, input registers, hold-
ing registers, and constant registers: Reference numbers beginning with numbers are
called numeric reference numbers and those beginning with letters are called iettered
reference numbers. In the Structural Elements tables, the lettered reference numbers
are given in parentheses. ’

Structural Elements of REGISTER-TO-TABLE MOVE (R—T)

Possible Settings

Element Meaning
Top (8) | Source Coil: 000001 to 008177 (O00001 to C0B177)
reference
number Input relay: 100001 to 101009 (100001 to 101009)
Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (KO0001 to K04096)
Link coil: D10001 to D11008 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coit: Q10001 to Q110145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Pointer Holding register: 400001 to 409998 (W00001 to W09998)
(P) reference
number Link register: A10001 to R11023 or R20001 to R21023
Bottom | Destination Constant: #00001 to #00999
(Z} table size

- Intro-6 —

Basic Instructions

This chapter describes the basic instructions used in programming.

1.1 Relayscoiiviiiiiniiiinnininnnnnne. 122

1.1.1 RelayEBlementsc.cccviuiennnunnnn.. 1-3
1.1.2 Nommally Open (N.O.) and Normally Closed (N.C.)

Contacts, 1-4
1.1.3 Positive and Negative Transitional Contacts 1-5
1.1.4 Horizontal and Vertical Shorts 1-6
115 Cotls ... e 1-6
116 LinkCoils..........oviuiieiiiii e, 1-14
1.L.7 MC Coils and MC Centrol Coils 1-15
1.1.8 Relay Circuit Design Example 1-16
1.1.9 Building Relay Circuits e 117

1.2 Timerscovoviivnnrnnnennnrennnnns. 125

121 Timer Instructionsc.coviiennnnnn.., 1-25
1.2.2 1-SECONDTIMER (T1.0)couiunnnnn.., 1-25
123 0.1-SECONDTIMER(TO.1)...........covvennnn. 1-28
124 0.01-SECONDTIMER(TO1)ccovvoo. ... 1-30
125 0.001-SECOND TIMER (TIMS)o\.v... 1-32
1.2.6 Building Timer Circuitsc...ovvunn.... 1-35

13 Coumtersovvvvinvvnnennnnnnneneees. 139

131 Counter Instructionsoviiinvn i iennen... 1-3%
132 UPCOUNTER(UCTR)ccovuvuvinnnn. .. 1-39
133 DOWNCOUNTER(DCTR)cvvvvurnunnn., 1-42
13.4 Building Counter Circuits 1-44

—_11—

Basic Instructions

1.1

Relays

1.1.1
112
113
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9

RelayElements e .
Normally Open (N.O.) and Normally Closed (N.C.) Contacts
Positive and Negative Transitional Contacts
Horizontal and Vertical Shorts e,
0 1
LInNKCoils ..ot e e e et
MC CoilsandMC Control Coilsocviiiiiiiiiiiinn...
Relay Circuit Design Example ettt e
Building Relay Circuits S PP

—_12—

This section describes relay elements. It also provides precautionary information on
1 -designing and building relay circuits.

13
1-4
15
16
1-6
1-14
1-15
1-16
1-17

1.1 Relays

m

-1.1.1 Relay Elements

The relay elements shown in the foliowing table are combined to build relay circuits.

Table 1.1 Relay Elements

Name Structure Function Reference No.
Normally Power is passed from left to right while the | Reference numbers
Open corresponding reference is ON, for one of the following
{N.O.) XXX types of relay are
Contact specified for

X,
1) Coil
Normally Power is passed from left to right while the) Coils
Closed ' corresponding reference is OFF.
(NG XXXXXX poncing 2) Link coils
Contact
3) MC coils
Positive _' p I— Power is passed from left to right for one 4) MC control coils
Transitional scan each time the corresponding reference .
Contacts XXXXXX goes from OFF to ON. ‘ 5) Input relays
- 6} MC relays
Negative —'l N I_ Power is passed from left to right for one
Transitional oo | S6an each time the corresponding reference MC control rel
Contacts goes from ON to OFF. 7) MC control relays
8) M code relays
Horizontal ~————— | Shorts adjacent columns and passes power | None {not necessary)
Short from left to right.
Vertical Shorts adjacent rows and passes power
Short from top to bottom or from bottom to top.
Coil 1) Normal [1) Output coils send the ON/OFF status to | 000001 to 008192
Digital Output Modules (000001 to O08192)
—(p— | oo
XXXXKX | 23 Intemal coils are used only to build logic
in the ladder logic program.
2) Latched I geprog
} 3) Battery monitor coils are used to monitor
_x)fxlixx the output voltage of the memory
backup battery built into the CPU
Module,
Link Coil Transfers ON/OFF data to/from another D10001 to D11024
PLC in a PC link. D20001 {0 D21024
MC Cail Outputs ON/OFF data to a Four-axis Motion | ¥Y10001 to Y10256
Module (MC20). Y20001 to Y20256
MC Control Cutputs overrides, MFIN signals, or other Q10001 to Q10160
Coil signals to a Four-axis Motion Module Q20001 to Q20160
{(MC20).

Note “XXXXXX" represents the reference number of a coil or relay.

—_13—

Basic Instructions
1.1.2 Normally Open (N.0.) and Normally Closed (N.C.) Contacts

1.1.2 Normally Open (N.O.) and Normally Closed (N.C.) Contacts

1. Function

1) Normally open (N.Q.} contacts pass power from the left to the right when the correspond-
ing reference is ON.

2) Normally closed (N.C.) contacts pass power from the left to the right when the corre-
sponding reference is OFF.

2. Structure

I— N.C. contact —M—

N.O. contact: _l
X000 XXX

1) =] |— is the symbol for a N.O. contact and —},/}— is the symbol for a N.C. con-
tact.

2) “KXXXXX" represents the reference number. The reference numbers listed in the follow-
ing table can be specified for N.O. and N.C. contacts.

Table 1.2 Reference Numbers for N.O. and N.C. Contacts

Reference Reference No. 'Reference Reference No.
Coil 000001 to 008192 Input relay 100001 to 101024
(000001 to 008192) (100001 to 101024)
Link coil D10001 to D11024 MC refay X10001 to X10256
D20001 to D21024 X20001 to X20256
MC coil Y10001 to Y10256 MC control relay P10001 to P10256
Y20001 to Y20256 P20001 to P20256
MC control coil Q10001 to Q10160 M code relay M10001 to M10096
Q20001 to Q20160 M20001 to M20096

3. Operation

A4EXAMPLEp Examples of the operation of N.O. and N.C. contacts are shown in the following itlustra-
tion.
ON
Coll — —
000001 OFF ——-J' | pa—
Power '
N.O. contact —.| ON
i 000001 Power
OFF ! !
])
(F;?dwer ¥ v
N.C. contact . Power
060001 OFF

—1-4 —

LI Relays

M
1.1.3 Positive and Negative Transitional Contacts

1. Function

1) Positive transitional contacts pass power from left to right for one scan each time the cor-
responding reference goes from OFF to ON.

2) Negative transitional contacts pass power from left to right for one scan each time the
corresponding reference goes from ON to OFF.

2. Structure

Positive transi- ——| P |— Negative transi- —I N |——-
tional contact: XXXXXX tional contact: X000

1) —J P |~ is the symbol for a positive transitional contact and —] N f—is the symbol
for a negative transitional contact.

2) “XXXXXX” represents the reference number, The reference numbers listed in the follow-
ing table can be specified for positive and negative transitional contacts.

Table 1.3 Reference Numbers for Transitional Contacts

Reference Reference No. Reference Reference No.
Coil 000001 to 008182 Input relay 100001 to 101024
{O00001 to ©08192) (100001 to 101024)
Link coil D10001 to D11024 MC relay- X10001 to X10256
D20001 to D21024 X20001 to X20256
MC coil Y10001 to Y10256 MC control relay P10001 to P10256
Y20001 to Y20256 P20001 to P20256
MC control coil Q10001 to Q10160 M code relay M10001 to M10096
Q20001 to Q20180 M20001 to M20096

3. Operation

4EXAMPLEp Examples of the operation of positive and negative contacts are shown in the following
illustration.
ON
Coil —{ —
1 [}
Power - f
Positive ON !
fransitional —I P l— Power —F:E One scan :
contact 000001 OFF ;
Power E
ON
::r?;‘tji;?\al ——l N I_' Power One scan
contact 000001 OFF

—_15—

Basic Instructions

1.1.4 Horizontal and Vertical Shorts

1.1.4 Horizontal and Vertical Shorts

1. Function

1) Horizontal shorts connect adjacent columns and pass power from left to right.

2) Vertical shorts connect adjacent rows and pass power from top to bottom or from bottom
to top. ‘

2. Structure

1) Horizontal short:

Vertical short:

2) Reference numbers are not required.

3. Application Example

<4EXAMPLEp An example of the operation of horizontal and vertical shorts is shown in the following ‘

illustration.

Colurmnn 1 Column2 Column3

Row 1 I'_—I |—-—| I_"()—
100001 160002 1060003 d0C001

Row2 |—— \

000001 T_

Shorts columns 1 and 2.

Shorts rows 1 and 2.

1.1.5 Coils

Output coils, internal coils, and battery monitor coils are collectively calied coils.

1. Output Coils

A. Function

1) Coils that can be used to output ON/OFF status to Digital Output Modules are called out-
put coils.

2) The desired coils can be specified as output coils when /O is allocated.

3) There is & limit, however, to number of output coils that can be defined. The limit depends
on the model of CPU Module that is being used, as follows:

+ CPU20: Number of input relays + number of output coils << 1,024

« CPU30: ' Number of input relays + number of output coils << 4,096

—_1-6 —

LI Relays

. .

4) There are two types of output coils that vary in the way they operate during the power-up

sequence performed when power is turned ON, as described below. The operation of
these two types of output coils is the same during the program scan. :

* Normal Qutput Coils
During the power-up sequence, normal output coils are always turned OFF.

« Latched Output Coils :
During the power-up sequence, latched output coils always maintain the status they
have before power was turned OFF.

Structure

Normal outputcoit: = = Latched output coil: —(L}
XXX o XXXXXX

1) ={)= is the symbol for a normal output coil and —{L}— is the symbol for a latched

output coil.

2) “XXXXXX" represents the reference number. Any reference number between 000001 to

C.

- 008192 (000001 to ©08192) that is specified as an output coil in /O allocation can be
used as the reference number for an output coil.

Operation of Enabled Output Colls

1) Operation on Power Application

a) Normal output coils are turned OFF during the power-up sequence performed when
power is turned ON and the OFF status is output to the Digital Output Module.

b) Latched output coils are set to the status they had before power was turned OFF dur-
ing the power-up sequence performed when power is turned ON and the previous
status is output to the Digital Output Module.

2) Operation During the Scan Cycle

There is no difference in the opération of normal and latched output coils during the scan.
Both types of output coils operate as follows:

a) Output coils are ON while power is being supplied and the ON status is output to the
Digital Output Unit. When an output coil goes from OFF to ON, contacis with the same
reference number as the output coil behave as follows:

* N.O. contacts pass power from left to right.
¢ N.C. contact interrupt power flow.

—17 —

Basic Instructions

1.1.5 Coils cont.

s Positive transitional contacts pass power from left to right only for the scan in which the
output coil goes from OFF to ON.

« Negative transitional contacts will interrupt power flow (i.e., will normaliy not change)

b) Outputcoils are OFF while power is not being supplied and the OFF status is output to
the Digital Output Unit. When an output coil goes from ON to OFF, contacts with the
same reference number as the output coil behave as follows:

+ N.O. contact interrupt power flow.
« N.C, contacts pass power from left to right.
» Positive transitional contacts will interrupt power flow (i.e., will normaily not change)

s Negative transitional contacts pass power from left to right only for the scan in which the
output coil goes from ON to OFF.

D. Operation of Disabled Output Coils
1) Operation on Power Application
There is no difference in the operation of disabled normal and latched output coils. When

disabled, output coils return to the status they had before the scan operation was inter-
rupted and that status is output to the Digital Output Module.

2) Operation During the Scan Cycle

During the scan, disabled output coils are turned ON if forced ON from the MEMOSOFT,
are turned OFF if forced OFF from the MEMOSOFT, and the status is output to the Digital
Output Module. The operation of coils in response to output coils status is the same as for
enabled output coils.

—1-8 —

1.1 Relays

m

AEXAMPLEp

E. Output Coil Application Examples

Example 1: Using Normal Output Coils

1) When start BS is pressed, coil 000001 turns ON, turning ON the electromagnetic contac-
tor MC. The ON status is maintained even if the start BS is released because of the self-
holding action of a N.O. contact for coil 000001. The electromagnetic contactor MC will
turn OFF when the stop BS is pressed.

Digital Input Digital Output
Module CPU Module Module
Start BS
- o MC
—0 o— 100001 F——(| [o00001}—rr~—
100001 | 100002 000001 ‘ ON
Stop BS
—Q 1 O—— 100002 poo0o1

) Closed
Start BS Open
Lo
Closed . .
Stop BS ! !
Open i i H '
1] 1
Input relay ; ; , '
Power ! !
ON P
100001 Power r -
OFF : b
input relay Power : I l
ON 1
Power !
100002 OFF ! ‘
; i
U
Output coil ON
......().._..
000001 OFF ; '
: :
ON
Electromagnstic
contactor
MC OFF

2} If power is interrupted and then restarted with coil 000001 in the above state, coil 000001
will be turned OFF in the power-up sequance, releasing the self-holding circuit. The start
BS will have to be pressed again to turn ON coil 000001 again.

— 19—

Basic Instructions
L

1.1.5 Coils cont.

4EXAMPLE p

Exampie 2: Using Latched Output Coils

1) Assume that latched output coit 000001 is in the state shown in the following tllustration
before power is interrupted.

Digital Input ‘ Digital Qutput
Module CPU Module Motdle
Start BS
—4 ON MC
o O—i100001 F——(L—]| (000001~
100001 | 100002 000001 ON
Stop BS
—_ 1 o——1100002{ || 000001

2) When power is turned back ON, coil 000001 will be restored to ON in the power-up se-
qguence, as shown in the following illustration, and start BS will not have to be pressed
again to turn ON coil 000001.

Digital input Digital Output
Mgrlislenp CPU Modute I\fllgclsule e
Start BS
o ON MC
—0 O—— 100001 b L =1 000001 }—~~~—o
100001 | 106002 000001 ON
Stop BS -
—a 1 o—1100602 000001

—1.10—

1.1 Relays

2. Internal Coils

A. Function

1) Internal coils are used to build logic in the ladder logic program.
2) Internal coils cannot be used to output ON/OFF status to Digital OQutput Modules.
3) All coils that are not specified as output coils are internal coils.

4) There are two types of internal coils: normal and latched.

B. Structure

Normal internal coil: ::XXX)? Latched internal coil:;;xlix};

1) ={)} is the symbo! for a normal internal coil and —{L)— is the symbol for a latched
internal coil.

2) "XXXXXX" represents the reference number. Any reference number between 000001 to
008192 (000001 to 008192) that is not specified as an output coil in /O allocation can be
used as the reference number for an internal coil.

C. Operation of Enabled Internal Coils
The operation of enabled internal coils is the same as that of output coils, except that the
ON/OFF status is not output to Digitat Qutput Modules.

D. Operation of Disabled Internal Coils
The operation of disabled internal coils is the same as that of output coils, excepi that the

ON/OFF status is not output to Digital Qutput Modules.

E. Using Internal Colls

AEXAMPLEp In the following circuit, coil 001001 wili change continuously between ON and OFF each
scan.
}—
. 001001 001009
Ts: 1 scan time
Internat cofl ON
~

001001 OFF

Ts Ts Ts Ts Ts Ts Ts

— 111 —

Basic Instructions
1.1.5 Coils cont.

3. Battery Monitor Coil

A. Function

1} Abattery monitor coil is used to monitor the output voltage of the memory backup battery
built into the CPU Module.

2} The battery monitor coil can also be specified as an output coil to directly output the ON/
OFF status to a Digital Output Modute.

B. Structure

~

The battery monitor coil is initially set to 008192

. This coil cannot be used within the network;

use the reference number in contacts.

C. Operation of Enabled Battery Monitor Coill !

1) The output voltage of the memory backup battery in the CPU Module will be monitored
and the battery monitor coil will behave as described below both during the power-up se-
quence when power is turned on and after moving to the scan cycle.

a} The battery monitor coil will be ON as long as the output voltage is within the proper
range.

b) The battery monitor coil will turn OFF if the output voltage is not within the proper
range.

2) The operation of contacts for the ON/OFF status of the battery moniior coil is the same as
the operation of output coils or internal coils during the scan cycle.

D. Operation of Disabled Battery Monitor Coil

1) Operation on Power Appiication
The battery monitor coil is set to the status that it had before the scan operation stopped.
2) Operation During the Scan Cycle

During the scan, disabled output coils are turned ON if forced ON from the MEMOSOFT,
are turned OFF if forced OFF from the MEMOSOFT, and the status is output to the Digitai
Output Module. The operation of coils in response to output coils status is the same as for
enabled output coils.

—1-12 —

1.1 Relays

E. Using the Battery Monitor Coil

4EXAMPLEp As long as the battery output voltage is within the proper range, the battery monitor coil
008192 will remain ON and the indicator lamp will remain Iit.

Digital Output
CPU Module Module

Indicator

,—I —_ - -
003192 900002 oooooz—‘o— Lt Battery nomal

NotLit Battery error

Normai
Battery output voltage
Error H
Battery monitor coil ON x:a
—_ — .
008192 OFF .
Power ;
ON
Power
008182 OFF '
Output coll ON '
- —
000002 OFF ,
_ Lit
Indicator
Not it

Note The battery monitor coil can also be specified as an output coil to directly output the ON/OFF
status to a Digital Qutput Moduls.

—1-13 —

Basic Instructions
1.1.6 Link Coils

1.1.6 Link Coils

The use of link coils is enabled by setting the numbef of PC Link Modules to either 1 or2 onthe
system configuration table display of the MEMOSOFT.

1. Function

The CPU Maodule uses link coils and corresponding contacts to send and receive ON/
OFF data with other PLCs on the PC Link.

2. Structure

Normal tink cail: -)-' Latched link cail: _(L
XXXAXX : XXXXXX

1) —) is the symbo! for a normal link coil and —{L }— is the symbol for a latched link
coil.

2) “XXXXXX" represents the reference number. The reference numbers listed in the follow-
ing table can be used.

Table 1.4 Reference Numbers for Link Coils

Number of PC Channel No. Reference No.
Link Modules
1 1 D10001 to D11024
2 1 D10001 to D11024
2 D200061 to D21024

3. Operation

Refer to the following manual for details on the operation of link coils.

MEMOCON GL120, GL130 PC Link Module User's Manual (SIEZ-C825-70.4)

—1-14—

1.1 Relays

N R M.]

1.1.7 MC Coils and MC Control Coils

The use of MC coils and MC control coils is enabled by setting the number of MC20 Modules
to either 1 or 2 on the system configuration table display of the MEMOSOFT.
1. Function

1) The CPU Module uses MC coils to output ON/OFF data to 4-axis Motion Modules
(MC20).

2) The CPU Module uses MC control coils to output overrides, MFIN signals, and other sig-
nals to 4-axis Motion Modules (MC20).

2. Structure

Normal MC or MC —{)}— Latched MC or MG —{L }—
control coil: control coil:
XXXXXX XAXXXX

1) =)} isthe symbol for a normal MC or MC control coil and —{L }— isthe symbolfora
latched MC or MC control coil.

2) “XXXXXX" represents the reference number. The reference numbers listed in the follow-
ing table can be used.

Table 1.5 Reference Numbers for MC and MC Control Colls

Number of MC20 Module No. Reference No.
Modules MC Coil MC Control Coil
1 1 Y 10001 to Y10256 Q10001 to Q10160
2 1 Y10001 to Y10256 Q10001 to Q10160
2 Y20001 to Y20256 Q20001 to Q20160

3. Operation

Refer to the foliowing manual for details on the operation of MC and MC control coils.

MEMOCON GL120, GL130 Motion Module MC20 Software User's Manual
(SIEZ-C825-20.52)

—1-15—

Basic Instructions
N ——— _ o oohfoinh O S
1.1.8 Relay Circuit Design Example

1.1.8 Relay Circuit Design Example
An example of a relay circuit design for the GL120 or GL130 is provided next.

4EXAMPLEp 1) We will consider the GL120/GL130 relay circuit design equivalent to the foliowing contact

relay circuit.
_Start Stop Intedock Lirnit Overload 1MC
alo O O ﬂ Q,(.Q Fa a'at 1 Run
1tMC I

Figure 1.1 Contact Relay Circuit

2) Reference numbers for I/O signals are allocated as shown in Figure 1.2

Input Module CPU Module Output Module
Start
Inpt el
L ots [ever [-usermenany
Stop
to0002
interlock Output cail 1Me
QO—_100002 008001 |——=Y gy
Limnit
Overioad
r—Q_X_Q— 180008

Figure 1.2 Allocation of Reference Numbers to I/O Signals

3) The relay circuit that is equivalent to the above contact relay circuit is shown below. This
circuit would be input in the user memory of the GL120/GL130 CPU Module.

IStarll Stop Interdock Limit Overload 1MC
1 | | —~ H -
100001 100602 100083 100004 100005 000001

I
I
000001

Figure 1.3 Equivalent GL120/GL130 Relay Circuit

Note In this example, normally ON states have been used to input the stop, interlock, limit, and
overload signals to the Input Module for safety reasons. In actual system applications, sys-
tem design specifications would need to be considered to determine if N.C. or N.O. contacts

should be used,

—1-16 —

LI Relays

%
1.1.9 Building Relay Circuits

1) Storage Locations on Networks
a) Contacts and Horizontal Shorts

Contacts (including N.Q., N.C., positive transitional, and negative transitions contacts)
and horizontal shorts can be stored horizontally anywhere on a 7-row by 10-column ma-
trix (rows 1 through 7 and columns 1 through 10). Contacts cannot, however, be placedto
the right of coils (including output coils, internal coils, link coils, MC coils, and MC control
cails).

Example 1 _
Up to 70 contacts and 7 coils can be stored in one network.

Column
[1"

1 s 4 5 & 7 8 9 .1
Row? =] p=ef I~ b= — b~ I~ — < >
100001 100002 100003 100004 100005 108608 100007 100002 100009 100010 00000

2 = = b = e e)

100011 100012 100013 100014 100015 100016 100017 100018 100018 300020 0COG02

S - - P)

100027 1000IZ 100023 100024 100025 100028 100027 100028 100028 100030 0OOOGS

o o e s A0 s e W e M s M s W s e Mo P

100031 100032 100033 100034 100035 100038 100037 100038 100038 100040 DO0004

g = = -

100041 300042 100043 100044 100045 100045 100047 100048 100049 100050 ODO0OS

o b = =t)

100051 100052 10005D 100054 100065 100058 100057 10005E 10O0S9 300080 000008

TH b e e e)

100081 100082 100063 100064 100065 100056 100087 100088 100069 100070 00007

Example 2
Nothing can be stored to the right of coils.

Column
! 2 3 4 5 [7 8 8 10 1
Row Vo)] | | f—f = Do :
100001 100002 100003 100004 100008 100008 180007 00DODY : E':islgged ce:: :
2 — — — =) ' thisarea. i

--

—1-17 —

Basic Instructions

1.1.9 Building Relay Circuils cont.

b) Vertical Shorts

Vertical shorts are stored vertically between one row and the row below it. Vertical shorts
cannot, however, be stored after row 7, in column 11, or to the right of coils.

Example 1: Correct Application

+ Vertical short stored to the right of contact --i
! 100001

i
Row 1 ’
, ¥
“* Vertical short stored on right

of harizontal shon.

------- Vertical short stored on right
of open horizontal nods.

Open horizontal nede (nothing stored)

Example 2: incorrect Application

Row 6 |- -

100001 |100002 100003 000001 !
7 v

1
1
,'" =< Wrong: Vertical short cannot be stored after row 7.
1

<-Wrong: Vertical short cannot
be stored to the right of a coil.

—1-18 —

1.1 Relays

M

c) Coils

Coils (including output cails, internal coils, link coils, MC coils, and MC control coiis) can
be stored horizontally anywhere on a 7-row by 11-column matrix (rows 1 through 7 and
columns 1 through 11). Only one coil, however, can be stored on each row, and nothing
can be stored to the right of a coil. '

Example
Up to 7 coils can be stored in one network.

Column
1 2 3 4 5 6 T 8) 10 "
R G S meesemrsna .
000001 " b dinth
' Nothing can be stored in this arsa.
2 b = >

160011 100012 000002 | _..______

SH = >

100021 100022 100623 100024 (00003

tH)

100031 100032 100033 100034 100035 100036 000004 r————

S - -

100041 100042 100043 100044 100045 100046 100047 €0000S ©____ . . !

2 o B M ot M s M Mo M AL e e D

100051 100052 100053 100054 100055 100058 100057 100058 JOOCSP 100080 0CCO0S

7—| I I I I I I I C)-5 Nothing can be stored in this area. :

Fremmaaal

’
¥
1
2
]
[l
-

r=v=we=sl

d) Contacts and coils are stored horizontally on a network. They cannot be stored verti-
cally, as illustrated below.

Example: Incorrect Application

Column
f 3 4

|- r
Row 1 } - - -
mooo;_}_ (J\ 000001
PR

2 i '“‘ I Wrong: Coils cannot be stored vertically on the network.
ll~j\ .

100002 ' Wrong: Contacts cannot be stored vertically on the natwork.

—1-19 —

Basic Instructions
T -]

1.1.9 Building Relay Circuits cont.

2) Using Reference Numbers

a) The same reference number cannot be used for more than one coil, i.e., duplicate
coils cannot be used.

Example: Incorrect Application

Column
1 38 4

2
fow 1 o FAA—A—C

i
100001 | 100002 100003 (000001)
-

2MH —C > .
100004 - 00000k <=-""""""" Wrong: The same reference number can-
SESLe. not be used for more than ons coil.

b) The same reference number can be used as many times as required for different con-

tacts.
Example 1
Column Column
1 2 3 4 1 2 3 4
Row 1)— Row 1 >
100001 |000002 100003 000801 100002 (000001 100003 000002
2 2
000001 000002
NET# 1 NET# 2
Example 2
Column
1 2 3 4
Row 1 >_

100001 100002 |500003 00000t

2 :
100001 100002

—1-20 —

L1 Relays

m
3) Although relay circuits without coils are not technically mistakes, they are meaningless.

Example

Column
1

Row 1
100001 100002 100003

4) Aninternal coil and a N.O. contact with the same reference number can be used to con-
nect more than 10 contacts in series to the same coil. Examples 1 and 2 show how 1o
connect N.O. contacts for input relays 100001 to 100012 to coil 000001.

Example 1: Programming in Two Different Networks
Column
1 3 4 5 6 7 8) it 1"
Rowlird B M - — — — < >

100001 100002 100003 100004 100005 100005 100COT 100008 100008 100010 001001
-

2

KET® 101 Internal
coil
N.O. contact corresponding to intemmal coll
Coiumn»*
l‘_, S2 3 4
Row 1 l'—l I""" |""C)‘

001001 100611 100012 GCO001

NET# 102

Coil 001001 will turn ON in the same scan that input relays 100001 to 100012 turn ON.

Example 2: Programming in the Same Network

Col'umn 3 5 1 8 8 10 n
Row 1 = b b b — < < >

100007 100002 100003 100004 100805 100006 100007 100008 100008 100010 OOJOUI

4 L

24— > -
001001 100011 100012 000001 ntomal

-
~

N.O. contact corresponding to intarnal coil ,

Coil 001001 will turn ON in the same scan that input relays 100001 to 100012 turn ON,
but coil 000001 will not turn ON until the next scan and will turn ON then only ifinput relays
100011 to 100012 are still ON.

- 1-21 —

Basic Instructions

1.1.9 Building Relay Circuits cont.

5) Examples 1 and 2 show how to connect more than 7 contact in paralle! to the same coil.
Both of these examples show how to connect N.O. contacts for input relays 100001 to
100012 to cail 000001.

Example 1: Programming in One Network (No Internal Coil Necessary)

Column)
1 2 3 4
Row 1 | ¢ >
100001 000001
2H H
100002 100007
sHH HIE
100003 100008
44 -
100004 100003
5
100005 100010
6 —
100006 100011
7 i
100012

Example 2: Programming in Two Different Networks {(Using Internal Coil)

Column Column
1 2 1 2
Row 1 | >~ Row 1 ()
100001 omoo‘{ 100008 | 000001
2 H ™ 2H
100002 Lf;tifl’mal 100009
i - sH H
100003 100010
4 - 44
100004 100011
51 |- s
100005 100012
s H o 1
100006 lootoo,
7+ 7)
100007 N.O. contact corre-
sponding to internal coil
NET# 102 NET# 103

—1-22 —

) 1.1 Relays
m
6) Power flows within a network according to the following rules.

a) Power always flows to the fight from the power rail and never flows backward, i.e.,
_never flows from the right to the left.

b) Power flows both from the top to the boftom and from the bottomn to the top within a
column.

Example 1

Power flow

4
100001 000001

108002

— |-

100003

Power will flow as iflustrated by the arrows in the above diagram whenever input relay 100001
is ON, causing coil 000001 to turn ON.

Example 2

———
— =
100001 000001
100002 Power flow
_*
—
100003

Power will flow as illustrated by the arrows in the above diagram whenever inputrelay 100003
is ON, causing coil 000001 to turn ON.

—1-23 —

Basic Instructions

1.1.9 Building Relay Circuits cont.

Example 3
— F— — -
160001 100002 !00003 100004 000001
pemes=- - ’
| i -
100005 (100006 000002
e ¥ Power never flows like this {i.e.,
_l I____' I___(— never flows from right to left).
100007 100008 000003 '

(1) Possible Power Flows to Turn ON Coil 000001

T Ly g
100001 100002 100003 100004 000001

S e e
100005 100006 short 106003 100004 009001

3 = = vetica - 4} b = Vetica - - —= - =~
100007 short 100006 short 100003 100004 000001

(2) Possible Power Flows to Turn ON Coil 000002

) ==} vetcal - —)=

100001 100002 short 000002
2 A=A+
100005 100006 000002
3) —II——hVarticaI *—'II——-—()—-
100007 short 100006 000002

(3) Possible Power Flows to Turn ON Coil 000003

- — -
000003

- Vertcal ~» =

5
) 100005 short 100008

N e [e

00067 100008 000003

(4) Coil 000003 will never tum ON for the power flow shown by the arrow with the
dotted lines. There are thus no worries about reverse power flow.

—1-24 —

1.2 Timers

m

1.2 Timers

This section describes the timer instructions available for programming, including their
functions, structure, operation, and application, Building timer circuits is also discussed
and related precautions are provided.

121 TimerInstructionso.iiiit it e e e 1-25
122 1-SECOND TIMER (T1.0) +oviiiiii e e e e - 125
123 0.1-SECOND TIMER (TO.1) «uririiie e e e e 1-28
124 0.01-SECOND TIMER (T.01) ..ot e e 1-30
1.25 0.001-SECOND TIMER (T1MS) . ..ottt oo 1-32
1.2.6 Building Timer Circuits e 1-35

1.2.1 Timer Instructions

The following table list the four timer instructions. As many of the following instructions canbe
used as long as the user memory, holiding register, or link register capacity is not exceeded.

Table 1.6 Timer instructions

Instruction Name Symbol Timing Unit Timing Range (*2)
: (1)
1-SECOND TIMER T1.0 1s 110 65,5358
0.1-SECOND TIMER TO.1 01s 0.1106,553.5s
0.01-SECOND TIMER - T.01 0.01s 0.0110655.35s
" 10.001-SECOND TIMER TiIMS 0.001 s 0.001 t0 65.535 s

*1: The timing unit is the unit used by the timer to measure time. For example, 1-SECOND TIMER
measures time in 1-s intervals.

*2: The timing range is the range in which the timer can measure time. For example, 1-SECOND
TIMER measures time between 1 and 65,535 s.

1.2.2 1-SECOND TIMER (T1.0)

1. Function

1-SECOND TIMER is used to measure time in 1-s intervals between 1 and 65,5635 s.

2. Structure

ON: Time is measured. Input 1 = f:,tua (S} = Output 1: ON when current value = set value
OFF: Time not measured

T1.0

Current

ON: Time can be measured. Input2 —f vaive (€) = Output2: ON when current value < set valus
OFF: Timer reset.

—1-25 —

Basic Instructions
. . -}

1.2.2 1-SECOND TIMER (T1.0} cont.

1) T1.0 is the symbol for 1-SECOND TIMER.

2) T1.0 requires two elements, one top element and one bottom element, located vertically
on the network. Table 1.7lists the register reference numbers and constants that can be
specified. :

Example

nput1 =| #00010 | Output1

#00010: Setvalue (10)

T1.0 400001: Reference number of holding register to store the
input2 - 400001 |- Output2 current vaiue. '

Table 1._7 Structural Elements of T1.0

Element Meaning : Possible Settings

Top (S) | The value of the constant or the contents | Constant: #00000 to #65535
- | of the register with the specified reference .
number will be used as the set value (S) of | Input register: 300001 to 300512

the timer. (Z00001 to Z00512)
The value of $ must be between | Holding register: 400001 to 409999
0 and 65,535. (WO00001 to W09999)

Constant register: 700001 to 704096
(KOD001 to K04096)

Link register: R10001 to 11024
R20001 to R21024

Bottom | The current value of the timer (C} will be Holding register: 400001 to 409999

(C) stored in the specified register. (WO00001 to W09999)
The value of C will be between 0 and the Link register: R10001 to R11024
set value. R20001 to R21024

3. Operation

1) If input 2 is ON, the following timing operation will be performed by T1.0 while input 1 is
ON.

a) The current value wiltbe incremented by 1 every second. As long as the current value
is less than the set value, output 1 will remain OFF and output 2 will remain ON.

b) When the current value reaches the set value, the current vaiue will no ionger be in-
cremented, output 1 will turn ON, and output 2 will turn OFF.

2) lfinput 1 turns ON and OFF repeatedly while input 2 is ON, the time that input 1 is ON will
" be measured and the operation described for item 1) will be performed.

3) lf input 2 is OFF, timing will not be performed regardless of the status of input 1, the cur-
rent value will be set to 0, output 1 will turn OFF, and output 2 will turn ON.

—1-26 —

1.2 Timers

m

4) The following table summarizes the operation of T1.0.

Table 1.8 Operation of T1.0

Inputs Timer Status Current Value Outputs

1 2 1 2

Any |OFF |Reset 0 OFF |ON

ON [ON |Running Current value < Set value Incrementing OFF {ON
’ Current value = Set value Set value ON |OFF

OFF |ON | Stopped Current value < Set value Not changed OFF |ON
Current value = Set value Set value ON |OFF

<EXAMPLEp 4, Application Example

1) Ladder Programming

— — 200010 —{
100001 000001 Setvalue: 10
T1.0 Timing range: 11010 s
L1 400001 fei -
100002 000002
2) Operation

a) Timer operation is enabled when input relay 100002 is OFF.

b) The timer will start when input 100001 turns ON while input relay 100002 is OFF and
the current value (contents of holding register 400001) will be incremented 1 each
second. Coil 000001 will be OFF and coil 000002 will be ON.

¢) When the current value reaches the set vatue (10), the timer will siop and the current
value will no longer be incremented. Coil 000001 will turn ON and coil 000002 will turn
- OFF.

d) If input relay 100001 tums ON and OFF repeatedly while input relay 100002 is OFF,
the time that input relay 100001 is ON will be measured and the operation described
for items b) and c) will be performed.

e) If input relay 100002 is ON, timing will not be performed regardless of the status of
inputrelay 100001, the current value will be set to 0, coil 000001 will turn OFF, and coil
000002 will turn ON.

e 1-27 —

Basic Instructions

1.2.3 0.1-SECOND TIMER (T0.1)

1.2.3 0.1-SECOND TIMER (T0.1)

1. Function

0.1-SECOND TIMER is used to measure time in 0.1-s intervals between 0.1 and

6,553.5 5.

2. Structure

ON: Time is measured. Input1 =
OFF: Time not measured

ON: Time can be measured. Input2 ==

OFF: Timer reset.

Set
value

T0.1

Current

value

(8} = oOutput 1: ON when current value = set value

(C) = Output 2: ON when current value < set vatue

1) TO.1 is the symbol for 0.1-SECOND TIMER.

2) T1.0requires two elements, one top element and one bottom element, located vertically
on the network. Table 1.91ists the register reference nurmbers and constants that can be

specified.

Example

input1 =1 #00180 - oOutputt

TO.1

input2 - 400001 Output2

#00100: Set value (100)

400001: Reference number of hoiding register to store the

current value.

Table 1.9 Structural Elements of T0.1

Element Meaning

Possible Settings

the timer.

0 and 65,535.

The value of S must be between

Top (S) | The vaiue of the constant or the contents | Constant:
of the register with the specified reference .
number will be used as the set value (S) of | Input register:

Holding register:

Constant register:

Link register:

#00000 to #65535

300001 to 300512
{Z00001 to Z00512)

400001 to 409999
{WO00001 to W09999)

700001 to 704096
(KO00O1 to K04096)

R10001 to R11024
R20001 to R21024

set value,

Bottom | The current value of the timer (C) will be Holding register:
(C) stored in the specified register.

The value of C will be between 0 and the

Link register:

400001 to 409999
(WO00001 to W08999)

R10001 to R11024
R20001 to R21024

—1-28 —

1.2 Timers

M

3. Operation

1) input 2 is ON, the following timing operation will be performed by T0.t1 while input 1 is
ON.

a) The current value will be incremented by 1 every 0.1 second. As iong as the current
value is less than the set value, output 1 will remain OFF and output 2 will remain ON.

b) When the current value reaches the set value, the current value will no fonger be in-
cremented, output 1 will turn ON, and output 2 will turn OFF.

2) Ifinput 1 turns ON and OFF repeatedly while input 2 is ON, the time that input 1 is ON will
be measured and the operation described for item 1) will be performed.

3} Ifinput 2 is OFF, timing will not be performed regardless of the status of input 1, the cur-
rent value will be set to 0, output 1 will turn OFF, and output 2 will turn ON.

4) The following table summarizes the operation of T0.1.

Table 1.10 Operation of T0.1

Inputs Timer Status Current Value Outputs

1 2 . 1 2

Any |OFF |Reset 0 OFF [ON

ON |ON |Running Current value < Set value Incrementing OFF {ON
Current value = Set value Set vaiue ON | OFF

OFF |ON | Stopped Current value < Set value Not changed OFF |ON
Current value = Set value Set value ON | OFF

<EXAMPLEp 4, Application Example

1) Ladder Programming

—] 200100 —(

Set value: 100
WWM To. 1 000001 Timing range: 0.‘1 to 10.0s

400007 =)—
100002 000002

2) Operation
a) Timer operation is enabled when input relay 100002 is OFF.

b) The timer will start when input 100001 turns ON while input relay 100002 is OFF and
the current value (contents of holding register 400001) will be incremented 1 each 0.1
second. Coil 000001 will be OFF and coil 000002 will be ON.,

—1-29—

Basic Instfructions
1.2.40.01-SECOND TIMER (T.01)

¢) When the current value reaches the set value (100), the timer will stop and the current
value will no longer be incremented. Coil 000001 will turn ON and coil 000002 will turn
OFF.

d) Hinput relay 100001 turns ON and OFF repeatedly while input relay 100002 is OFF,
the time that input relay 100001 is ON will be measured and the operation described
for items b) and c¢) will be performed.

e) It input relay 100002 is ON, timing will not be performed regardless of the status of
input relay 100001, the current value will be set 10 0, coil 000001 will tur OFF, and coil
000002 will turn ON.

1.24 0.01-SECOND TIMER (T.01)

1. Function

0.01-SECOND TIMER is used to measure time in 0.01-s intervals between 0.01 and
655.35 s.

2. Structure

CN: Time is measured. Input{ = 3;{,6 {8) = Output 1: ON when cument value = set valua
OFF: Tirme not measured
T.01
Current
ON: Timecan be measured. input2 = valye (C) = Output2: ON when current value < set value
OFF: Timer reset.

1) T.01 is the symbol for 0.01-SECOND TIMER.

2) T.01 requires two elements, one top element and one bottom element, located vertically
on the network. Table 1.11 lists the register reference numbers and constants that can be
specified.

Example

Input1 =f §01000 - Outputt
#01000: Set value (1000)

T.01 400001: Reference number of holding register 1o store the
Input2 ~ 400001 + oOupur2 current value.

—1-30 —

1.2 Timers

“

Table 1.11 Structural Elements of T.01

Element Meaning Possible Settings

Top (S) | The value of the constant or the contents | Constant: #00000 to #65535
of the register with the specified reference .
number will be used as the set value (S) of | Input register: 300001 to 300512

the timer. {Z00001 to 200512)
The value of § must be between Holding register: 400001 to 409999
0 and 65,535. (W00001 to WD9999)

Constant register: 700001 to 704096
(KOO0O1 to KO4096)

Link register: R10001 to R11024
R20001 to R21024

Bottom [The current value of the timer (C) will be Holding register: 400001 to 409999

(C) stored in the specified register. (W00001 to W09999)
The value of C will be between 0 and the Link register: R10001 to R11024
set value. R20001 to R21024

3. Operation

1) lfinput 2 is ON, the following timing operation will be performed by T.01 while input 1 is
ON. '

a} The current value will be incremented by 1 every 0.01 second. As long as the current
value is less than the set value, output 1 will remain OFF and output 2 will remain ON.

b) When the current value reaches the set value, the current value will no longer be in-
cremented, output 1 will turn ON, and output 2 will tum OFF.

2) Ifinput 1 turns ON and OFF repeatedly while input 2 is ON, the time that input 1 is ON will
be measured and the operation described for item 1) will be performed.

3) If input 2 is OFF, timing will not be performed regardiess of the status of input 1, the bur-
rent value will be set to 0, output 1 will turn OFF, and output 2 will turn ON.,

4) The following table summarizes the operation of T.01.

Table 1.12 Operation of T.01

inputs Timer Status Current Value Qutputs

1 2 1 2

Any | OFF | Reset 0 OFF |ON

ON |ON | Running Current value < Set value Incrementing OFF | ON
Current value = Set value Set value ON | OFF

OFF |ON | Stopped Current value < Set value Not changed OFF [|ON
Current value = Set value Set value ON |OFF

—1-31 —

Basic Instructions
1.2.5 0.001-SECOND TIMER (TIMS)

«EXAMPLE» 4, Application Example

1) Ladder Programming

Set value; 1000

__l |__ 201000 —{ >~ - Timing range: 0.01 10 10.00 5
1084001 000001
T.01
400001 — >
100002 000002

2) Operation
a) Timer operation is enabled when input relay 100002 is OFF.

b) The timer wil! start when input 100001 turns ON while input relay 100002 is OFF and
the current value {contents of holding register 400001} will be incremented 1 each
0.01 second. Coil 000001 will be OFF and coil 000002 will be ON.,

¢) When the current value reaches the set value (1000), the timer will stop and the cur-
rent value will no longer be incremented. Coil 000001 will turn ON and coil 000002 will
turn OFF.

d) Ifinput relay 100001 turns ON and OFF repeatedly while input relay 100002 is OFF,
the time that input relay 100001 is ON will be measured and the operation described
for items b) and c) will be performed.

e) If input relay 100002 is ON, timing will not be performed regardless of the status of
inputrelay 100001, the current value will be setto 0, coil 000001 will turn OFF, and coil
000002 will turm ON.

1.2.5 0.001-SECOND TIMER (T1MS)

1. Function

0.001-SECOND TIMER is used to measure time in 0.001-s intervals between 0.001 and
65.535 s.

2. Structure

ON: Time is measured. Inputt == \s‘,:lhe {8) = OCutput 1: ON when current value = set value
CFF: Time not measured

Current
ON: Time can be measured. input2 =], =" (€) = Output2: ON when current value < set value

OFF: Timer reset.
£00001

—1-32 —

1.2 Timers

M-
1) TIMS is the symbol for 0.001-SECOND TIMER.

2) T1MS requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 1.13 lists the register reference num-
bers and constants that can be specified.

Example

nputt = 10000 [Output1
: #10000: Set value (10000)

Input2 < 400001 = Output2 400001: Refarence number of holding register to store the
T1MS current value.
$00001

Table 1.13 Structural Elements of TIMS

Element Meaning Possible Settings

Top (8) | The value of the constant or the contents | Constant: #00000 to #65535
of the register with the specified reference .
number will be used as the set value (S) of | Input register: 300001 to 300512

the timer. {Z00001 to Z00512)
The value of S must be between Holding register: 400001 to 409999
0 and 65,535. (WO0001 to W09999)

Constant register: 700001 to 704096
(K0D001 to KD4096)

Link register: R10001 to R11024
R20001 to R21024

Middle The current value of the timer (C) will be Holding register: 400001 to 409999

(C) stored in the specified register. (W00001 fo WD9999)
The value of C will be between 0 and the Link register: R10001 to R11024
set value. . A20001 to R21024

Bottom |— Constant: #00001

3. Operation

1} Ifinput 2is ON, the following timing operation will be performed by TIMS while input 1 is
ON.

a) The current value will be incremented by 1 every 0.001second. As long as the current
value is less than the set value, output 1 will remain OFF and output 2 will remain ON.

b) When the current value reaches the set value, the current value will no longer be in-
cremented, output 1 will turn ON, and output 2 will turn OFF.

2) Hinput 1 turns ON and OFF repeatedly while input 2 is ON, the time that input 1is ON will
be measured and the operation described for item 1) will be performed.

—1-33 —

Basic Instructions

1.2.5 0.001-SECOND TIMER (TIMS) cont.

AEXAMPLEp

3) lfinput 2 is OFF, timing will not be performed reQardless of the status of input 1, the cur-
rent value will be set to 0, output 1 will turn OFF, and ouiput 2 will turn ON.

4} The following table summarizes the operation §>f TIMS.

Table 1.14 Operation of TIMS

Inputs ° Timer Status Current Value Outputs

1 2 1 2

Any |OFF | Reset : 0 OFF [ON

ON |ON |Running Current value < Set value Incrementing OFF |ON
' Current value = Set value | Set value ON |OFF

OFF {ON | Stopped Current value < Set value * Not changed OFF |ON
Current value = Set value - Set value ON |OFF

4. Application Example

1) Ladder Programming

Set value: 10000

$10000 |~)= Timing range: 0.001 to 10.000 s
100001 acoco1

®0oeo1 —~
100002 TIMS 000002

£00001

2) Operation

a)

b)

d)

e)

Timer operation is enabled when input relay 100002 is OFF.

The timer will start when input 100001 turns ON while input relay 100002 is OFF and
the current value (contents of holding register 400001) will be incremented 1 each
0.001 second. Coit 000001 will be OFF and coil 000002 will be ON.

When the current value reaches the set value (10000), the timer will stop and the cur-
rent value will nc longer be incremented. Coil 000001 will turn ON and coil 000002 will
turn OFF. -

if input relay 100001 turns ON and OFF repeatedly while input relay 100002 is OFF,
the time that input relay 100001 is ON will be measured and the operation described
for items b) and c) will be performed.

If input relay 100002 is ON, timing will not be performed regardless of the status of
input refay 100001, the current value will be set to 0, coil 000001 will turn OFF, and coil
000002 will turn ON.

—1-34 —

1.2 Timers

M
1.2.6 Building Timer Circuits

1. Storage Locations on Networks

1) 1-SECOND TIMER, 0.1-SECOND TIMER, and 0.01-SECOND TIMER

These three timers require two elements on a network, one top element and one bottom
element. They can thus be stored anywhere on a 6-row by 10-column matrix (rows 1
through & and columns 1 through 10) on the network.

2) 0.001-SECOND TIMER

The 0.001-SECOND TIMER requires three elements on a network, one top element, one
middle element, and one bottom element. It can thus be stored anywhere on a 5-row by
10-column matrix (rows 1 through 5 and columns 1 through 10) on the network.

Note Timers cannot, however, be placed to the right of coils {including output coils, internal coils,
link coils, MC coils, and MC control coils).

Example

Column
1 2 3 4] 8 7 8 8 10 1t

Row ¢ —l 80100)_:f

100001 1pq g 90000t ! Nothing can be stored in this area. f
2 wooot- -
100002 L S

[}

100021 100022 100023 100024 100025 100025 100027 100028 1000

-H—-H-—Iln-!l——-il——ll—-H—H—-—{:-E-C)-
T0.1
003

-

100041 100042

6 —

100051 100952

2. Timer Inputs

Timer inputs 1 and 2 can be connected to contacts and/or outputs from other timers,
counters, math instructions, other instructions, etc. Coils cannot be connected to inputs.

— 1-35 —

Basic Instructions

1.2.6 Building Timer Circuits cont.
Example
Column
1 2 3 4
Row 1 m-
081001 1iTg. 1
2 40001 tirrocoro-C -
0.1 00100t
3 012}

3. Timer Outputs

Timer outputs 1 and 2 can be connected to any of the following: colls, contacts, inputs to
math instructions, inputs to other instructions, ete.

Example 1
Column
1 2 3 4
Row 1 —--| 08050
100001 T1.0
2 400013/ — >
10000t 001002
-]
Example 2
Column
1 2 h: | 4
Row 1

4. Storage Registers for Timer Current Values

Note Unless there is a very specific reason for doing so, never use the storage register of a timer

instruction for the following purposes (see following illustration). Unexpected opsration may
result.

—1-36 —

1.2 Timers
m

1) As the storage register for the current value of a counter or another timer.

2) As the storage register for the results of a math instruction or any other instruction.

Example: Incorrect Application

Row 1

:> No: Do not use the same reference number in
more than one instruction without a specific and
planned reason.

5. Set Values for Timers

Note If zero is input as the set value for a timer, output 1 will turn ON and output 2 will turn OFF as
long as input 2 is ON regardless of the status of input 1.

Example

Column

t 2 3 4
Row 1 ,‘— 400016 _C)— Assuming that input relay 100002 is OFF and that the contents
of holding register 400016 is set to 0, coil 001002 will tum ON
100001 T1.0 001002 regardless of the status of input relay 100001,
2 400017,
100002

6. Timer Set Values and Current Values

In normal application, the current value of the timer will never exceed the set value. Nu-
meric or other instructions can, however, be used to output values to a register holding a
current value, thus possibly making the contents larger than the set value. If this hap-
pens, the current value will be reset to the set value the next time the timer is solved.

- 1-37 —

Basic Instructions

1.2.6 Building Timer Circuits cont.

7. Timing Error

Note The following equation can be used to calculate the timing error of timers.
Max. error = Min. unit of set value + 1 scan time.
For example, if 1-SECOND TIMER is used, there will be a timing errorof upto 1 s, i.e., the

timer may time-out up to 1 s too early. If this possible error is a problem for the applications,
use one of the other timer instructions to achieve greater accuracy.

8. Current Values of Timers at Power-up

Note (1) The present values of timers are saved in memory even if the operation of the CPU
Module is temporarily stopped due te power interruptions or other causes. When CPU
Module operation is restarted, the current value will be cleared to 0 or set to the value
recorded in memory depending on the ON/OFF status of timer input 2.

(2) The following tabie lists the treatment of timer current values when power is resupplied
and input relays or contact for coils are connected to timer input 2.

Table 1.15 Timer Present Value Treahnent for Restarté.

Contact Connected to Input 2™2 Timer Current Value First Scan
Type of Reference Status Contact type After Restarting
Input relay ON N.O. Value in memory™

Latched coil N.C. 0
' OFF N.O. 0

N.C. Value in memory

Normal coil n=m't |ON N.O. Value in memory
N.C. 0
OFF N.O. 0

N.C. Value in memory
n>m"' |OFF N.O. 0

N.C. Value in memory

*1: “n" is the number of the network where tha coil corresponding to the contact connected to
input 2 is programmed and “m” is the number of the network where the timer is programmed.

*2: If more than one contact is connecfed to input 2, the above logic can be applied to the results
of the contacts.

*3: The value in memory is the value saved when power was interrupted.

—1-38 —

1.3 Counters

m

1.3 Counters

This section describes the counter instructions availabie for programming, incfuding

their functions, structure, operation, and application. Building counter circulits is also
discussed and related precautions are provided.

131 Counter Instructionsc.viiiivenn e 1-39
1.3.2 UPCOUNTER(UCTR) ..ottt e e e e e e 1-39
1.3.3 DOWNCOUNTER (DCTR) oottt e e e e 1-42
1.3.4 Building Counter Circuitscoooeeenoniniae e, -1-44

1.3.1 Counter Instructions

The following table list the two counter instructions. As many of the following instructions can
be used as iong as the user memory, holding register, or link register capacity is not exceed-

ed.
Table 1.16 Counter Instructions
instruction Name Symbol Counting Unit"1 Counting Range™2
UP COUNTER UCTR 1 pulse 1 to 65,535 pulse
DOWN COUNTER DCTR

*1: The counting unit is the unit used to count pulses. Both UP COUNTER and DOWN
COUNTER count pulses one at a time.

*2: The counting range is the range in which pulses are counted. UP COUNTER and DOWN
COUNTER count pulses between 1 and 65,535.

1.3.2 UP COUNTER (UCTR)

1. Function

UP COUNTER counts pulses and increments the current value one at a time. The count-
ing range is between 1 and 65,535.

2. Structure

OFF — ON: Pulse input Input 1 = Selt (S} =~ Output 1: ON when current value = set value
. value

UCTR

ON: Countingenabled Input2 == S;L"eem (C) = Output 2: ON when current value < set value
OFF: Counter reset .

-~ 1-39 —

Basic Instructions
. R -]

1.3.2 UP COUNTER (UCTR) cont.

1) UCTR is the symbol for UP COUNTER.

2) UCTR requires two elements, one top element and one bottom element, located vertical-
ty on the network. Table 1.17lists the register reference numbers and constants that can
be specified.

Example

lnput1 — 2080010 1~ Output?
#00010: Set value (10)

UCTR 400001: Refarence number of holding register to store the
input2 —f 400001 = Output2 current value.

Table 1.17 Structural Elements of UCTR

Element Meaning Possible Settings

Top (8) | The value of the constant or the contents | Constant: #00000 to #65535
of the register with the specified reference .
number will be used as the set value (S) of | Input register: 300001 to 300512

the counter. {Z00001 to 200512)
The value of § must be between Holding register: 400001 to 409999
0 and 65,535. (W00001 to W09989)

Constant register: 700001 to 704096
(K00001 to KO4096)

Link register: R10001 to R11024
R20001 {o R21024

Bottorn The current value of the counter (C) will be | Holding register: 400001 to 409999

(C) stored in the specified register. {WO00001 to W09998)
The value of C will be between 0 and the Link register: R10001 to R11024
set value. R20001 to R21024

3. Operation

1) If input 2 is ON, the following counting operation will be performed by UCTR.

a) The currentvalue will be incremented by 1 each time input 1 goes from OFF to ON. As
long as the current value is less than the set value, output 1 will remain OFF and out-
put 2 will remain ON.

b) When the current value reaches the set value, the current value will no longer be in-
cremented, output 1 will turn ON, and output 2 will turn OFF.

2) If input 2 is OFF, counting will not be performed regardless of the status of input 1, the
current value will be set to 0, output 1 will turn OFF, and output 2 will turn ON.

3) The following table summarizes the operation of UCTR.

— 1-40 —

1.3 Counters

M

Table 1.18 Operation of UCTR

inputs Counter Status Current Value Outputs

1 2 1 2

Any OFF | Reset 0 OFF [ON
OFF—ON | ON | Running Current value < Set value Incrementing OFF |ON
Current value = Set value Set value ON |OFF

OFF ON | Stopped Current value < Set value Not changed OFF | ON
8:_,0;:;: Current value = Set value Set value ON |OFF

<EXAMPLEp 4. Application Example

1) Ladder Programming

F— 200010 o)}~

100001 000401
UCTR

400001 bl

100002 000002

2) Operation
a) Counter operation is enabled when input relay 100002 is OFF.

b} The counter will increment the current value (contents of holding register 400001) by
1 each time that input relay 100001 goes from OFF to ON while input relay 100002 is
OFF. Coil 000001 will be OFF and coil 000002 wil! be ON.

¢) When the current value reaches the set value (10), the counter operation will stop and
the current value will no longer be incremented. Caoil 000001 will turn ON and coil
000002 will turn OFF.

d) Ifinputrelay 100002 is ON, counting wili not be performed regardless of the status of
inputrelay 100001, the current value will be setto 0, coil 000001 will turn OFF, and coil
000002 will turn ON.

— 141 —

Basic Instructions
1.3.3 DOWN COUNTER (DCTR)

1.3.3 DOWN COUNTER (DCTR)

1. Function

DOWN COUNTER counts pulses and decrements the current value one at a time. The
counting range is between 1 and 65,535.

2. Structure

OFF — ON: Pulse input Input1 — Selt (S) f— Output 1: ON when current value = 0
value
DCTR
ON: Counting snabled Input2 = ea":E:nt © - Output 2: ON when current vatue > 0
OFF: Counter reset i

1) BCTR is the symbol for DOWN COUNTER.

2) DCTR requires two elements, one top element and one bottom element, located vertical-
Iy on the network. Table 1. 19lists the register reference numbers and constants that can
be specified.

Example

nput1 =] $00010 — ouwput?
#00010: Set value (10}

DCTR 400001: Reference number of holding register to store the
Input2 =4 400001 = Output2 current value.

Table 1.19 Structural Elements of DCTR

Element Meaning Possible Settings

Top (S) | The value of the constant or the contents | Constant: #00000 to #65535
of the register with the specified reference . :
number will be used as the set value (S) of | Input register: 300001 to 300512

the counter. (Z00001 to Z00512)
The value of S must be between Holding register: 400001 to 409999
0 and 65,535. (W00001 to W09999)

Constant register: 700001 to 704096
{K0O0001 to KD4096)

Link register: R10001 to R11024
R20001 to R21024

Bottom | The current value of the counter (C) wilf be | Holding register: 400001 to 409999

{C) stored in the specified register. (W00001 to W09999)
The v?lue of C will be between 0 and the Link register: R10001 to R11024
set value. R20001 to R21024

—1-42 —

1.3 Connters -

m

3. Operation

1) If input 2 is ON, the following counting operation will be performed by DCTR.

a) The current value will be decremented by 1 each time input 1 goes from OFF to ON.
As long as the current value is greater than zero, output 1 will remain OFF and outptit
2 will remain ON.

b) When the current value reaches zero, the current vaiue will no longer be decrem-
ented, output 1 will turn ON, and output 2 will turn OFF.

2) If input 2 is OFF, counting will not be performed regardless of the status of input 1, the
current value will be equal to the set value, output 1 will turn OFF, and output 2 will turn
ON. :

3) The following table summarizes the operation of DCTR.

Table 1.20 Operation of DCTR

Inputs Counter Status Current Value Outputs

1 2 1 2

Any OFF | Reset Set vafue OFF |ON

OFF—ON | ON | Running Current value > 0 Decrementing OFF |ON
Current value =0 0 ON |OFF

OFF ON | Siopped Current value > 0 Not changed OFF |ON
8:11_,0”: Current value =0 0 ON | OFF

«EXAMPLEp 4, Application Example

1) Ladder Programming

— govo10 f—)}—
100001 000001
DCTR
400001 —)}—
100002 000002
2) Operation

a) Counter operation is enabled when input relay 100002 is OFF.

b) The counter will decrement the current value (contents of holding register 400001) by
1 each time that input relay 100001 goes from OFF to ON while input relay 100002 is
OFF. Coil 000001 will be OFF and coil 000002 will be ON.

— 143 —

Basic Instructions
. .. .}

1.3.4 Building Counter Circuits

¢) When the current value reaches the set valu{a (10), the counter operation will stop and
the current value will no longer be decremented. Coil 000001 will turn ON and coil
000002 will turn OFF.

d) Ifinput relay 100002 is ON, counting wili not be performed regardless of the status of
input relay 100001, the current value will be set to 10, coil 000001 will turn OFF, and
coil 000002 will tum ON. '

1.3.4 Building Counter Circuits

1. Storage Locations on Networks

Both UCTR and DCTR require two elements on a network, one top element and one bot-
tom element. They can thus be stored anywhere on a 6-row by 10-column matrix (rows 1
through 6 and columns 1 through 10) on the network.

Note Counters cannot, however, be placed to the right of coils {(including output coils, internal coils,
link coils, MC coils, and MC control coils).

Example
Column
' 2 8 4 5 €& 7 8 8 1w n
Row 1 — w00100-C)—E ‘
180001 000001 i Nothing can be stored in this area. :
2 (D~ :
100002 000002 * eremecmmemen e na ettt s ‘

100031 100032 100033 100034 100035 100038 100037 100038 100038

6 [H00050
100041

— 1-44 —

1.3 Counters
m

2. Counter Inputs

Counterinputs 1 and 2 can be connected to contacts and/or outputs from cther counters,
timers, math instructions, other instructions, etc.

Example

Column
1 2 3 4 5

F.lowlAr-I I—moaoo [—<)—
[

100001 |mg 4 01001
2 /1400 woeoo (-
001001 CTR | 001002
3 /1— o012
001002

3. Counter Outputs

Counter outputs 1 and 2 can be connected to any of the following: coils, contacts, inputs
to math instructions, inputs to other instructions, etc.

Example 1
Row 1
2
3
4
Example 2
Column
1 2 3
Row | |~Js00004 |- 00001 }
100001 }yreor
- 2 P/ 14000311 § 100000
100002 ADD
3 400031

— 145 —

Basic Instructions

]
1.3.4 Building Counter Circuits cont. . .

4, Storége Registers for Counter Current Values

Note Unlessthereisa very specific reason for doing so, never use the storage register for a counter

instruction for the following purposes (see following/illustration). Unexpected operation may
result.

1) As the storage register for the current value of another counter or timer.

2) As the storage register for the results of a math instruction or any other instruction.

Example: Incorrect Application

Row 1

*> No: Do not use the same reference number in
mare than one instruction without a specific and
planned reason.

5. Set Values for Counters

Note [fzeroisinput as the set value for a counter, cutput 1 will turn ON and output 2 will turn OFF as

long as input 2 is ON regardless of the status of input 1.

Example
Column
t 2 3 4
Row 1 H 400051 —C }- Assuming that input relay 100002 is OFF and that the con-
100001 001002 tents of holding register 400051 contains 0, coil 001002 will
UCTR turn ON regardless of the status of input relay 100001,
2 400052 |

100002

6. Counter Set Values and Current Values

in normal application, the current value of the counter will never exceed the set value.
Numeric or other instructions can, however, be used to output values to a register holding
a current vatue, thus possibly making the contents larger than the set value. If this hap-
pens, the current value will be reset to the set value the next time the counter is solved.

— 1-46 —

1.3 Counters

7. Pulse Width

Note When using counter instruction to count signals input from external devices through Digital
input Modules, the sigrial ON and OFF times must both be longer than the value of T com-

puted using the following equation:

T =1 scan time + input delay of the input Module {ms)

I the input signal ON time or OFF time is shorterthan T, input pulses will not be counted prop-

erly.

Example

UCTR

—] — 400001 f—~)
100001 000001

‘ 400002 —~{)~
100002 000002

T1,T2
ey

100001 |

L

T1 , T2 >T .
T =1 scan time + input delay of the Input Module {ms)

8. Current Values of Counters at Power-up

Note (1) The present values of counters are saved in memory even if the operation of the CPU
Module is temporarily stopped due to power interruptions or other causes. When CPU
Moduie operation is restarted, the current value will be set to 0, the set value, or the
value recorded in memory depending on the ON/OFF status of counter input 2.

(2) The following table fists the treatment of counter current values when power is resup-
plied and input relays or contacts for coils are connected to counter input 2.

Table 1.21 Counter Present Value Treatment for Restarts

Contact Connected to Input 22 Counter Current Value First Scan After
Restarting
Type of Reference Status | Contact type UP COUNTER DOWN COUNTER
Input relay ON N.O. Value in memory"3 Value in memory
Latched coil N.C. 0 Set value
OFF N.Q. 0 Set value
N.C. Value in memory Value in memory
Normal coil n<m? |ON N.O. Value in memory Vaiue in memory
N.C. 0 Set value
OFF N.Q. 0 Set value
N.C. Value in memory Value in memory
n>m' |OFF N.O. 0 Set value
N.C. Value in memory | Value in memory

*1: “n” is the number of the network where the coil corresponding to the contact connected to
input 2 is programmed and “m” is the number of the network where the counter is

pregrammed.

*2: It more than one contact is connected to in

of the contacts.

*3: The vaiue in memory is the value saved when power was imterrupted.

— 1-47 —

put 2, the above logic can be applied to the resulis

Math Instructions

This chapter describes instuctions used to perform math operations.

2.1
2.2

2.3

24

MathInstructionscocevvuvrvnvnns

Expressing Numbers
2.2.1 Numeric Expressions0on..s.
222 Converting Numeric Expressions

Unsigned, Four-digit, Decimal Arithmetic
InStructionsc.ooviiinnnnnennnnnnns
2.3.1 Instructioncvvveiin it e

232 UNSIGNED SINGLE PRECISION DECIMAL
ADDITION(ADD)ooiiiiiiiiiiiiinn.

233 UNSIGNED SINGLE PRECISION DECIMAL
SUBTRACTION (SUB)cvvvviinnnann..

23.4 . UNSIGNED SINGLE PRECISION DECIMAL
MULTIPLICATION MUL)

23.5 UNSIGNED SINGLE PRECISION DECIMAL
DIVISION (DIV) . oo iee e i ce i eeeaane

23.6 BuildingProgramscuu....

Unsigned, Eight-digit, Decimal Arithmetic
InStructions . ..covveenienniineevnnneennns
24.1 Instructions 0.t iri e e

24.2 UNSIGNED DOUBLE PRECISION DECIMAL
ADDITION (DADD) ... oo iiii e e n e

243 UNSIGNED DOUBLE PRECISION DECIMAL
SUBTRACTION(DSUB)vviiivnnaninnnn.

244 UNSIGNED DOUBLE PRECISION DECIMAL
MULTIPLICATION (DMUL)

2.4.5 UNSIGNED DOUBLE PRECISION DECIMAL
DIVISION (DDIV)itiiiiiiianeiinnnnnn,

246 BuildingProgramsoo0iiiinn..

—_2.1 —

23

2-6
2-6
2-12

2-15
2-15

2-16
2-19
2-22

2-25
2-32

2-34
2-34
2-35
2-38
2-42

2-45
2-50

Chapter Table of Contents, Continued

et

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

25.1 IStUCHONS .« . ittt it it e e et ea e 2-53
252 SIGNED SINGLE PRECISION DECIMAL

ADDITION (SADD) LI T T 2-54
253 SIGNED SINGLE PRECISION DECIMAL

SUBTRACTION (8SUB)ccooiiiieiiinaann 2-58
254 SIGNED SINGLE PRECISION DECIMAL

MULTIPLICATION (SMUL)cciiiiiniininn 2-62
255 SIGNED SINGLE PRECISION DPECIMAL

DIVISION (SDIV) .. it e c e iiiaaias 2-65
256 BuildingProgramso 2-70

2.6 Signed, Eight-digit, Decimal Arithmetic
INStruCHONS . . oo ovvurnvininernsennsnoneses 272

261 InStUCHONS ovceiiiriiiininan i 2-72
2.6.2 SIGNED DOUBLE PRECISION DECIMAL
ADDITION (SDAD) .. oo viinsvrinmnrececaenas 2-73
2.6.3 SIGNED DOUBLE PRECISION DECIMAL
SUBTRACTION(SDSB) ... 2.78
264 BuildingPrograms i 2-83

2.7 Decimal Square Root Instructions 2-85

271 InStUCHONS « v vt vt e tie e esranmsrenneaneennnn 2-85
272 SINGLE PRECISION DECIMAL SQUARE ROOT

[30) ¢ s DT 2-85
273 DOUBLE PRECISION DECIMAL SQUARE ROOT

(DSQR) .\ eii ittt s 2-87
274 Building Programso 290

2.8 Decimal Trigonometric Instruction 292

281 InStUCHODScoiuiiiii i riarerrnnns 2-92
282 DECIMALSINE(SIN)ciiiiiiiinnninanns 292
283 DECIMALCOSINE(COS)...........ciiivuuinnn 2.95
284 BuildingPrograms 2-98

2.9 Sixteen-bit Arithmetic Instructions 2-100

29.1 INStUCHONS < oot vevneinia i cmsiis e irainannn s 2-100
29.2 16-BITADDITION(ADI6)covvvvvninnn. 2-101
293 16-BITSUBTRACTION (SU16) 2-105
2.9.4 16-BIT MULTIPLICATION (MU16) 2-109
295 16-BITDIVISION(DV16)0vivvunnnnn.- 2-113
29.6 Building Programs ciiieii e 2-118

2.10 Thirty-two-bit Arithmetic Instructions 2-120

2,100 Instructionsc.vuuiivnrnnrnnrnivrnnvannn 2-120
2.10.2 32-BITADDITION (AD32)ovviiinninnn, 2-121
2.103 32.BIT SUBTRACTION (SU32)ccunnn. 2-126
2.104 32BITCOMPARE(TEST)c.oovvvvnnnnn. 2-13t
2.105 Building Programsoooiiiiiiia, 2-136

2.1 Math Instructions
.

21 Math Instructions

§ This section introduces the various math instructions that can be used in programming.

1) There are two groups of math instructions:
¢ Group 1 Math Instruction-s
* Group 2 Math Instructions
a) Group 1 Math Instructions

(1) Group 1 mathinstructions include those supported by the GL60H and other older d
PLCs.

(2) Group 1 math instructions are outlined in Table 2.1.

(3) The use of group 1 fnstructions is recommended in the following cases:
i. To preserve compatibility with user programs for older PLCs.
ii. When square root or trigonometric functions are required.

b) Group 2 Math Instructions

(1) Group 2 math instructions are new for the GL120 and GL130. ‘

(2) Group 2 math instructions are outlined in Table 2.2.

(3) The use of group 2 instructions is recommended in the follow;ing cases:
i. To preserve compatibility with user programs for older PLCs is not important.
ii. When the following Modules are being used:

Analog I/0 Module
Counter Modules
1-axis Motion Modules
4-axis Motion Modules

2) Math instructions are separated into two groups because the expressions usedto handle
numbers are very different. For details, refer to 2.2 Expressing Numbers. Be sure that
you understand the required numeric expressions before you attempt to use a math
instruction.

—2.3—

Math Instructions

3) Group 1 math instructions are outlined in Table 2.1, below. In the table V1 represents the
first operand {(operand 1) and V2 represents the second operand (operand 2).

Table 2.1 Group 1 Math Instructions

Class Name Symbol | Operands Vi v2 Results
Unsigned, |UNSIGNED SINGLE |ADD | V1+V2 0 to 9,999
4-digit, PRECISION DECIMAL
depimal) ADDITION
ﬁ‘r:t’:g'c‘i’g; o [UNSIGNED SINGLE [SUB [V1-V2
PRECISION DECIMAL .
SUBTRACTION Comparison _
UNSIGNED SINGLE |MUL |Vt x V2 |[0109,999 0 to 99,980,001
PRECISION DECIMAL
MULTIPLICATION
UNSIGNED SINGLE [DIV Vi=Vv2 [0to9,9990r 0 10 9,999
PRECISION DECIMAL 0 t0 99,989,999
DIVISION
Unsigned, | UNSIGNED DOUBLE |[DADD |V1+V2 0 to 99,999,999
8-digit, | PRECISION DECIMAL
de:cimal) ADDITION
;':{mi‘éﬁs UNSIGNED DOUBLE |DSUB | V1-V2
PRECISION DECIMAL A
SUBTRACTION Comparison
UNSIGNED DOUBLE |DMUL |V1 x V2 |0t0 99,999,999 Oto
PRECISION DECIMAL 9,999,999,800,000,001
MULTIPLICATION
UNSIGNED DOUBLE |DDIV [Vi—V2 [Oto 0 to 99,999,999
PRECISION DECIMAL 9,099,999,899,999,999
DIVISION
Signed, SIGNED SINGLE SADD | V1+V2 29,999 to 9,999
a-digit, PRECISION DECIMAL
decimal | ADDITION
arithmelic "giGNED SINGLE SSUB |Vi-Vv2
instructions | pRECISION DECIMAL
SUBTRACTION
SIGNED SINGLE SMUL |V1x V2 |-9,999 to 9,999 -99,980,001 to
PRECISION DECIMAL 99,980,001
MULTIPLICATION
SIGNED SINGLE SDIV |V1=V2 [-99,989,999 to 9,999 1o 9,999
PRECISION DECIMAL 99,989,999
DIVISION
Signed, SIGNED DOUBLE SDAD |V1+V2 ~99,999,999 to 99,999,999
g-digit, PRECISION DECIMAL
da:cimai) ADDITION
arthmeic I'SIGNED DOUBLE | SDSB | V1 - V2
Instructions | pRECISION DECIMAL
SUBTRACTION
Decimal | SINGLE PRECISION | SQRT IV 0 to 9,999 -[0to 99.9949
square root | DECIMAL SQUARE
instructions | ROOT
DOUBLE PRECISION |DSQR 0 t0 99,999,999 0 to 9999.9999
DECIMAL SQUARE
ROOT

— 24—

2.1 Math Instructions

M

Class Name Symbbl Operands V1 | v2 Results
Decimal DECIMAL SINE SIN 1SIN6i 0.0000° to 360.0000° 0.0000 to 1.0000
trigonomet-

Ec instruc- | DECIMAL COSINE cos ICOSai
on
4} Group 2 math instructions are outlined in Table 2.2, below. In the table V1 represents the
first operand (operand 1) and V2 represents the second operand (operand 2).
Table 2.2 Group 2 Math Instructions

Class Name Symbol | Operands Vi | v] Results
16-bit _ 16-BIT ADDITION AD16 V1 +V2 1) Unsigned: 0 to 65,535
;’;‘tm%g‘:‘ . |16BIT SU16 [vi-v2

SUBTRACTION Comparison 2) Signed: 32,768 10 32,767
16-BIT MU16 V1 x V2 1) Unsigned: 0 to 65,535 1) Unsigned:
MULTIPLICATION 0 to 4,294,967,295
2) Signed: -32,768 to 32,767
2) Signed:
-2,147,483,648 1o
2,147,483,647
16-BIT DIVISION DvVié Vi-=-Vv2 1) Unsigned: 1) Unsigned: 0 to 65,535
Oio
4,294,967,295 |2) Signed: -32,768 to 32,767
2) Signed:
—2,147,483,648
t0 2,147,483,647
Sg-bit 32-BIT ADDITION AD32 V1i+V2 1) Unsigned: 0 to 4,294,967,295
;’g{r‘:}“g"}f‘ . [32BIT SUs2 |[Vi-V2
SUBTRACTION Comparison 2) Signed: -2,147,483,648 to 2,147,483,647
32-BIT COMPARE TEST Comparison | @ 16-bit Comparison
1} Unsigned: 0 to 65,535
2) Signed: -32,768 0 32,767
32-bit Comparison
1) Unsigned: 0 to 4,294,967,295
2) Signed: —2,147,483,648 to 2,147,483,647

—25—

Math Instructions :
e e
2.2.1 Numeric Expressions

2.2 Expressing Numbers

This section describes the expressions used in math instructions.

221 NUMEHCEXPIESSIONSvvttr i it initnaaasaares 2-6
2.2.2 Converting Numeric EXpressions ...t i, 2-12

2.2.1 Numeric Expressions

1)} Two different types of numeric expressions are used for the GL120 and GL130, as de-
scribed below.

a) Group 1 Numeric Expressions

Group 1 numeric expressions are the same as those used for the GL60H and other
previously released PLCs and they are used for the group 1 math instructions de-
scribed in the previous section.

b) Group 2 Numeric Expressions

Group 2 numeric expressions are the used for the new GL120 and GL130 instruc-
tions, and they are thus used for the group 2 math instructions described in the pre-
vious section.

2) Group 1 Numeric Expressions
a) Constants
Constants are handled as 4-digit, decimal integers and 0, i.e., 0 to 9,999.

Example: UNSIGNED SINGLE PRECISION DECIMAL ADDITION

— 309999 |-
#09999: Augend (9,999)
#00000 #00000: Addend {0)
ADD 400001: Stores the results (9,999).
400001

b) Storing Numeric Values in Registers
(1) One register can store a single 4-digit, Hecimal value, i.e., —9,999 10 9,999.

—_2-6 —

2.2 Expressing Numbers

M

Example 1: UNSIGNED SINGLE PRECISION DECIMAL ADDITION

— 400001
400001: Stores the augend betwaen 0 and 9,993.
400002 400002: Stores the addend between 0 and 9,999,
ADD 400003 Stores the results betwesn 0 and ¢,999.
400003

Example 2: SIGNED SINGLE PRECISION DECIMAL ADDITION

=1 400001 |—
400001 :Stores the augend between -9,999 and 9,999,
4006002 — 400002: :Stores the addend between -9,999 and 9,599,
SADD 4000083: :Stores the results between -9,899 and 9,999,
400003

(2) The sign of the numeric value is expressed by separating the sign and the abso-
lute value of the number.
Positive values: MSB of register is set to 0.
Negative values: MSB of register is set to 1.

Example 1: Storing a Positive, 4-digit, Decimal integer (+1,234)

W L
400001 [1234] ——> 400001000 0100 1107 0010 M:NSB

[L:158
Decimal Binary

0 = Positive valua

Example 2: Storing a Negative, 4-digit, Decimal Integer (-1,234)

M L
400001 -1234] ~—> 400001500 0700 1707 0810 M:MSB

[L:LSB
Decimal Binary

1 = Negative value

—_27—

Math Instructions

2.2.1 Numeric Expressions cont.,

(3) Reference numbers for two consecutive registers, R and R+1, can he used o
store 8-digit, decimal values. Register H is the register with the lower reference
number and it holds the sign plus the absolute value of the upper 4 digits. Register
R + 1 s the register with the higher reference number and it holds the absolute
value of the lower 4 digits.

R R+1
Sign plus absolute value Absolute value of lower
of upper 4 digits 4 digits

Example 1: Storing a Positive, 8-digit, Decimal Integer (+12,345,678)

400001 490002 400001 400002 L

| 1234] S618| =wmemep @Dﬁ 0100 1101 0010|ﬂ001 0110 0010 1110

Decimal . Binary TR
L:LS
0 = Positive value

Example 2: Storing a Negative, 8-digit, Decimal Integer (—12,345,678)

460001 400002] 400001 LN 400002 L

-1284]_5618] —» |00 0100 1101 0010]0001 6110 0010 1110]

Decimal Binary M:0658
L:LSB
1 = Negative value

- Example 3: UNSIGNED DOUBLE PRECISION DECIMAL ADDITION

V1 (0 tn 99,999,999) is stored as follows:
—1 400001 :
400001 400002
400003 | Upper 4 digits | Lower 4 digits |
DADD
400005 V2 (0 to 99,999,999) is stored as follows:

400003 400004
I Upper 4 digits | Lower 4 digits]

The results (0 to 99,999,999) is stored as follows:

400005 400006
[Upper 4 digts | Lower 4 digits |

—28 —

2.2 Expressing Numbers

m

Example 4: SIGNED DOUBLE PRECISION DECIMAL ADDITION

V1 (-089,999,999 to 99,999,999} is stored as follows:
— 400001 |- ‘)
400001 400002
400008 — | Sign + lupper 4 digitsl | _ILower 4 digits| |
SDAD
400005 Va2 (-99,999,999 1 99,999,999) is stored as follows:

400003 400004
| Sign + lupper 4 digitsl | ILower 4 digits} |

The results (-99,999,999 to 96,999,999) is stored as follows:

400005 400006
| Sign + lupper 4 digits| | iLower 4 digitsi |

(4) Reference numbers for four consecutive registers, R, R+1, R+2, and R+3, canbe
used to store 16-digit, decimal values. A 16-digit, decimal positive integer is
stored as follows:

R R+1 R+2 R+3
Most upper Upper 4 Lower 4 Most lower
4 digits digits digits 4 digits

Example 1: Storing a Positive, 16-digit, Decimal Integer (+1,234,567,890,1 23,456)

400001 400002 400003 400004 - M:MSB
_1234] 5678] 8012] "3456] Decimal L:18B

M J’ L

4000010000 0100 1101 0018] Mostupper 4 digits
400002{0001 0110 0010 1110 Upper 4 digits
400003 {6010 0011 003t Q100 Lower 4 digits
4000040000 1101 1000 0000 Most lower 4 digits

Binary

—_29__

Math Instructions

2.2.1 Numeric Expressions coni.

Example 2: UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION

V1 {0 to 99,999,999) is stored as follows:

— 400001 P~ 4004901 400002 .
{ Upper 4 digits | Lower 4 digits }

400003 _
DMUL V2 {0 to 99,999,099) is stored as follows:
400005 400008 400004

| Upper 4 digits | Lower 4 digits {

The results (0 to 9,999,999,800,000,001} is stored as follows:
400005 400006 . 400007 400008
l Most upper 4 digitsl Upper 4 digits I "Lower 4 digits I Most lower 4 dighsl'

3) Group 2 Numeric Expressions
a) Constants
Constants al;e handled as 16-bit, binary numbers, i.e., 0 fo 65,535.

Example: 16-BIT ADDITION for Unsigned Numbers

— #65536 —
#65535: Augend {65,535)
#00000 #00000: Addend (0)
AD16 400001: Stores the results (65,535)
— 430001 }-

b) Storing Numeric Values in Registers

(1) One register can store a single 16-bit binary integer, i.e., 0 to 65,535 for unsigned
values and —-32,768 to 32,767 for signed values.

Example 1: 16-BIT ADDITION for Unsigned Numbers

-~ 40000t [—
400001: Stores the augend between 0 and 65,535,
400002 400002: Stores the addend between 0 and 65,535.
AD16 400003: Stores the results betwaen 0 and 65,535.
—1 400003 |—

—2-10 —

2.2 Expressing Numbers

“ A

Example 2: 16-BIT ADDITION for Signed Numbers

~1 400001 |-
400001: Stores the augend between -32,768 to 32,767
400002 400002: Stores the addend between -32,768 to 32,767
AD16 400003: Stores the results between -32,768 to 32,767
— 408008 |~

(2) The two's complement is used for negative numbers.

Example: Storing a Negative, 4-digit, Decimal Integer (-1,234)

_ M L
#0001 [-T234] = 4000011711 1017 0018 1110] M:NSB

L:LSB

Decimal Binary

(3) Reference numbers for two consecutive registers, R and R+1, can be used to
store 32-bit, binary values. Using two registers, 0 1o 4,294,967,295 can be stored
for unsigned values and -2,147,483,648 to 2,147,483,647 can be stored for
signed values. Register R is the register with the lower reference number and it
holds the sign plus the value of the upper 16 bits. Register R+1 is the register with
the higher reference number and it holds the value of the lower 16 bits.

R+1 R

Data for upper 16 bits Data for lower 16 bits

Example 1: Storing a Positive, 8-digit, Decimal Integer (12,345,678)

M:MSB
400002 400001 M 4000082 LM 400001 L L:L8B

[12345678] = [0000 0000 1011 1100J0110 0007 0100 1110]

4N r
b v

Data for upper 16 bits Data for lower 16 bits

Decimal Binary

Example 2: Storing a Negative, 8-digit, Decimal Integer (-12,345,678)

M:MSB
400002 400001 M 400002 LM 400001 L L:LSB

[C_-12345678) = [Tt 3737 o100 00T1]1001 1310 1011 0010]

[—

v W

Data for upper 16 bits Data for lower 16 bits

Decimal Binary

—_2-11 —

Math Instructions :
A e
2.2.2 Converting Numeric Expressions

Example 3: 32-BIT ADDITION for Unsigned Values

-t 400001 b= V1 {0 to 4,294,967,295) is stored as follows:
406002 400801
400003 | Upperi6bits |} Lower16bits |
AD32 ‘
—1 400005 [~ ‘
V2 (0 to 4,294,967,295) is stored as follows:

400004 400003
| upperigbits | Lower16bits |

The results (0 to 4,294,967,295) is stored as follows:

400006 400005
[upperigbits | Lower16bits |

Example 4: 32-BIT ADDITION for Signed Values

—{ 400001 — V1 (-2,147,483,648 1o 2,147,483,647) is stored as follows:
400002 400001
400003 | Upperi6bits { Lower16bits |
AD32
— 400005 —

V2 (-2,147,483,648 10 2,147,483,647) is stored as follows:
400004 400003
| upper16bits | Lower16bits |

The results {-2,147,483,648 to 2,147,483,647) is stored as follows:
400008 400005
| Upperi6bits | Lower 16 bits |

2.2.2 Converting Numeric Expressions

1) The two type of expressions used for math instructions of the GL120 and GL130 were
described in the previous section. Although most applications will use either one or the
other type of expression, some applications will require both forms, meaning that the
data will have to be converted from one type of numeric expression to the other.

a) Group 1 numeric expressions can be converted to group 2 numeric expressions.
b) Group 2 numeric expressions can be converted to group 1 numeric expressions.

2) The following two data conversion instructions are provided to convert between the two
types of numeric expression. These instructions are introduced here. Refer to chapter 7
Data Conversion Instructions for details.

« SINGLE WORD DATA CONVERSION (CAST)

« DOUBLE WORD DATA CONVERSION (DCST)

—212—

2.2 Expressing Numbers

M_

a) SINGLE WORD DATA CONVERSION (CAST)

(1) A5-digit, unsigned, decimal integer (0 to 65,535) using group 1 numeric expres-
sion can be converted to group 2 numeric expression.

Example 400001 400002 Conversion
[6T 635] ~~=="» 400011 [[55533]

Group 1 expression Group 2 expression

(2) A 5-digit, signed, decimal integer (-32,768 to 32,767) using group 1 numeric ex-
pression can be converted to group 2 numeric expression.

400001 400002

Example Conversion
[=3[2768 —-—-—MMMI
Group 1 exprassion Group 2 expression

(3) Ab-digit, unsigned, decimal integer (0 to 65,535) using group 2 numeric expres-
sion can be converted to group 1 numeric expression.

Examble Conversion 400001 400802
e soors [CEEERE] Semeemen, [g

Group 2 expression Group 1 exprassion

(4) A 5-digit, signed, decimal integer (32,768 to 32,767) using group 2 numeric ex-
pression can be converted to group 1 numeric expression.

Examoie comvarsion 00001 406002
xamp: 400011]-32768] —2REE0 ™ 37 2768

Group 2 expression Group 1 expression

b) DOUBLE WORD DATA CONVERSION (DCST)

(1) An8-digit, unsigned, decimal integer (0 to 99,999,999) using group 1 numeric ex-
pression can be converted to group 2 numeric expression.

400001 400002 . 400012 400011
Example oS s onversiony 12345678
Group 1 axpression © Group 2 expression

(2) An8-digit, signed, decimalinteger (~93,999,899 to 92,999,899} using group 1 nu-
meric expression can be converted to group 2 numeric expression.

400001 400002 . 400012 400011
E le C
e [l seis] ——=» [17345678
Group 1 expression Group 2 expression

—2-13 —

Math Instructions

2.2.2 Converting Numeric Expressions cont.

(3) An8-digit, unsigned, decimal integer (0 to 99,999,999) using group 2 numeric ex-
pression can be converted to group 1 numeric expression.

400012 400011 400001 400002

Conversion

manee 12345678} ———— [_1234] %673

Group 2 expression Group 1 expression

(4) An8-digit, signed, decimal integer (99,999,999 to 99,899,999) using group 2 nu-
meric expression can be converted to group 1 numeric expression.

400012 400011 . 400001 406002
Example mUTYEIT Conversion

Group 2 expression . Group 1 exprassion

—2-14—

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

This section describes the functions, structures, and operation of the unisigned, 4-digit,
decimal arithmetic instructions and provides simple examples of their application.

230 Instruction ... 2-15
2.3.2 UNSIGNED SINGLE PRECISION DECIMAL ADDITION (ADD) 2-16
2.3.3 UNSIGNED SINGLE PRECISION DECIMAL SUBTRACTION (suB).... 2-19
2.34 UNSIGNED SINGLE PRECISION DECIMAL MULTIPLICATION MUL) . 222
2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION Div) ...l 2-25
236 BuildingProgramsoeiiiin i 2-32

2.3.1 Instruction

Unsigned, 4-digit, decimal arithmetic instructions perform unsigned addition, subtraction,
multiplication, and division on two 4-digit, decimal values, V1 and V2. The instructions that
are available are shown in Table 2.5.

Table 2.3 Unsigned, 4-digit, Decimal Arithmetic Instructions

Name - Symbol | Operands Vi | vz | Result
UNSIGNED SINGLE |ADD | V14 V2 0 to 9,999
PRECISION DECIMAL
ADDITION
UNSIGNED SINGLE [SUB [V -v2 0 to 9,999
PRECISION DECIMAL ;
SUBTRACTION Comparison
UNSIGNED SINGLE [MUL |vi x v2 010 9,999 0 to 99,980,001
PRECISION DECIMAL
MULTIPLICATION
UNSIGNED SINGLE | DIV Vi V2 0 to 9,999 or 0 to 9,999
PRECISION DECIMAL 0 to 99,989,999
DIVISION

*1: The wider range for V1 is possible by using two continuous registers.

—2-15—

Math Instructions
2.3.2 UNSIGNED SINGLE PRECISION DECIMAL ADDITION (ADD)

2.3.2 UNSIGNED SINGLE PRECISION DECIMAL ADDITION (ADD)

1. Function

Unsigned addition is performed between two 4-digit decimal numbers, V1 and V2.

2. Structure

i

ON: Execuies addition Inputi =] Augend {V1} = Ouiput 1: ON when V1+V2 = 10,000

Addend (V2)
ADD

Resuit (R)

1) ADD is the symbo! for UNSIGNED SINGLE PRECISION DECIMAL ADDITION.

2) ADD requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Table 2.4 lists the register reference numbers
and constants that can be specified.

Example
input1 = $00500 |— Output1 #00500: Augend (V1 = 500)
£00000 #00000: Addend {V2 =0)
35 lﬁ 400001: Reference number of holding
register to store result (500)
Table 2.4 Structural Elements of ADD
Element Meaning Possible Settings
Top (V1) | Either the value of the constant or the Constant: #00000 to #09999
contents of the register is used as the .
augend, V1. Input register: 300001 to 300512

(Z00001 to Z00512)

Holding register: 400001 to 409999
{W00001 to W08999)

V1 must be between 0 and 9,999.

Middle Either the value of the constant or the

(v2) contents of the register is used as the Constant register: 700001 to 704096
addend, V2, {K00001 to K04096)
V2 must be botween 0 and 9,999. Link register: R10001 o A11024
R20001 to R21024
Bottom | The result is stored in the register. Holding register: 400001 to 409999

(R) The result must be between 0 and 9,999, (W00001 to W0S998)

Link register: R10001 to R11024
R20001 to R21024

— 216 —

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

3. Operation

1) ADD adds V2 to V1 when input 1 is ON and process the result as follows:
a) f0<V1+V2<9,999:
(1) The result of V1 + V2 is stored in R.
(2) Output 1 remains OFF.
b) 1f 10,000 < V1 + V2 < 19,998:
(1) The result of V1 + V2 -~ 10,000 is stored in R.

(2) Output 1 turns ON.

2) The result remains in R even if input 1 turns OFF.

3} The operation of ADD is summarized in the following table.

Tabie 2.5 Operation of ADD

Input 1 Condition Operation Output 1
ON 0< Vi+V2< 9,999 V1+V2 stored in R. OFF
10,000< Vi +V2< 19,998 V1+V2-10,000 stored in R. ON
OFF .{ None : Nothing is done. OFF

Note Both V1 and V2 mustbe between 0 and 9,999. ADD will not operate properly if V1 or V2 is not
within this range.

<«EXAMPLEp 4, Application Examples

Example 1
1) Ladder Programming 2) Operation
1 200500 |~ output1 Constant [500
100001 +
£00000 Constant [0]
ADD
400001 400001 500

For the above ADD, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will remain OFF. The resuit will remain in holding register
400001 even after input relay 100001 turns OFF.

—2-17 —

Math Instructions

2.3.2 UNSIGNED SINGLE PRECISION DECIMAL ADDITION (ADD) cont.

Example 2
1) Ladder Programming 2) Operation
F—{ 400001 —) 400001 4000
100801 opo101 +
$05000 Constant
ADD
400002 400001] 4000 400002 3000

For the above ADD, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will remain OFF. The result wnll remain in holding register
400002 even after input relay 100001 turns OFF.

Example 3
1) Ladder Programming 2) Operation
—1 400001 =) aooco1 [__6000
100001 000101 +
£05000 Constant | 6000
ADD i
400002 4000016000 400002

6000+5000-10000=1000

For the above ADD, the operation shown at the right will be performed when input relay
100001 is ON, and cail 000101 will turn ON. When input relay 100001 turns OFF, coil
000101 will turn OFF, but the resuit will remain in holding register 400002,

—2-18 —

’ . 2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

2.3.3 UNSIGNED SINGLE PRECISION DECIMAL SUBTRACTION
~ (SUB)

1. Function

1) Unsigned subtraction is performed between two 4-digit decimal numbers, V1 and V2.

2) The sizes of V1 and V2 are compared.

2. Structure

ON: Subtraction executed Input1 == Minuend (V1) L= Output 1: ON when V1 » V2.

Sub(t{,aér;end = Output 2: ON when V1 = V2,

sSuB

— Output3: ON when V1 < V2.

Result (R)

1) SUB is the symbol for .UNSIGNED SINGLE PRECISION DECIMAL SUBTRACTION.

2) SUB requires three elements, one top element, one middie element, and one bottom ele-
ment, located vertically on the network. Table 2.6 lists the register reference numbers
and constants that can be specified.

Example
lnput1 = #00500 [~ oOutput1 | #00500: Minuend (V1 = 500)
300000 I~ oupu2 #00000: Subtrahend (V2 =0)
SUB-

400001: Reference number of holding
400001 |~ Output3 register to store result (500)

—2-19 —

Math Instructions
.]
2.3.3 UNSIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SUE) cont. '

Table 2.6 Structural Elemeljts of SUB

Element Meaning Possible Settings

Top (V1) | Either the value of the constant or the Constant: #00000 to #09989
contents of the register is used as the
minuend, V1. Input register: 300001 to 300512

(200001 to Z00512)

Holding register: 400001 to 409999
{(WO00001 to W099298)

V1 must be between 0 and 9,999.

Middle Either the value of the constant or the

(v2) contents of the register is used as the Constant register: 700001 to 704096
subtrahend, V2. {KODO01 to K04096)
V2 must be between 0 and 9,999. Link register: R10001 to R11024
R20001 to R21024
Bottom | The result is stored in the register. Holding register: 400001 to 409999
(R) “The result must be between 0 and 9,999. (WO00001 to W09999)

Link register: R10001 to R11024
R20001 to R21024

3. Operation
1) SUB will subtract V2 from V1 when input 1 is ON and process the resuit as follows:

a) fvi>va:
(1) The result of V1 — V2 is stored in R.
(2) Output 1 turns ON.

b) If V1 =V2:
(1) Zero (0) is stored in R.
{2) Output 2 turns ON.

c) fVi<Ve:
(1) The result of V2 - V1 is stored in R.
(2) Output 3 turns ON.

2) The result remains in R even if input 1 turns OFF.

3) The operation of SUB is summarized in the following table.

Table 2.7 Operation of SUB
Input 1 | Condition Operation Outputs
1 2 3
ON Vi>V2 | The result of V1 ~ V2 is stored in R. ON |[OFF |OFF
Vi=V2 |Zero(0)is stored in R. OFF |ON |OFF
V1 <V2 The result of V2 - V1 is stored in R. OFF |OFF {ON
OFF None Nothing is done. OFF | OFF | OFF

Note BothV1and V2 mustbebetween 0 and 9,999. SUB will not operate properly if V1 or V2 is not
within this range.

— 2-20 —

4EXAMPLEp

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

4. Application Examples

Example 1
1) Ladder Programming 2) Operation
H #00500 — oOutput1 Constant
100001 -
$00000 — output2 Constant [____ 0]
SUB
400001 ~ Ouputa 400001 {500 |

For the above SUB, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 tums OFF, output 1 will
turn OFF, but the result will remain in holding register 400001.

Example 2
. 1) Ladder Programming 2) Operation
F— 400001)
100001 000101 400001 6000
400002 —~) -
SUB | 000102 400002
400008 F——)~ .
000103 400003 1600

400001 E000] 400002 [5000]

For the above SUB, the operation shown at the right wili be performed when input relay
100001 is ON, and coil 000101 wilf turn ON. When input relay 100001 turns OFF, coil
000101 will turn OFF, but the result will remain in holding register 400003.

Example 3
1) Ladder Programming 2) Operation
F— 400001 =)
100001 000101 4000014800]
400002 —{)= -
SUB 000102 400002] 5000]
400008 —()
000108 400008 [1000 |
400001 4000] 4000025000 | 5000-4000=1000

For the above SUB, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000103 will turn ON. When input relay 100001 turns OFF, coil
000103 will turn OFF, but the resuit will remain in holding register 400003.

—2-21 —

Math Instructions

2.3.4 UNSIGNED SINGLE PRECISION DECIMAL MULTIPLICATION (MUL)

2.3.4 UNSIGNED SINGLE PRECISION DECIMAL MULTIPLICATION

(MUL)

1. Function

Unsigned multiplication is performed between two 4-digit decimal numbers, V1 and V2.

2. Structure

ON: Multiplication executed Input 1 ==

Multz‘pllic)and — Output 1: Echoes state of input 1.
1

Multiplier (V2}
MUL

Result (R)

1) MUL is the symbol for UNSIGNED SINGLE PRECISION DECIMAL MULTIPLICATION.

2) MUL requires three elements, one iop element, one middle element, and one bottom ele-
ment, located vertically on the network. Table 2.8 lists the register reference numbers
and constants that can be specified.

Example

Inputt ==

§00500

§00100
MUL
400001

= Quiput 1

#00500: Multiplicand (V1 = 500)

#00010: Multiplier (V2 = 100)

400001: Stores the result (50000) as follows:

400001 5| Upper digit

400002 0000 | Lower 4 digits

—2-22 —

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

Table 2.8 Structural Elements of MUL

Element Meaning Possible Settings

Top (V1) | Either the value of the constant or the Constant: #00000 to #09999
contents of the register is used as the .
multiplicand, V1, Input register: 300001 to 300512

(Z00001 to ZD0512)

Holding register: 400001 to 409999
{W00001 to W09999)

V1 must be between 0 and 9,999,

Middle Either the value of the constant or the

{v2) contents of the register is used as the Constant register: 700001 to 704096
multiplier, V2. (K00001 to K04096)
V2 must be between 0 and 9,999. Link register: R10001 to R11024

R20001 to R21024
Bottom | The result is stored in registers as shown Holding register: 400001 to 409998

(R) below. (W00001 to W09998)
33"9;%"'33 Jnust be between 0 and Link register: R10001 to R11023
980,001, A20001 to R21023

R Upper 4 digits of rasult
R+1 Lower 4 digits of result

3. Operation

1) MUL will multiply V1 by V2 when input 1 is ON and process the result as follows:

a) The upper 4 digits of the result are stored in R and the lower 4 digits are stored in R+1.

b) Output 1 tums ON.

2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of MUL is summarized in the following table.

Table 2.9 Operation of MUL
input1 | Condition Operation OQutput 1
ON None . ON
Result of V1 x V2 is —
stored as shown at R Upper 4 digits of V1 x V2
right. R+1 | Lower 4 digits of V1 x V2
OFF Nothing is done. OFF

Note BothV1and V2 mustbe between 0 and 9,999. MUL will not operate properly if V1 or V2 is not
within this range.

— 223 —

Math Instructions
2.3.4 UNSIGNED SINGLE PRECISION DE'CIMAL MULTIPLICATION (MUL) cont.

<4EXAMPLEp 4. Application Examples

Example 1
1) Ladder Programming 2) Operation
|'— 200500 ~— output1 Constant .
100001 X
£00100 Constant
MUL ‘ !
400001 400001 400002
g §] o000 [

For the above MUL, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 wilt turn ON. Wheninput relay 100001 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400001 and 400002.

Example 2
1) Ladder Programming 2) Operation
P |—{ 480001 [— Output1
160001 400001
#60100 %
MUL Constant
400002 ¢
400002 400003
I 50 I 0000 |
4000015000]

For the above MUL, the operation shown at the right will be performed once during the
scan when input relay 100001 goes from QFF to ON, and output 1 will tum ON. When
input relay 100001 turns OFF, output 1 will turn OFF, but the result will remain in holding
registers 400002 and 400003.

—2-24 —

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

M—
2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION (DIV)

1. Function

Unsigned division is performed between a 4-digit or 8-digit decimal number V1 and a
4-digit decimal number V2 (V1 + V2).

2. Structure

ON: Division exscuted Input1 = Dividend (V1} . Output 1: ON when normal division is completed
ON: Quotient found Inpu2 =~y Divisor (V2) - oumyt2: ONwhen quotient or integer part of
QFF: Decimal portion found . quotient exceeds 9,999,
DIV
= Output3: ON when V2 =0
Result (R}

1) DIV is the symbol for UNSIGNED SINGLE PRECISION DECIMAL DIVISION.

2) DIV requires three elements, one top element, one middle element, and one hottom ele-
ment, located verticaily on the network. Table 2,10 lists the register reference numbers
and constants that can be specified.

Example

Input1 = 00100 ~ Output1 #00100: Dividend (V1 = 100}

Inputz =1 #00003 |~ oOutput2 #00003: Divisor (V2 = 3)

Diy
400001 b~ 400001: The result (33.3333, or 33 and

Output 3 remainder of 1) is stored as follows:
400001 33 | Integer portion of quotient
400002 3333 | Decimal portion of quotient
7 or
400001 33 | Quotient
400002 1| Remainder

— 225 —

Math Instructions

2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION (DIV) cont.

Table 2.10 Structural Elements of DIV

Element | . Meaning Passible Settings
Top (V1) |1} If a constant is specified, iis value is Constant; #00000 to #09999
used as the dividend, V1. In this case, Input regist 00001 o 300511
the value of V1 must be between 0 er: 0
and 9,999, (Z00001 to Z00511)
Helding register: 400001 to 409998
2) If a reference number is specified, the {(WO00001 to W09898)
contents of two consecutive registers : _—
is used as the divisor, V1, as shown in | Constant register: (7;?3333 1“::2%35)
the following example. The vaiue of V1
must be between 0 and ©9,989,899. Link register: R10001 to R11023
in the example, "400001" was R20001 to A21023
specified for the top element.
400001 | Upper 4 digits
400002 | Lower 4 digits
Middle 1) If a constant is specified, its value is Constant: #00000 to #09999
(vV2) used as the dividend, V2. In this case, Input register 300001 1o 300512
: 0
tghg 9\:vgaluc-: of V2 must be between 0 and (200001 to 200512)
Holding register: 400001 to 409999
2) If a reference number is specified, the (WO00001 to W09999)
oPI]tents of the o gister is used as the Constant register: 700001 to 704096
divisor, V2. In this case, the value of V2 (K0D001 to K04096)
must also be between 0 and 3,999
Link register: R10001 to R11024
R20001 to R21024
Botiom | The result is stored in registers as shown | Holding register: 400001 to 409998
(R) below, The result must be between 0 and {WO00001 to W09998)
9,999,
Link register: R10001 to R11023
1) Input2 OFF R20001 to R21023
R Quotient
R+1 Remainder
2) Input2 ON
R Integer portion of quotient
R+1 Decimal portion of quotient

3. Operation

1) DIV will multiply V1 by V2 when input 1 is ON and process the result as follows:

a) Ifinput 2 is OFF:

(1} The quotient of V1 + V2 is stored in R and remainder is stored in R+1.

(2) Output 1 tums ON.

— 226 —

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions
%
b) If input 2 is ON:

(1) Theinteger portion ofthe quotient of V1 + V2is stored in R and the decimal portion
is stored in R+1. '

(2) Output 1 turns ON.
c) Divisionwill notbe executedinthe following cases and zero (0} is stored in Rand R+1.

(1) V2=0.
In this case, output 3 turns ON.

(2) If the quotient or integer portion of the quotient will not fit in R.
In this case, output 2 tums ON.
Example: If V1 = 500,000 and V2 = 10, the quotient is 50,000, which cannot be
stored in R.
Here, 0 is stored in R and R+1.

2

2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of DIV is summarized in the following two tables.

Table 2.11 Operation of DIV with Constant for Top Element

Inputs Condition _ Operation Outputs
1 2 . 1 2 3
ON [OFF |v2= 0 |[ResultofV1+V2stored as follows: ON |OFF |[OFF
R Quotient

R+1| Remainder

V2=0 Execution not possible. Zero (0) stored in Rand | OFF | OFF |ON
R+1. :

ON JON |V2= 0 [ResultofV1+V2stored as follows: . ON |OFF |OFF

R |_Integerporion | Truncated after 4th
R+1| Decimalportion | decimal place

Execution not possible. Zero (0) stored in R and | OFF | OFF |ON

V2=0
R+1.
OFF | Any |None Nothing is done. OFF | OFF | OFF

Note Both V1 and V2 must be between 0 and 9,999. DIV will not operate properly if V1 or V2 is not
within this range. o

— 227 —

Math Instructions

e S st e i eiaion
2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION (DIV} cons.

Note

«EXAMPLE»

Table 2.12 Operation of DIV with Reference Number for Top Element

Inputs Condition Operation Outputs
1 2 : 1 2 . 3
ON |{OFF |V2= Oand Result of V1 + V2 stored as follows: ON |OFF |OFF
Vig< V2t)
R | Quotent
R+t] Remainder
V2 = Qand 1) Correct division is not possible. OFF {ON |OFF
Vg2 v2' :
2) Zero (0) is stored in R and R+1.
v2=0 1) Division is not possible. OFF |OFF ;ON
2) Zero (0} is stored in R and R+1.
ON |ON (V2= Oand Result of V1 + V2 stored as follows ON |OFF |OFF
Vig< V21 (decimal portion is fruncated after 4th

decimal place):

R 1 Integer portion
R+1] Decimat portion °

v2 = Qand 1) Correct division is not possible. OFF |ON |OFF
Vi V21

2) Zero (D) is stored in R and R+1.
ve=0 1) Division is not possible. OFF {OFF |ON

2) Zero (0) is stored in R and R+1.
OFF | Any |None Nothing is done. OFF | OFF | OFF

*1: V1yis the upper 4 digits of V1.

Both V1 and V2 must be between 0 and 9,939. DIV will not operate properly if V1 or V2 is not
within this range. '

4. Application Examples

Example 1
1) Ladder Programming 2) Operation
F— #00100 j— output1 Constant
100001 +
—1 $00003 |~ Output2 Constant [8]
DivV)
400001 — output3 400001 400002
33 1

100 + 3 = 33 with remainder of 1 Quotient Remainder

For the above DIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400001 and 400002.

-~ 2-28 —

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

Example 2

1) Ladder Programming 2)_ Operation
00100 [~ Output 1 Constant

100001 +
$00003 |- Output2 - . Constant E
DIV ' 8
400001 |~ Output3 400001 400002
' 33 | 8333 _
. Intager portion_4 A__ Decimal portion
100+ 3=33, 3338 of quiotient of quotient

For the above DIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400001 and 400002.

Example 3
1) Ladder Programming 2) Operation
F— 400001 [~ ouputs 400001 4900002
100001 [0] w000)
=1 #00300 = oOuput2 +
DIV Constant [_300 |
400003 [~ Ouputs T
400003 400004
3333 160
400001 100 11 "Dividend is S —
400002{ 0000 1,000,000 Quotient Remainder

1,000,000 + 300 = 3,333 with remainder of 100

For the above DIV, the operation shown at the right will be performed when input refay
100001 is ON, and output 1 will tum ON. When input relay 100001 tums OFF, output 1 will
turn OFF, but the result will remain in holding registers 400003 and 400004,

—229 —

Math Instructions
2.3.5 UNSIGNED SINGLE PRECISION DECIMAL DIVISION (DIV) cont.

Example 4

1) Ladder Programming

400001 — Outputi
100001

$00300 — Outputz

DIV

400003 — oOutput3

400001 100 || Dividendis
400002] 0900 1,000,000

2) Operation

400001 400002
100] oco0 |
-3

Constant

400003 400004

3333 | 3333
Intager ﬁorﬁon_; Tg Decimal portion
of quotient of quotient

- 1,000,000 + 300 = 3,333.3333

For the above DIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400003 and 400004.

Exampie 5

1) Ladder Programming

= 400001 }— Output1
100001 ‘
— 400003 |— Output2
DiV
400004 |— Output3

400001) {| Dividendis
400002) 432 54,321

400093 ?(i)\gsor is

2) Operation

- 400001 _ 400002
I 514321]

mm
' ¢

400084 400005
543 21

L W
a

Quotient Remainder
54,321 + 100 = 543 with remainder of 21

7

For the above DIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When inputrelay 100001 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400004 and 400005. .

—2-30 —

Example 6
1) Ladder Programming
| 400001 Output 1
100001
430008 — output?
Div
400004 |~ ouputs
400001 5 Dividend is
400002 4321 54,321

400003 Divisor is
100

For the above DIV, the operation shown at the right will be performed when input relay
100002 is ON, and output 1 will turn ON. When input relay 100001 tums OFF, output 1 will

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

2) Oparation

400001 400002
L 51 4]

-+
400003100 |
!

400004 400005

[sas T 2100]

N A

Integer portion__#
of quotient

A__ Decimal portion
of quotient

54,321 + 100 = 543.2100"

turn OFF, but the result will remain in holding registers 400004 and 400005.

—2-31 —

Math Instructions

e

2.3.6 Building Programs

2.3.6 Building Programs

Note

1. Storage Locations on Networks

All unsigned, 4-digit, decimal arithmetic instructions require three vertical elementson a
network, one top element, one middle element, and one bottom element. They can thus
be stored anywhere on a 5-row by 10-column matrix (rows 1 through 5 and columns 1
through 10) on the network.

1

Unsigned, 4-digit, decimal arithmetic instructions cannot, however, be placed to the right of
coils (including output coils, intemal coils, link coils, MC coils, and MC contro! coils).

Exampie
Column 1 2 8 4 -] - 7T 8] 10 1]
Row 1] >
100081 000104 : Nothing can be stored in this area. '
2 >
SUB | comoz | :
s > !
osores ' Treemmmmmassmnaaee !

aHHHHHF

00021 10OGER VODOES TO0OR4 YDOURE HOQDRE 1000F7 100020 10003

ot

2. Inputs

Inputs to unsigned, 4-digit, decimal math instruction can be connected to relay elements
(except coils) and/or outputs from timers, counters, math instruction, data transier
instructions, other instructions, etc.

Example
Column 1 2 3 4
Row 1] 0050{#00000[-
100001 T1.0
2 400014} w00000|
ADD
3 400014

—2R2-—

2.3 Unsigned, Four-digit, Decimal Arithmetic Instructions

3. Outputs

Outputs from unsigned, 4-digit, decimal math instruction can be connected to any of the

following: coils, contacts, inputs to math instructions, inputs to data transfer instructions,
etc.

Example
Column 1 2 3

Row 1

- 2-33 —

Math Instructions

2.4.1 Instructions

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

This section describes the functions, structures; and operation of the unsigned, 8-digit,
decimal arithmetic instructions and provides simple examples of their application.

241 INSUUCHONS - v e vneeee e eeeeeeenannnn, e 2-34
2.4.2 UNSIGNED DOUBLE PRECISION DECIMAL ADDITION (DALD) 2-35
2.4.3 UNSIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (DSUB) . 2-38

2.4.4 UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION (DMUL) 2-42
245 UNSIGNED DOUBLE PRECISION DECIMAL DIVISION (DDIV) 2-45
246 Building Programsc.oiiiiiiiiii i i i e i 2-50

2.4.1 Instructions
Unsigned, 8-digit, decimal arithmetic instructions herform unsigned addition, subtraction,

multiplication, and division on two 8-digit, decimal values, V1 and V2. The instructions that
are available are shown in Table 2.13.

Table 2.13 Unsigned, 8-digit, Decimal Arithmetic Instructions

Name Symbol | Operation V1 |va | Result
UNSIGNED DOUBLE |[DADD |V1+V2 0 to 99,999,999
PRECISION DECIMAL
ADDITION

UNSIGNED DOUBLE |DSUB |V1-V2 | Oto 99,999,999
PRECISION DECIMAL ,
SUBTRACTION Comparison

UNSIGNED DOUBLE |DMUL V1 x V2 0 to 99,999,999 Oto
PREC!SION DECIMAL : 9,999,999,800,000,001
MULTIPLICATION
UNSIGNED DOUBLE |DDIV Vi< V2 Oto 0 to 99,999,999

PRECISION DECIMAL 9,999,999,899,999,999
DIVISION

— 2-34 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

2.4.2 UNSIGNED DOUBLE PRECISION DECIMAL ADDITION
(DADD)

1. Function

Unsigned addition is performed between two 8-digit decimal numbers, V1 and V2.

2. Structure

ON: Executes addition Input 1 = Augend (V1) |fee Output t: On when V1+V2 2 100,000,000

Addend (V2)

DADD

Result (R}

1) DADD is the symbol for UNSIGNED DOUBLE PRECISION DECIMAL ADDITION.

2) DADD requires three elements, one top element, one middie element, and one bottom
element, located vertically on the network. Table 2.14 lists the register reference num-
bers that can be specified.

Example

400001: The augend, V1, is stored as follows:
400001 | Upper 4 digits

Input1 = 400001 [~ oOutputt

400002 | Lower 4 digits
400003 .

DADD
400005

400003: The addend, V2, is stored as follows:
400003 | Upper 4 digits

400004 | Lower 4 digis

400005: The resultis stored as follows:
400005 | Upper 4 digits of result

400006 | Lower 4 digits of result

—2-35 —

Math Instructions .
.- I
2.4.2 UNSIGNED DOUBLE PRECISION DECIMAL ADDITION (DADD) cont.

Table 2.14 Structural Elements of DADD

Element Meaning Possible Settings

Top (V1) | The contents of two consecutive registers | Input register: 300001 to 300511
is used as the augend, V1, as shown in the .]
following example. The vaiue of V1 must | Holding register: 400001 to 408998

be between 0 and 99,999,999. (WO00001 to W09998}
In the example, “400001” was specified for | Constant register: 700001 to 704095
the top element. {K0O0001 to K04095)
400001 | Upper 4 digits Link register: R10001 to R11023
400002 | Lower 4 digits R20001 to R21023
Middle The contents of two consecutive registers
(V2) is used as the addend, V2 as shown in the
following example. The value of V2 must
be batween 0 and 99,999,999,
In the example, "400003" was specified for
the middle element.

400003 | Upper 4 digits
400004 | Lower 4 digits

Bottom | The result is stored in registers as shown | Holding register: 400001 to 409998

(R) below. The result must be between 0 and (WO00001 to W09998)
99,999,999. Link regi R10001 to R1102
In the example, “400005" was specified for nk register: R20001 :g 921323

the bottom element.

400005 | Upper 4 digits
400006 | Lower 4 digits

3. Operation
1) DADD will add V2 to V1 when input 1 is ON and process the result as follows:

a) If 0 <V1+V2 <99,995,999:

(1) The upper 4 digits of the result of V1+V2 are stored in R and the lower 4 digits are
stored in R+1.

(2) Output 1 remains OFF,
by If 100,000,000 < V1+V2 < 199,999,998:

(1) The upper 4 digits of the result of V1+V2-100,000,000 are stored in R and the
lower 4 digits are stored in R+1.

(2) Output 1 tumns ON.
2) The result R and R+1 remains even if input 1 turns OFF.
3) The operation of DADD is summarized in the following table.

— 2-36 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

Table 2.15 Operation of DADD

input 1 Condition Operation Output 1

ON 0sV1+V2< 99,999,999 The result of V1+V2 is stored | OFF
as follows:

R | Upper 4 digits
R+1| Lower 4 digits

100,000,000 < V1 +V2< 199,999,998 |The result of V1+V2— ON
100,000,000 is stored as
follows:

R | Upper 4 digits
R+1| Lower 4 digits
OFF None Nothing is done. OFF

-

Note Both V1 and V2 must be between 0 and 99,999,999. DADD will not operate properly if V1 or
V2 is not within this range. '

2

<EXAMPLEp 4, Application Examples

Example 1
1) Ladder Programming
1 400001 — }— 400001 [5009 ,
100001 000101 400002 0000 }A”Q“-""'Sw"’w-m
400008
DADD 400003 [4000 _
400005 4000040000 }A"""G“"'S““-‘mm
2) Operation
400001 400002
5000 [0000
+
400003 400004
4000 | 0000 (50,000,000 + 40,000,000} = 90,000,000
'
400005 400006
9000 0000

For the above DADD, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will remain OFF. The result will remain in holding registers
400005 and 400006 even after input relay 100001 turns OFF.

—2-37 —

Math Instructions
2.4.3 UNSIGNED DOUBLE PRECISION DECIMAL SUBRTRACTION (DSUB)

Example 2
1) Ladder Programming
IUOO(!T— vt —;;M{H— ::ggg; ::gg } Augend is 50,000,000
400003
= ST rnionss
2) Operation

400001 400002
L5000 [oood |

+

400003 400004

| _6o00 I o000 | (80, 000, ¢00+60, 000, 000-104, 000, 000}
} =10, 800, 000

400005 400006

[__100¢ { gooo |

For the above DADD, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. When input relay 100001 turns OFF, coil
000101 will turmn OFF, and the result will remain in holding registers 400005 and 400006.

2.4.3 UNSIGNED DOUBLE PRECISION DECIMAL SUBTRACTION
(DSuUB) '

1. Function

1) Unsigned subtraction is performed between two 8-digit decimal numbers, V1 and V2.

2) The sizes of V1 and V2 are compared.

2. Structure

ON: Subtraction executed Input1 = Minuend (V1) f= OQutput 1: ON when V1> V2.

Subtrahend = Ouiput2: ON when V1 =V2,
(V2)

DSuUB
=— Quiput 3: ON when V1 < V2.
Result {R)

1) DSUB is the symbol for UNSIGNED DOUBLE PRECISION DECIMAL SUBTRACTION.

—238—

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

%

2) DSUB requires three elements, one top elemant, one middle element, and one botiom
element, located vertically on the network. Table 2,16 lists the register reference num-
bers that can be specified.

Example
input1 — 400001 [~ Output1 400001: The minuend, V1, is stored as follows:
400001 | Upper 4 digits
400003 = outputz
DSUB A 400002 | Lower 4 digits
400005 ~ output3
400003: The subtrahend, V2, is stored as follows:
400003 | Upper 4 digits
400004 { Lower 4 digits
400005: Tha resultis stored as follows:
400005 | Upper 4 digits of result
400006 | Lower 4 digits of result
Table 2.16 Structural Elements of DSUB
Element Meaning Possible Settings
Top (V1) | The contents of two consecutive registers Input register: 300001 to 300511

is used as the minuend, V1, as shown in
the following example. The value of V1
must be between 0 and 99,999,999,

In the example, “400001” was specified for
the top element.

400001
400002

Upper 4 digits
Lower 4 digits

Middle
(v2)

The contents of two consecutive registers
is used as the subtrahend, V2, as shown in
the following example. The value of V2
must be belween 0 and 99,999,999,

in the example, “400003" was specified for
the middle element.

400003
400004

Upper 4 digits
Lower 4 digits

{(Z00001 to ZO0511)

400001 to 409998
(W00001 to W09998)

700001 to 704095
(K00001 to K04095)

R10001 to R11023
R20001 to R21023

Holding register:
Constant register:

Link register:

Bottom

(R)

The result Is stored in registers as shown
below. The result must be between 0 and
99,999,999,

In the example, “400005” was specified for
the bottom element.

400005 | Upper 4 digits
4000086 | Lower 4 digits

400001 to 409998
(W00001 to W09998)

R10001 fo R11023
R20001 to A21023

Helding register:

Link register:

-—2-39 —

Math Instructions ,
e]
2.4.3 UNSIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (DSUB) cont.

3. Operation

1) DSUB will subtract V2 from V1 when input 1 is ON and process the result as follows:

a) Iftv1>vz;

(1) The upper 4 digits of the result of Vi-V2 are stored in R and the lower 4 digits are
stored in R+1.

(2) Output 1 turns ON.
b) fV1=V2:
- | (1) Zero (0) is stored in R and R+1.
{2) Output 2 turns ON.
¢) fV1l<V2:

{1) The upper 4 digits of the result of V2-V1 are stored in R and the lower 4 digits are
stored in R+1.

(2) Output 3 turns ON.
2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of DSUB is summarized in the following table.

Table 2.17 Operation of DSUB

lnput 1 | Condition Operation Outputs
1 2 3
ON Vi>V2 The result of V1-V2 is stored as follows: ON |OFF |OFF

R Upper 4 digits

R+1| Lower 4 digits
V1 =V2 Zero {0) is stored in R and R+1. OFF |ON |[OFF
V1< V2 The result of V2-V1 is stored as foliows: OFF |OFF |ON
R Upper 4 digits
R+1] Lower 4 digits
OFF None Nothing is done. OFF | OFF | OFF

Note Both V1 and V2 must be between 0 and 99,999,999. DSUB will not operate properly if V1 or
V2 is not within this range.

—2-40 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

<EXAMFPLEp- . 4, Application Examples

Example 1

1) Ladder Programming

400001 =~)~ 400001] _§000 N
1000!!1_- 000101 40000200000 } Minuend is 60,000,000
400008 P——)—
DSUB| 000102 400003 5000 '
400005 —)»— 400004{ 0000 }Subtrahend is 50,000,000
000103
2) Operation

400001 400002
[_6000 [o000t]

400003 400004

[5000 T 0000] {60. 000, 000-50, 000, 000) =10, 000, 000
¢

400005 400006

[1000 T 0000]

For the above DSUB, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. When input relay 100001 turns OFF, coil
000101 will tum OFF and the resuit will remain in holding registers 400005 and 400006.

Example 2
1) Ladder Programming
F—{ 400001 - 4000014000 N
100001 000101 400002 _000g | Mnuendis 40,000,000
400003 — }—
DSUB| 000102 400003[5000 _
400005 |— }— 400004 0000 |J Subtrahendis 50,000,000
000103 .
2) Operation

400001 400002
[__4000 | o000 |

400003 400004 .
5000 | 0000 (50. 009, 000-40, 000, 600) =10, 008, 000
!

400005 __ 400006
{1000 | 000¢]

For the above DSUB, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000103 will turn ON. When input relay 100001 turns OFF, coil
000103 will turn OFF and the result will remain in holding registers 400005 and 400006.

— 241 —

Math Instructions
2.4.4 UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION (DMUL)

2.4.4 UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION
(DMUL)

1. Function

Unsigned multiplication is performed between two 8-digit decimal numbers, V1 and V2.

2. Structure

ON: Muitiplication executed Input 1 = Multwic)and == QOutput 1: Echoes state of input 1.
i | .

Muttiplier (V2}
DMUL

Resuit (R}

1) DMUL is the symbol for UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICA-
TION.

2) DMUL requires three elements, one top element, one middle element, and one botiom
element, located vertically on the network. Table 2.18 lists the register reference num-
bers that can be specified.

Example

tnput1 —] 400001 |— Output1 400001: The multiplicand, V1, is stored as follows:
400001 | Upper 4 digits

400003
DMUL 400002 | Lower 4 digits
400005

400003: The multiplier, V2, is stored as follows:

400003 | Upper 4 digits

400004 | Lower 4 digits

400005: The resultis stored as foliows:

400005 | Most upper 4 digits

400006 | Upper 4 digits

400007 | Lower 4 digits

400008 | Most iower 4 digits

—2-42 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

%

Table 2.18 Structural Elements of DMUL

Element

Meaning

Possible Settings

Top (V1)

The contents of two consecutive registers
is used as the multiplicand, V1, as shown
in the following example. The value of V1

must be between 0 and 99,999,999.

in the example, “400001” was specified for
the top element.

400001
400002

Upper 4 digits
Lower 4 digits

Middie
(v2)

The conients of two consecutive registers
is used as the multiplier, V2, as shown in
the following example. The value of V2
must be between 0 and 99,999,998,

In the example, “400003" was specified for
the middle element.

400003
400004

Upper 4 digits
Lower 4 digits

Bottom

(R)

input register:
Holding register:
Constant register:

Link register:

300001 to 300511
{Z00001 to Z00511)

400001 to 409998
(W00001 to W09998)

700001 to 704095
(K00001 to K04095)

R10001 to R11023
R20001 to R21023

The result is stored in registers as shown
below. The result must be bstween 0 and
9,999,999,800,000,001.

In the example, “400005" was specified for
the bottom element.

400005 { Most upper 4 digits
400006 | Upper 4 digits
400007 | Lower 4 digits -
400008 | Most lower 4 digits

Holding register:

Link register:

400001 to 409996
(W00001 to W09996)

R10001 to R11021
R20001 to R21021

3. Operation

1) DMUL will multiply V1 by V2 when input 1 is ON and process the result as follows:

a) The most upper 4 digits of the resuit are stored in R: the upper 4 digits, in R+1; the
lower 4 digits, in R+2, and the most lower 4 digits, in R+3.

b) Output 1 turns ON.

2) The result remains in R though R+3 even if input 1 turns OFF.

3) The operation of DMUL is summarized in the following table.

— 243 —

Math Instructions

2.4.4 UNSIGNED DOUBLE PRECISION DECIMAL MULTIPLICATION (DMUL) cont.

Table 2.19 Operation of DMUL

Input 1 | Condition Operation : Output 1
|ON None Result of VIxV2is — ON
stored as shown at R Most upper 4 digits
right. The result willbe a R+1 | Upper 4 digits
positive 16-digit decimal e
integer or 0. R+2 | Lower 4 digits
R+3 | Most lower 4 digits
OFF Nothing is done. OFF

Note Both V1 and V2 must be between 0 and 99,999,999. DMUL will not operate properly if V1 or
V2 is not within this range.

. 4EXAMPLEp 4, Application Example

Example
1) Ladder Programming
F—1 400001 {— Output1 L] - o
100001 s00002(0000 }Mulupllcandlszo,ooo

400003

DMUL 400003 5]_ o

400005 400004 G000 | Muidplieris 50.000
2) Operation

400001 400002
| 2 1_0000]20,000
X

400008 400004
| 5 | 0000]s50,000 {20, 000X50, 000) =1, 000, 000, 000
{
400005 400006 400007 400008
| 0 | o010 | 0000 § o0000]

For the above DMUL, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input refay 100001 turns OFF, output 1 will
turn OFF and the result will remain in holding registers 400005 through 400008.

—2-44 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

2.4.5 UNSIGNED DOUBLE PRECISION DECIMAL DIVISION (DDIV)

1. Function

Unsigned division is performed between a 16-digit decimal number V1 and a 8-digit deci-
mai number V2 (V1 + V2).

2. Structure

ON: Division executed Input1—{ Dividend (V1) |— Output 1: ON when normal division is completed

ON: Quotient found Input2—] Divisor(V2) = Ouput2: ON when quotient or integer part of
OFF: Decimal portion quotient exceeds 99,999,999,

found DDV

= Output3: ON when V2 =0
Result (R)

1) DDIV is the symbol for UNSIGNED DOUBLE PRECISION DECIMAL DIVISION.

2) DDIV requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.20 lists the register reference num-
bers that can be specified.

Example
400001: Dividend, V1, is stored as follows:
tnput1 =1 400001 t— Output1 400001 Most upper 4 digits
400002 Upper 4 digits
Input2 —1 400005 [— Output2 400003 { Lower 4 digits
ODIV 400004 Most lower 4 digits
400007 |~ outputa

400005: Divisor, V2, is stored as follows:
400005 Upper 4 digits
400006 Lower 4 digits

400007: The resuit is stored as follows:

400007 Upper 4 digits of quotient
400008 Lower 4 digits or quotient
400000 Upper 4 digits of remainder
400010 Lowaer 4 digits of remainder

or

400007 | Upper 4 digits of integer portion
400008 Lower 4 digits of intagar portion
400009 | Upper 4 digits of decimal portion
400010 Lower 4 digits of decimal portion

—2-45 —

Math Instructions

2.4.5 UNSIGNED DOUBLE PRECISION DECIMAL DIVISION (DDIV) cont.

Table 2.20 Structural Elemer{ts of DDIV

Element

Meaning

Possible Settings

Top (V1)

The contents of four consecutive registers
is used as the dividend, V1, as shown in
the following example. The value of V1
must be between 0 and
9,999,999,899,999,999.

tn the example, “400001" was specified for
the top element.

400001
400002

Most upper 4 digits
Upper 4 digits
400003| Lower 4 digits
400004] Most lower 4 digits

input register:

Holding register:

Constant regisier:

Link register:

300001 to 300509
(Z00001 to Z00509)

400001 to 409996
(WO00001 to W09996)

7000071 to 704093
(KO0001 to K04093)

R10001 to R11021
R20001 to R21021

Middie
(V2)

The contents of two consecutive registers
is used as the divisor, V2, as shown in the
following example. The value of V2 must
be between 0 and 99,995,999,

In the example, “400005" was specified for

the middie element.
400005 | Upper 4 digits
400006 | Lower 4 digits

Input register:

Holding register:

Constant register:

Link register:

300001 to 300511
(Z00001 to Z00511)

400001 to 409998
{WQO0001 to W09998)

700001 to 704095
{(KO00O1 to KO4095)

R10001 to R11023
R20001 to R21023

Bottom
(R)

The result is stored in registers as shown
below. The result must be between 0 and
99,999,999,

In the example, “400007" was specified for
the bottom element.

tnput 2 OFF

400007 | Upper 4 digits of quotient

400008| Lower 4 digits of quotient

400009| Upper 4 digits of remainder

400010 Lower 4 digits of remainder

Input 2 ON

400007| Upper 4 digits of integer portion
400008] Lower 4 digits of integer portion
400009 Upper 4 digits of decimal portion

400010| Lower 4 digits of decimal portion

Holding register:

Link register:

400001 to 409996
(WO00001 to W09936)

R10001 to R11021
R20001 to R21021

3. Operation

1) DDIV will divide V1 by V2 when input 1 is ON and process the result as follows:

a) Ifinput 2 is OFF:

(1) The upper 4 digits of the quotient are stored in R and the lower 4 digits are stored
in R+1.

{2) The upper 4 digits of the remainder are stored in R+2 and the lower 4 digits are
stored in R+3.

—2-46 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

(3) Output 1 tuins ON.
b) Ifinput 2 is ON:

(1} The upper 4 digits of the integer portion of the quotient of V1 + V2 are storedin R
and lower 4 digits are stored in R+1.

(2) The upper 4 digits of the decimal portion (truncated after the 8th decimal place) of
the quotient of V1 + V2 are stored in R+2 and lower 4 digits are stored in R+3.

(3) Output 1 turns ON.

¢) Division will not be executed in the following cases and zero (0) is stored in R through
R+3.

(1) V2=0. In this case, output 3 turns ON.

(2) If the quotient or integer portion of the quotient will not fit in R and R+1. In this
case, output 2 turns ON,
Example: If V1 = 5,000,000,000 and V2 = 10, the quotient is 500,000,000, which
cannot be stored in R and R+1. Here, 0 is stored in R through R+3.

2) The result remains in R through R+3 even if input 1 tums OFF.

3} The operation of DDIV is summarized in the following tabie.

— 247 —

Math Instructions

2.4.5 UNSIGNED DOUBLE PRECISION DECIMAL DIVISION (DDIV) cont.

Note

Table 2.21 Operation of DDIV

Inputs

Condition

Operation

Outputs

ON

OFF

v2 = 0Oand
Vig<V2

The following calcuiation is performed, where

the upper 8 digits of V1 are V1 and the

lower B digits are V1: (Viyx 108 + V1) +
va

R Upper 4 digits of guotient
R+1 [Lower 4 digits of quotient
R+2 |Upper 4 digits of remainder
R+3 [Lower 4 digits of rernainder

ON

OFF

OFF

V2= 0and
VigzVv2

1) Correct division is not possible.

2) Zero (0)is stored in H through R+3.

OFF

ON

OFF

V2=0

1) Division is not possible.

2) Zero (0) is stored in R through ﬁ+3.

OFF

OFF

ON

ON

ON

V2= 0and
Vig<V2

The following calculation is performed, where

the upper 8 digits of V1 are V1 and the

lower 8 digits are V1y: (Vg x 108+ V1) +
- vz

The decimal portion is truncated after 8th
decimal place. '

R Upper 4 digits of integer portion
of quotient

R+1 | Lower 4 digits of integer portion

of quotient

R+2 | Upper 4 digits of decimal portion

of quotient

R+3 |Lower 4 digits of decimal portion

of quotient

ON

OFF

OFF

V2= Oand
Vigzv2

1) Correct division is not possible.

2) Zero (0) is stored in R through R+3.

OFF

ON

OFF

V2=0

1) Division is not possible.

2} Zero (0) is stored in R through R+3.

OFF

OFF

ON

OFF

Any

None

Nothing is done.

OFF

OFF

OFF

Both V1 must be between 0 and 9,999,999,899,999,998 and V2 must be between 0 and
99,999,999. DDIV will not operate properly if V1 or V2 is not within its specified range.

— 248 —

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

M

<EXAMPLED 4. Application Examples

Example 1
1) Ladder Programming
I__ 400001 0
400007 — Output1 400002 1 .)
100001 400003 [gogo | [Dividendis 100,000,000
— 400005 — Output2 400004] 0000
DDV
400007 |~ Output3
400005 3 .
400006 [0000 }D“"W'sa"’m"
2) Operation
400001 400002 400003 400004
| 0 | ooo1{ 0000 { 0000 | 100,000,000 + 30,000 = 3,333 with remainder of 10,000
400005 400006
I 31 0000 |
3

400007 400008 400005 400010
1 0 | 3333 | 1] 9000 |

| N—

"

Quotient Remainder

For the above DDIV, the operation shown at the right will be performed when input relay
100001 isON, and output 1 will turn ON. When inputrelay 100001 turns OFF, output 1 will
turn OFF and the result will remain in holding registers 400007 through 400010.

— 2-49 —

Math Instructions

2.4.6 Building Programs
Example 2
1) Ladder Programming
400001 0
400001 P Output1i 400002 1 . .
1000#?[: 400003 {000 | [Dhidend's 100,000,000
400005 — outpur2 4000041 0000
DDiV
460007 1 Output3
400005 3 L
| 400006 [_0000 }_°”$°”53°”°°
2) Operation

© 400001 400802 460003 400004
[o [ooo1 [0000 | 0000] 100,000,000 +30,000=3,333.3333

400005 400006
i 3] 6000 |
! ,
400007 400008 400008 400010
] 0] 3333] 3333 | 3333 |

A,
v W

Integer porticn of quotient Decimal portion of quotient

For the above DDIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON, When input relay 100001 turns OFF, output 1 will
turn OFF and the resuit will remain in holding registers 400007 through 400010.

2.4.6 Building Programs

1. Storage Locations on Networks

All unsigned, 8-digit, decimal arithmetic instructions require three vertical elements on a
network, one top element, one middle element, and one botiom element. They can thus
be stored anywhere on a 5-row by 10-column matrix (rows 1 through 5 and columns 1
through 10) on the network.

Note Unsigned, 4-digit, decimal arithmetic instructions cannot, however, be placed to the right of
coils (including output coils, internal coils, link coils, MC coils, and MC control coils).

— 2-50 —

Example

Column

1
Row 1 r|
100001

2.4 Unsigned, Eight-digit, Decimal Arithmetic Instructions

4] e)
100021 100022 1ODO23 300024 100025 100026 100027 100028 100029 000104
5H - 40001
100041 100042
[.MI
7
2. Inputs

Inputs to unsigned, 8-digit, decimal math instruction can be connected to relay elements
(except coils) and/or outputs from timers, counters, math instructions, data transfer

instructions,

Example

Row 1

other instructions, etc.

" j400011

" 400013
DADD

400015

—2-51 —

Math Instructions

e A
2.4.6 Building Programs cont.

3. Outputs

Outputs from unsigned, 8-digit, decimal math instruction can be connected to any of the
following: coils, contacts, inputs to math instructions, inputs to data transfer instructions,

etc.
Example
Column
1 2 3
Row 1 —| |—l400001H 40001
001001
2 400003 | 400101
DSUB
3 400005}

~—2-52 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

This section describes the functions, structures, and operation of the signed, 4-digit,
decimal arithmetic instructions and provides simple examples of their application.

251 INSHUCHONS . ..ou e 2-53

2.5.2 SIGNED SINGLE PRECISION DECIMAL ADDITION (SADD)-.......... ~ 2-54
2.5.3 SIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SsuB) 2-58
2.5.4 SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION (SMUL) ... 262
255 SIGNED SINGLE PRECISION DECIMAL DIVISION (SDIV) 2-65
25.6 Building Programsoooiiievuiei e 2-70

2.5.1 Instructions

Signed, 4-digit, decimal arithmetic instructions perform signed addition, subtraction, multi-
plication, and division on two 4-digit, decimal values, V1 and V2. The_ instructions that are
available are shown in Table 2.22.

Table 2.22 Signed, 4-digit, Decimal Arithmetic Instructions

Name Symbol Operands Vi | v Result

SIGNED SINGLE SADD |VI+V2 -9,999 t0 9,999
PRECISION DECIMAL
ADDITION

SIGNED SINGLE SsuB Vi -Vv2
PRECISION DECIMAL
SUBTRACTION

SIGNED SINGLE SMUL VI x V2 -9,899 10 9,999 -99,980,001 to
PRECISION DECIMAL 99,580,001
MULTIPLICATION

SIGNED SINGLE SDIv V1= Vv2 -99,969,998 to -9,999 to 9,999
PRECISION DECIMAL 99,989,999
DIVISION

— 2-53 —

Math Instructions
2.5.2 SIGNED SINGLE PRECISION DECIMAL ADDITION (SADD)

2.5.2 SIGNED SINGLE PRECISION DECIMAL ADDITION (SADD)

1. Function
Signed addition is performed between two 4-digit decimal numbers, V1 and V2.

2. Structure

ON: Executes addiion Input1 =] Augend (V1} = Qutput 1: ON when V1+V2 < ~1

Addend (V2) |— Output2: ON when iV1+V2l = 10,000

SADD

Result {R)

1) SADD is the symbol for SIGNED SINGLE PRECISION DECIMAL ADDITION.

2) SADD requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.23 lists the register reference num-

bers that can be specified.

Example

input1 =—{ 400001 — oOutputd 400001: Refarence number of holding
register for augend, V1

400002: Reference number of holding

400002 I~ ouput2 .
register for addend, V2
SADD g ,
400003 400003: Reference number of holding
register to store result , R

—2-54 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

M

Table 2.23 Structural Elements of SADD

Meaning

Possible Settings

The contents of the specified register is
used as the augend, V1.

V1 must be between -8,999 and 9,999,

Set the MSB of the register to 1
if V1<0.

The contents of the specified register is
used as the addend, V2.

V2 must be between —9,999 and 9,999,

Set the MSB of the register to 1
if V2<0.

Input register: 300001 to 300512
(Z00001 to Z00512)

Holding register: 400001 to 408999

(W00001 to W09999)

700001 to 704096
(K00001 to K04096)

R10001 to R11024
R20001 to R21024

Constant register:

Link register:

Element
Top (V1) | 1)

2)

3)
Middle 1)
(V2)

2)

3)
Bottom [1)
{R)

2}

3)

The result is stored in the specified
register.

The result must be between 8,999 and
9,999,

The MSB of the register will be set to 1
if the results < 0.

400001 to 409999
(W00001 to W09399)

R10001 to R11024
R20001 to R21024

Holding register:

Link register:

3. Operation

1) SADD adds V2 to V1 when input 1 is ON and process the result as follows:

a) If0< V1 +V2<9,990:

(1) The result of V1 + V2 is stored in R.

{2) The MSB (most significant bit) of R is set to 0 to indicate a positive result.

(3) Outputs 1 and 2 remain OFF.

b) f -9,999 < V1+V2< -1:

(1) The result of V1+V2 is stored in R.

(2) The MSB of Ris set to 1 to indicate a negative resuit.

{3} Output 1 tumns ON ang output 2 remains OFF.

) 1£10,000 < V1+V2< 19,998

(1) The result of V1+V2 - 10,000 is stored in R.

(2) The MSB of R is set to 0 to indicate a positive result.

—2-55 —

Math Instructions :
M
2.5.2 SIGNED SINGLE PRECISION DECIMAL ADDITION (SADD) cont.
(3) Output 1 remains OFF and output 2 turns ON.
d) If-19,998 < V1+V2 < -10,000:

(1) The result of V1+V2 + 10,000 is stored in R.

(2) The MSB of R is set to 1 to indicate a negative resuft.

{3) Outputs 1 and 2 tum ON .

2) The result remains in R even if input 1 tums OFF.

3) The operation of SADD is summarized in Table 2.24.

Table 2.24 Operation of SADD

Input 1 Condition] - Operation Outputs
1 2
ON 0sV1+V2<9,999 1) Result of V1+V2 stored in R. OFF | OFF

2) MSBofRsetto0.
—8,999<V{+Va<-1 1) Result of V1+V2 stored in R. ON |OFF

2) MSBofRsetto 1.
10,000<V1+V2<19,998 1) Result of V1+V2 — 10,000 stored in R. | OFF |ON

: 2) MSBof Rsetto 0.
-19,998<V1+V2<-10,000 | 1) Result of V1+V2 + 10,000 storedinR. |ON |ON

2) MSBof Rsetto 1.
OFF None Nothing is done. OFF | OFF

Note Both V1 and V2 must be between -9,999 and 9,999. SADD will not operate properly if V1 or
V2 is not within this range.

— 2-56 —

4EXAMPLE p

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

4. Application Exam'ples

Example 1
1) Ladder Programming 2) Operation
1 400001 —(— 400001 1000 |
100001 footot -+
400002 —{ 400002[_2000 |
SADD| 000102]
460003 400003 1000 |

400001 [=1663] 4000027000]

For the above SADD, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 and 000102 will remain OFF. The resuit will remain in
holding register 400003 even after input relay 100001 turns OFF.

Example 2
1) Ladder Programming 2) Operation
F— 400001 |—()~ ' 4000011000]
100001 000101 +
400002 |—{)~ 400002 [2000]

SADD| 000102
400003 400903

400001 —T000] 4000027000]

For the above SADD, the operation shown at the right will be performed when input relay
100001 is ON, coil 000101 will turn ON and coil 000102 will remain OFF. When inputrelay

100001 turns OFF, coil 000101 will tum OFF and the result will remain in holding register
400003.

— 2-57 —

Math Instructions
L - -
2.5.3 SIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SSUB)

Example 3
1) Ladder Progtamming 2} Operation
1 400001 — 400001 [=3000 |
160001 000101 e
400002 [}— 400002 [_-8000
SADD| 000102 !
400003 ’ 400008 [=1000]

(~3,000-8, 000} +10, 000=-1, 000

400001 400002] 8000

For the above SADD, the operation shown at the right will be performed when input relay
100001 is ON, and coils 000101 and 000102 will turn ON. When input refay 100001 turns
OFF, coils 000101 and 000102 will turn OFF, but the result will remain in holding register

400003.

2.5.3 SIGNED SINGLE PRECISION DECIMAL SUBTRACTION
(SSuUB)

1. Function
Signed subtraction is performed between two 4-digit decimal numbers, V1 and V2.

2. Structure

ON: Subtraction executed Input1 =1 Minuend {V1)} L Qutput 1: ON when V1-V2 < ~1

Subtrahend [Output2: ON when {V1-V2] > 10,000

{(V2)
ssusB

Resuit (R)

1) SSUB is the symbol for SIGNED SINGLE PRECISION DECIMAL SUBTRACTION.

2) SSUB requires three elements, one top element, one middie element, and one bottom
element, located vertically on the network. Table 2.25 lists the register reference num-

bers that can be specified.

Example
Input ! —d 400001 p— Output1 400001: Reference number of holding
register for minuend, V1
- 400002: Reference number of holding
;gﬁ'za Output2 register for subtrahend, V2
400003 400003: Reference number of holding
register to store result, |

—2-58 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

Table 2.25 Structural Elements of SSUB

Element Meaning Possible Settings
Top (V1) [1) The contents of the register is used as Input register: 300001 to 300512
the minuend, V1. (Z00001 to Z00512)
Holdi ister: 400001 to 409999
2) V1 must be betweon 9,998 and 9,999. [0 oo ATAR 0 W0352)
3) Set the MSB of the register to 1 Constant register: 700001 to 704096
ifV1 <0, (K00001 to K040986)
Middle 1) The contents of the register is used as Link register: R10001 to R11024
{(V2) the subtrahend, V2. R20001 to R21024

2) V2 must be between —-9,999 and 9,999,

3) Setthe MSB of the register to 1
if V2<0.

Bottom 1} The result is stored in the register. Holding register: 400001 to 409899
(R) (W00001 to W09999)

%) The result mustbe between 8,999 ||\ rocicter: R10001 to R11024
and 9,999, R20001 to R21024

3) The MSB of the register will be set to 1
if the results < 0.

3. Operation

1) SSUB will subtract V2 from V1 when input 1 is ON and process the result as follows:
a) f0<V1-v2<9,999:
(1) The result of V1-V2 is stored in R.
(2) The MSB of R is set to 0 to indicate a positive result.
(3) Outputs 1 and 2 remain OFF.
b) 18,999 s Vi-v2 < ~1; |
(1) The result of V1-V2 is stored in R.
(2) The MSB of Ris set to 1 to indicate a negative resuit.
| (3) Output 1 turns ON and output 2 remains OFF.
c) 1f10,000 s V1-V2 < 19,998:
(1) The result of V1-V2 - 10,000 is stored in R.

(2) The MSB of Ris set to 0 to indicate a positive result.

—2-59 —

Math Instructions '
2.5.3 SIGNED SINGLE PRECISION DECIMAL SUBTRACTION (SSUB) cont.
(3) Output 1 remains OFF and output 2 turns ON.
d) if -19,998 < V1-V2 < -10,000:
(1) The result of V1-V2 + 10,000 is stored in R.
(2) The MSB of R is set to 1 to indicate a negative result.
{3} Qutputs 1and 2 turn ON ,

2) The result remains in R even if input 1 tums OFF.

3) The operation of SSUB is summarized in Table 2.26.

Table 2.26 Operation of SSUB

Input 1 Condition _ Operation Outputs
‘ 1 2
ON 0=V1-V2<9,899 1} Result of V1-V2 stored in R. OFF | OFF

2} MSB of R setto 0.
-9,899<V1-V2<-1 1) Resuit of V1-V2 stored in R. ON |OFF

2) MSB of Rsetio 1.
10,000<V1-V2<19,998 1) Resul of Vi-V2 — 10,000 stored in R. | OFF [ON

2) MSBofRsetto0.
—-19,9985V1-V2<-10,000 1) Result of V1-V2 + 10,000 storedin R. |[QON |ON

2) MSBofRsetto 1.
OFF None Nothing is done. OFF | OFF

Note Both V1 and V2 must be between -9,999 and 9,999. SSUB will not operate property if V1 or
V2 is not within this range.

<EXAMPLEp 4, Application Examples

Example 1
1) Ladder Programming 2) Operation
i 400001 —)— 400001 =100 |
100001 000101 -—
400002 —(>~ 400002 -200 |
SSUB| 000102]
400003 400003 100°]

400001 o002 200]

For the above SSUB, the operation shown at the right will be performed when input relay
100001 is ON. Coils 000101 and 000102 will remain OFF. The resuit will remain in hold-
ing register 400003 even after input refay 100001 turns OFF.

— 260 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

Example 2
1) Ladder Programming 2) Operation
1 0001 (—{ }— 400001
100001 000101 —
400002 —{ }— 400002200 |
SSUB/| 000102 1-
400003 400003 -300]

400001 400002 200 |

For the above SSUB, the operation shown at the right will be performed when input relay
100001 is ON, coil 000101 will turn ON and coil 000102 will remain OFF, When input relay
100001 turns OFF, coil 000101 will tur OFF and the result will remain in holding register
400003. _—

Example 3
1) Ladder Programming 2) Operation
1 400001 |— 400001 [=5000 |
100001 000101 —
400002 [~—{)}— 400002-6000
ssuB/| oo0102 1
400003 400008 [-1600 |

(-5000-6000) +10000=-1000
4000015060] 400002[5000

For the above SSUB, the operation shown at the right will be performed when inputrelay
100001 is ON, and coils 000101 and 000102 will turn ON. When input relay 100001 turns
OFF, coits 000101 and 000102 will turn OFF, but the result will remain in holding register
400003,

—2-61 —

Math Instructions

2.5.4 SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION (SMUL)

2.5.4 SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION

(SMUL)

1. Function

Si'gned multiplication is performed hetween two 4-digit decimal numbers, V1 and V2.

2. Structure

ON: Multiptication executed Input1 —] Multiplicand

(v1)

Multiplier (V2)

SMUL

Result (R)

— Output 1: ON when V1 xV2 < -1

1) SMUL is the symbol for SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION.

2) SMUL requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.27 lists the register reference num-

bers that can be specified.

Example

inputt = 400001

400002
SMUL
400003

= Output 1

— 262 —

400001: Reference number of holding
register for muttiplicand, V1

400002: Reference number of holding
register for multiplier, V2

400003: Stores the result as follows:

400003 | Upper 4 digits

400004 | Lower 4 digits

2.5 Signed, Four-digit, Decimal Arithmefic Instructions

Table 2.27 Structural Elements of SMUL

Element Meaning Possible Settings
Top (V1) [1) The contents of the register is used as Input register: 300001 to 300512
the multiplicand, V1. (200001 to 200512)
Holding register: 400001 to 409999
2) V1 must be between -9,999 and 9,999, ng reg (W000010t0 W09999)
3) Setthe MSB of the register to 1 Constant register: 700001 to 704096
if V1 <O, {KO0001 to KD4096)
Middle 1) The contents of the register is used as Link register: R10001 to R11024
(v2) the multiplier, V2. R20001 to R21024

2) V2 must be between -9,999 and 9,999.

3) Setthe MSB of the register to 1

if V2<0.
Bottom | 1) The result is stored in the specified Holding register: 400001 to 409998
(R) register and the next register as shown (W00001 to W0g9998)
below. .

Link register: R10001 to A11023

H20001 to R21023
2) The result must be between

-99,980,001 and 99,980,001,

3) The MSB of the register will be set to
if the result < 0. :

4) In the example, “400003" was specified
for the bottom element. The MSB of
400003 will be set to 1 if the result is
negative.

400003 | Upper 4 digits of result
400004 | Lower 4 digits of result

3. Operation

1) SMUL wili muitiply V1 by V2 when input 1 is ON and process the result as follows:
a) If0<V1xV2<99,980,001:

{1) The upper 4 digits of the result are stored in R and the lower 4 digits are stored in
R+1.

(2) The MSB of R is set to 0 to indicate a positive result.
(3) Output 1 remains OFF.
b) If -99,980,001 < V1 xV2 < -1;

(1) The upper 4 digits of the result are stored in R and the lower 4 digits are stored in
R+1.

—_2-63 —

Math Instructions

]
2.5.4 SIGNED SINGLE PRECISION DECIMAL MULTIPLICATION (SMUL) cont.

{2) The MSB of R is set to 1 to indicate a negative result.

{3) Output 1 turns ON.
2) The result remains in R and R+1 even if input 1 turns OFF.
3) The operation of SMUL is summarized in Table 2.28.

Table 2.28 Operation of SMUL
input 1 Condition . Operation Outputs
j 1 2

ON 0<V1 x V2<99,980,001 1) The upper 4 digits of the result are OFF | OFF

stored in R and the lower 4 digits are
stored in R+1.

2) The MSB of R is setto 0 to indicate a
positive result.

—99,980,001<V1 x V21 1) The upper 4 digits of the result are ON |OFF

stored in R and the lower 4 digits are

stored in R+1.

2) The MSB of R is setto 1 to indicate a
negative resuit. :

OFF [None Nothing is done.) OFF |OFF |

Note Both V1 and V2 must be between —9,999 and 9,999. SMUL will not operate properly if V1 or
V2 is not within this range.

<«EXAMPLEp- 4. Application Example

Example
1) Ladder Programming | 2) Operation
F— 400001 — 400001500]
100001 000161 X
400002 400002-
SMUL ¢
400003 400008 400004
[-0] 5000 i

00001500 | 400002 10 |

For the above SMUL, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101will turn ON. When input relay 100001 turns OFF, coil
000101 will turn OFF, but the resuit will remain in holding registers 400003 and 400004.

—2-64 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

2.5.5 SIGNED SINGLE PRECISION DECIMAL DIVISION (SDIV)

1. Function

Signed division is performed between a 8-digit decimal number V1 and a 4-digit decimal
number V2 (V1 + V2),

2. Structure

ON: Division executed Input1 —] Dividend (Vi) f— Output 1: ON when V1 + V2 < —1
ON: Quotient found nput2=—1 Divisor (v2) j— Output2: ON when quotient or integer part of
OFF: Decimal portion found quotient exceeds 9,999,
SDiv
= Qutput 3;: ON when V2 =0
Result (R}

1} SDIV is the symbol for SIGNED SINGLE PRECISION DECIMAL DIVISION.

2) SDIV requires three slements, one top element, one middle element, and one bottom

element, located verticaily on the network. Table 2.29 lists the register reference num-
bers that can be specified. :

Example
400001: Stores the dividend as follows:
400001 { Upper 4 digits
Inputt =4 460001 — Output 1 400002 | Lower 4 digits

Input2 — 400003 |~ Output2 400003: Reference number of holding
SDlV register for divisor
400004 }— Output3s

400004: Stores the result as follows:

400004 | Quotient

400005 | Remainder

or
400004 | Integer portion of quotient

400005 | Decimal portion of quotient

— 2-65 —

Math Instructions

m
2.5.5 SIGNED SINGLE PRECISION DECIMAL DIVISION (SDIV) cont.

Table 2.29 Structural Elements of SDIV

Element

Meaning

Possible Settings

Top (V1)

1) The contents of two consecutive
registers is used as the dividend, V1,
as shown in the foliowing example.

2) V1 must be between -99,989,999 and

99,989,999,

3) Setthe MSB of the registers to 1

if V1 < 0.

In the example, “400001” was
specified for the top element.

4)

]

~— Negative: Set N

4d g
400001| Upper 4 digits MSB of 400001
400002| Lower4digits | to 1. '

‘| Holding register:
| Constant register:

}Link register:

Input register: 300001 to 300511
(Z00001 to Z00511)

400001 to 409998
(WO00001 to W09998)

700001 to 704095
(KO0DO1 to K04095)

R10001 to R11023
R20001 to R21023

1) The contents of the register is used as

2) The quotient, remainder, and integer
portion of the quotient must be
between -9,999 and 9,999. The
decimal portion of the quotient must be

between 0 and 9,999.
R Quotient
R+1 Remainder

ar

R | Integer portion of quotient
R+1

Decimal portion of quotient|

3) The MSB of R wiil be set to 1 if the

results < 0.
4) In the example, “400004" was specified
for the bottom element.

- Negative: MSB
400004] Quotient of 400004 and
400005] Remainder 400005 set to 1
or
400004] Integer portion of quotient u%g;g‘;e:
400005 Decimal portion of quotient] 400004
sefto 1

Middle Input register: 300001 to 300512
(v2) the divisor, V2. (Z00001 to Z00512)
Holding register: 400001 to 408999
2) V2 must be between ~9,999 and 9,999, 9 10T Wo0001 to W02999)
3) Set the MSB of the register to1 1 Constant register: 700001 to 704096
if V2 <0. (K00001 to K04096)
Link register: R10001 to R11024
' R20001 to R21024
Bottom |1) The result is stored in the specified Holding register: 400001 to 409998
(R) register and the next register as shown (W00001 to W09998)
below. Link register: R10001 to R11023

R20001 to R21023

— 2-66 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions
%

3. Operation

1) SDIV will divide V1 by V2 when input 1 is ON and process the result as follows:
a) Ifinput 2 is OFF:
(1) The quotient of V1 + V2 is stored in R and remainder is stored in R+1.

(2) I the quotient and remainder are positive, the MSB of R will be set to 0 and all
outputs will turn OFF,

(3) ifthe quotientand remainder are negative, the MSB of R will be setto 1 and output
T will turn ON.

b) If input 2 is ON;

(1) Theinteger portion of the quotient of V1 + V2is storedin R and the decimal portion
is stored in R+1.

(2) If the integer portion is positive, the MSB of R will be set to 0 and all outputs will
tum OFF. .

{3) Iftheintegerportionis negative, the MSB of R willbe setto 1 and output 1 will turn
ON.

c) Division will not be executed in the following cases and zero (0)isstoredinRand R+1.
(1) V2=0. In this case, output 3 turns ON.

(2) Ifthe quotient or integer portion of the quotient will notfitin R. In this case, output2
tums ON.

Example: If V1 = 500,000 and V2 = 10, the quotient is —50,000, which cannot be
stored in R. Here, 0 is stored in R and R+1.

2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of SDIV is summarized in Table 2,30.

— 2-67 —

Math Instructions

e S S —— e ———————
2.5.5 SIGNED SINGLE PRECISION DECIMAL DIVISION (SDIV) cont. ’

Note

Table 2.30 Operation of SDIV

inputs Condition Operation Qutputs
1 2 : 1 2 3
ON |OFF |V2» Oand |1) Resultof V1 +V2stored as follows: ; ON OFF | OFF
WVigi< Iv2™ - (if the
R |_Quotient resuit is
R+1| Remainder negative}
2) lfresult <0, MSB of R and R+1 are
setto 1. 1
V2 = Oand |Correct execution not possible. Zero (0) | OFF ON | OFF
iViglz V21" |storedin R and R+1.
V2a=0 Execution not possible. Zero (0) stored | OFF OFF |ON
in R and R+1.)
ON |ON |V2= Oand |1) Resultof V1+V2 stored as follows: | ON OFF | OFF
WVigle V21 r [Tnieger portion | Truncated af- (if thﬁ‘
- —— ter 4th deci- | resullls
R+1| Decimal portion' | -, place negative)
2) lfresult <0, MSBofRissetto 1.
V2 = Oand |Correct execution not possible. Zero {0) | OFF ON |OFF
IVigl =z V21" | stored in R and R+1. -
V2=0 Execution not possible. Zero (0) stored | OFF OFF |ON
in R and R+1.
OFF | Any |None Nothing is done. OFF OFF |OFF

*1: V1 is the upper 4 digits of V1.

V1 must be between -99,989,999 and 99,989,999 and V2 must be between 9,999 and
9,999. SDIV will not operate properly if V1 or V2 is not within this range.

— 2-68 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions

4. Application Examples

4EXAMPLE p Example 1

1) Ladder Programming 2) Operaticn
400001 400002
F— 400001 [~ Output 1 L =5 4371]
100001 ry
— 400008 |~ oupura 400003 100]
SDivV 1
4060004 [~ Output3 400004 400005
[-543 § =21 |
400001 5 Dividend | ~54,321 + 100 = =543 with remainder of =21
nmaenda IS
400002 4321 }—54,321

400008100] Divisoris 100

For the above SDIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 wilfturn ON. When input relay 100007 turns OFF, output 1 will
turn OFF, but the result will remain in holding registers 400004 and 400005,

Example 2

1) Ladder Programming 2) Operation
400001 400002

400001 |~ output 1 L -5 1 4821]

100001 _ +
400003 — output2 400003100 |

: !

SDIV
400004 — oupur3 400004 400005
[-543 T 2100 |

400002 4321 -54,321

400001 -5 } Dividend is {-54, 321+ 100) =-543. 2100

400003 100] oivisoris 100

For the above SDIV, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 turns OFF, output 1 will
tum OFF, but the result will remain in holding registers 400004 and 400005.

—2-69 —

Math Instructions
2.5.6 Building Programs :

2.5.6 Building Programs

1. Storage Locations on Networks

All signed, 4-digit, decimal arithmetic instructions require three vertical elements on a
network, one top element, one middle efement, and one bottom element. They can thus
be stored anywhere on a 5-row by 10-column matrix (rows 1 through 5 and columns 1
through 10) on the network.

Note Signed, 4-digit, decimal arithmetic instructions cannot, however, be placed to the right of coils
(including output coils, internal coils, link coils, MC coils, and MC control coils).

Example
Column
1 2 3 4 5 -] 7 8 9 10 11
Row 1 —| oeot [~)— :
100001 agotol i
: Nothing can be stored in this area. :
2 eocoz— - ! :
SSUB | 800102 § it cecmmemmmead
3 0003
4 - M R e -
100021 100022 100023 100024 100025 100026 100027 100023 10002% 000103
s 400041F 400022)
100041 100042 SMUL
6 o042+ 400031
SADD
7 0042

2. Inputs

Inputs to signed, 4-digit, decimal math instruction can be connected to relay elements
(except coils) and/or outputs from timers, counters, math instructions, data transfer
instructions, other instructions, etc.

Example

Row 1 400002

2 400003}
ISADD
3 . 400004

—2-70 —

2.5 Signed, Four-digit, Decimal Arithmetic Instructions
M—

3. Outputs

Outputs from signed, 4-digit, decimal math instruction can be connected to any of the

following: coils, contacts, inputs to math instructions, inputs to data transfer instructions,
elc.

Example

Row 1

. - 271 —

Math Instructions

2.6.1 Instructions

2.6 Signed,

2.6.1
26.2

. 26.3
264

Eight-digit, Decimal Arithmetic Instructions

This section describes the funciions, structures, and operation of the signed, 8-digit,
decimal arithmetic instructions and provides simple examples of their application.

St UCHONS . . vt o ittt e ettt et te st s tannnsensnasensnsasasasnannns 2-72
SIGNED DOUBLE PRECISION DECIMAL ADDITION (SDAD) 2-73
SIGNED DOUBLE PRECISION DECIMAL SUBTRACTICN (SDSB) 2-78

BUilding Programiso i vverer it i 2-83

2.6.1 Instructions

Signed,

8-digit, decimal arithmetic instructions perform signed addition and subtraction on

two 8-digit, decimal values, V1 and V2. The instructions that are available are shown in 2.31.

Table 2.31 Signed, 8-digit, Decimal Arithmetic Instructions

Symbol Operands vi { v2 | Result

ADDITION

SIGNED DOUBLE | SDAD V1 + V2 ~89,969,999 to 99,999,999
PRECISION DECIMAL

SIGNED DOUBLE SDSB Vi-v2
PRECISION DECIMAL
SUBTRACTION

—2-72 —

2.6 Signed, Eight-digit, Decimal Arithmetic Instructions
m
2.6.2 SIGNED DOUBLE PRECISION DECIMAL ADDITION (SDAD)

1. Function

Signed addition is performed between two 8-digit decimal numbers, V1 and V2.

2. Structure

ON: Executes addition Input1 == Augend (V1) f— Output 1: ON when V1+V2 < -1

Addend (V2} [Output 2: ON when [V1+V2l 2 100,000,000

SDAD

Result (R)

1) SDAD is the symbol for SIGNED DOUBLE PRECISION DECIMAL ADDITION.

2) SDAD requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.32 lists the register reference num-
, bers that can be specified.

Example

400001: The augend, V1, is stored as follows:
400001 | Upper 4 digits

Input1 —1 400001 — -Output1

400002 | Lower 4 digits

400003 [~ oOutput2

SDAD 400003: The addand, V2, is stored as follows:
400005

400003 | Upper 4 digits

400004 | Lower 4 digits

400005: The result is stored as foliows:

400005 | Upper 4 digits of result

400006 | Lower 4 digits of result

~2-73 —

Math Instructions

)
2.6.2 SIGNED DOUBLE PRECISION DECIMAL ADDITION (SDAD) cont.
Table 2.32 Structural Elements of SDAD
Element Meaning . Possible Settings
Top (V1) |1) The contents of two consecutive ‘[Input register: 300001 to 300511
registers is used as the augend, V1, as (Z00001 to Z00511)

shown in the following example. Holding register: 400001 1o 409998

(WO0Q0001 to W09998)
2) The value of V1 must be between

~99,999,999 and 99,999,999, | Constant register: 700001 to 704095
(K00001 to K04095)
%) 1V <0, setthe MSBto 1. Link register: R10001 to R11023

R20001 to R21023
4) In the example, "400001" was specified
for the top element.

Negative:
400001 | Upper 4 digits Set MSB of
400002 | Lower 4 digits - ‘1“’0001 to

Middie 1) The contents of two consecutive
(v2) registers is used as the addend, V2, as
shown in the following example.

2) The value of V2 must be between
—09,999,999 and 99,999,999, !

3) If V2 <0, set the MSB to 1.

4) In the example, “400003" was specified

for the top element. Negative:
400003 | Upper 4 digits Set MSB of
400004 | Lower 4 digits ‘1")0003 to

Bottom {1) The result is stored in two consecutive | Holding register: 400001 to 409998
{R) registers, as shown in the following (WO00001 to W09998)

example. Link register: R10001 to R11023

R20001 to R21023
2) The value of the result must be

between -989,999,999 and 99,999,999,
3) Ifresult <0, the MSB of Ris setto 1.

4} In the example, “400005" was specified

for the top element. Negative:
400005 | Upper 4 digits MSB of
400006 | Lower 4 digits :ICEJL;JOOS set

3. Operation
1) SDAD will add V2 to V1 when input 1 is ON and process the result as follows:

a) If0<V1 +V2<99,999,899:

(1) The upper 4 digits of the result of V1 + V2 are stored in R and the lower 4 digits are
stored in R+1.

— 274 —

26 Signed, Eight-digit, Decimal Arithmetic Instructions

{2) The MSB (most significant bit) of R is set to 0 to indicate a positive result.
(3) Outputs 1 and 2 remain OFF.
b) If -99,999,999 < V{1 + V2 < —1:

(1) The upper 4 digits of the result of V1 + V2 are stored in R and the lower 4 digits are
stored in R+1.

(2) The MSB of R is set to 1 to indicate a negative result.
(3) Output 1 tums ON and output 2 remains OFF.
c) 1f 100,000,000 < V1 + V2 < 199,999,998:

(1) The upper 4 digits of the result of V1 + V2 — 100,000,000 are stored in R and the
lower 4 bits are stored in R+1.

(2) The MSB of R is setto 0 to indicate a positive resuit.
(3) Output 1 remains OFF and output 2 turns ON.
d) If 199,999,998 < V1 + V2 < -100,000,000:

(1) The upper 4 digits of the result of V1 + V2 + 100,000,000 are stored in R and the
lower 4 bits are stored in R+1.:

(2) The MSB of R is set to 1 to indicate a negative result.
(3) Outputs 1 and 2 turn ON.
2) The result R and R+1 remains even if input 1 turns OFF.

3) The operation of SDAD is summarized in Table 2.33.

—2-75 —

Math Instructions

B e e)
2.6.2 SIGNED DOUBLE PRECISION DECIMAL ADDITION (SDAD) cont,

Table 2.33 Operation of SDAD

input 1

Condition

Operation

Outputs

ON

0 <V1 +V2<099,099,999

R
R+1

The result of V1 + V2 is stored as follows:

OFF

Upper 4 digits

Lower 4 digits

OFF

-99,999,999 < V1 + V2 <1

R
R+1

The result of V1 + V2 is stored as follows
and MSB of Ris setto 1:

ON

Upper 4 digits

Lower 4 digits

OFF

100,000,000 < V1 + V2 <
199,989,998

R
R+1

The result of V1 + V2 — 100,000,000 is
stored as follows:

OFF

Upper 4 digits

Lower 4 digits

ON

-199,999,998 < V1 + V2 £
-100,000,000

R
R+1

The result of V1 + V2 + 100,000,000 is
stored as follows and MSB of R is setto 1:

ON

Upper 4 digits

Lower 4 digits

ON

OFF

None

Nothing is done.

OFF

OFF

Note Both V1 and V2 must be between -93,999,999 and 99,999,999. SDAD will not operate prop-
erly if V1 or V2 is not within this range.

4EXAMPLEp

4. Application Examples

Example 1

1} Ladder Programming

100001

400001 —)}
000101
400008 —— »—
SDAD| 000102

400005

Augend is
-10,000

400001 ~1 }
400002 0000

Addend is
30,000

400003 3 }
400004 0000

2) Operation

400001

-
+

400003 400004

[81 0000]
7

400005 400006

| 21 0000}

(-10, 000+30, 000)=20, 200

400002
0000 |

For the above SDAD, the operation shown at the right will be performed when input relay
100001 is ON. Coils 000101 and 000102 will remain OFF. The result wili remain in hold-
ing registers 400005 and 400006 even after input relay 100001 turns OFF.

— 2-76 —

2.6 Signed, Eight-digit, Decimal Arithmetic Instructions

Example 2
1) Ladder Programming ’ 2) Operation
— 400001 }—(— 400001 400002
100001 o1t =10] oo00]
400003 |—{)— : +
SDAD]| oto0102 400003 400004
400005 L -20 [6000]
l
400005 400006
400001 =10 Augend is L -80 [0000]
400002] 0009 -100,000
{-100, 000-200, 000}=~300, 000
400003 -20 }Addendis
4000041 0000 =200,000

For the above SDAD, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF. When input
relay 100001 tumns OFF, coil 000101 will turn OFF, and the result wiil remain in holding
registers 400005 and 400006.

Example 3 -
1) Ladder Programming _ 2) Operation
| o 0000t —{ 400001 400002
100001 go0101 [-5000 | 0000 |
400008 p——i)— _ +
SDAD]{ c00102 400003 400004
400005 I -§000 § 0000 I
: }
400005 400006
400001 -5000 Augend Is | 1000 | 0000 |
400002 0000 50,600,000
(50, 600, 000-60, 080, 000+
4000031 -600) Addend Is 100, 009, 000) =-10, 000, 000
400004{ 0000 ~60,000,000

For the above SDAD, the operation shown at the right will be performed when input relay
100001 is ON, and coils 000101 and 000102 will turn ON. When input relay 100001 turns
OFF, coils 000101 and 000102 will turn OFF, and the result will remain in holding registers
400005 and 400006.

- 277 —

Math Instructions

D e,]

2.6.3 SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (SD5B)

2.6.3 SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION
(SDSB)

1. Function

Signed subtraction is performed between two 8-digit decimal numbers, V1 and V2.

2. Structure

ON: Subtraction executed Input 1 =] Minuend (V1) f— Output 1: ON when V1-v2< -1

Subg,azi;end — Output2: ON when IVi=V2{ 2 100,000,000

SDSB

Result (R)

1) SDSB is the symbol for SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION.

2) SDSB requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.34 lists the register reference num-
bers that can be specified.

Example
400001 The minuend, V1, is stored as follows:
400001 | Upper 4 digits
Input1 = 408001 |— Output1 400002 | Lower 4 digits
400008 |— oOuput2 400003: The subtrahend, V2, is stored as follows:
SDSB 400003 | Upper 4 digits
406608 400004 | Lower 4 digits

400005: The result is stored as foliows:

400005 | Upper 4 digits of result

400006 | Lower 4 digits of result

—2-78 —

2.6 Signed, Eight-digit, Decimal Arithmetic Instructions

m_r

Table 2.34 Structural Elements of SDSB

Element Meaning Possible Settings
Top (V1) [1) The contents of two consecutive tnput register: 300001 fo 300511
registers is used as the minuend, V1, (Z00001 to ZO0511)

as shown in the following example. | ing register: 400001 to 409998

(W00001 to W09998)
2) The value of V1 must be between

—89,999,999 and 99,999,999, Constant register: 700001 to 704095
(K00001 to K04095)
8) 1tV1<0, setthe MSB 1o 1. Link register: R10001 to R11023

R20001 to R21023
4) In the example, “400001" was specified

for the top element.
Negative:
400001 | Upper 4 digits Set MSB of

400002 | Lower 4 digits - ‘1‘00001 to

Middle 1) The contents of two consecutive
(V2) registers is used as the subtrahend,
V2, as shown in the following example.

2) The value of V2 must be between
-99,999,999 and 99,999,999.

3) 1fV2 <0, setthe MSB to 1.

4} In the example, “400003" was specified

for the top element.
Negative:
400003 | Upper 4 digits Set MSB of

400004 | Lower4 digits ’1"00003 to

Bottom | 1) The result is stored in two consecutive Holding register: 400001 to 409998
(R) registers, as shown in the followin (W00001 to W09998)

example. ' Link register: R10001 to R11023

R20001 to R21023
2) The value of the result must be

between -99,999,999 and 99,999,999.
3) Ifresuit<0, the MSBofRissetto 1.

4) In the example, “400005" was specified
for the top element. Negative:
400005 | Upper 4 digits MSB of

400006 | Lower 4 digits ::’0$005 set

3. Operation

1) SDSB will subtract V2 from V1 when input 1 is ON and process the result as follows:
a) If 0 < V1 -V2<99,999,999:

(1) The upper4digits of the result of V1 - V2 are stored in R and the lower 4 digits are
stored in R+1.

— 279 —

Muth Instructions
P R

2.6.3 SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (SDSB) cont.

(2) The MSB of R is set to 0 to indicate a positive result.
(3) Outputs 1 and 2 remain OFF.
b) If 99,999,998 <Vt -V2< -1:

(1) The upper 4 digits of the result of V1 —V2 are stored in R and the lower 4 digits are
stored in R+1. : :

(2) The MSB of R is set to 1 to indicate a negative result.
(3) Output 1 tums ON and output 2 remains OFF.
c) If 100,000,000 < V1 -V2 < 199,899,998:

(1) The upper 4 digits of the result of V1 - V2 - 100,000,000 are stored in R and the
lower 4 digits are stored in R+1.

(2) The MSB of R is set to 0 to indicate a positive result.
(3) Output 1 remains OFF and output 2 turns ON.
d) If -199,999,998 < V1 - V2 < -100,000,000:

(1) The upper 4 digits of the result of V1 - V2 + 100,000,000 are stored in R and the
lower 4 digits are stored in R+1.

(2) The MSBofRissetto11o indicate a negative result.
(3) Outputs 1 and 2 turn ON.
2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of SDSB is summarized in Table 2.35.

—2-80 —

2.6 Signed, Eight-digit, Decimal Arithmetic Instructions

m

Table 2.35 Operation of SDSB

Input 1 Condition Operation Outputs

1 2

ON 0 < V1-V2 < 99,999 999 The result of V1 -~ V2 is stored as follows OFF | OFF
and MSB of R is set to O:

R | Upper 4 digits
R+1| Lower 4 digits
-99,989,999,999 < V1-V2 | The result of V1 — V2 is stored as follows ON |(OFF

<- and MSB of Ris set to 1:
R | Upper 4 digits
R+1] Lower 4 digits
100,000,000 < V1-V2 < The result of V1 -~ V2 - 100,000,000 is OFF |ON
199,999,998 ' - | stored as follows and MSB of R is set to 0:

R | Upper 4 digits
R+1} Lower 4 digits

=199,999,998 < V1-V2 < The result of V1 - V2 + 100,000,000 is ON |ON
-100,000,000 stored as follows and MSB of R is set to 1: .

R | Upper 4 digits
R+1| Lower 4 digits
OFF None Nothing is done. OFF | OFF

Note BothV1and V2mustbe between -99,999,999 and 99,999,999. SDSB will not operate prop-
erly if V1 or V2 is not within this range.

<EXAMPLEM 4. Application Examples

Example 1
1) Ladder Programming 2) Cperation
I— 400001 —{)}— 400001 400002
100001 600101 [800 | o006 |
400003 —{ }>— -
SDSB| 000102 490003 400004
400005 L 100 { 0000)
'

400005 400006
400001f 300 11 \jovenais 200 T 000 |
400002] 0000 3,000,000

(3, 000, 000~1, 000, 008) =2, 000, 000
400003 100 } Subtrahend
400004 0000 is 1,000,000

For the above SDSB, the operation shown at the right will be performed when input relay
100001 is ON. Coils 000101 and 000102 will remain OFF. The result will remain in hold-
ing registers 400005 and 400006 even after input relay 100001 turns QOFF.

— 2-81 —

Math Instructions
. '
2.6.3 SIGNED DOUBLE PRECISION DECIMAL SUBTRACTION (SDSB) cont.

Example 2
1) Ladder Programming 2) Operation
|—- 400001 —)}— 400001 460002
100001 ' 00010t [-100 | 0000 |
400003 — }— -
SDSB] 000102 400003 400004
400005 | 200 § 0000 |
}
400005 400006
400001 -100 " : [-300 | 0000 |
400002 [0000 }ﬂ'{‘&?{g&% |
{-1, 000, 000-2, 000, 000)=-3, 000, 000
400003 200
400004] 0000 1/ 2% 000.000

For the above SDSB, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF. When input
relay 100001 turns OFF, coil 000101 will turn OFF, and the result will remain in holding
registers 400005 and 400006.

Example 3
1) Ladder Programming
— 4e0001 — 400001 -5000 Minuend is
100001 000101 400002 0000 50,000,000
400008 —o{)»—
SDsSB| 000162 400003 6000 Subtrahend is
400005 4000041 0000 60,000,000
2) Operation

400001 400002
1 -5000 | 0000 i

400003 400004
i 6000 [ooce |

v
400005 400006

{_-1080 | o000 | {-50, 000, 000-60, 000, 200+160, 000, 000) =-10, 800, 600

For the above SDSB, the operation shown at the right will be performed when input relay
100001 is ON, and coils 000101 and 000102 will turn ON. When input relay 100001 turns
OFF, coils 000101 and 000102 will turn OFF, and the result will remain in holding registers
400005 and 400006.

—2-82 —

2.6 Signed, Eight-digit, Decimal Arithmetic Instructions

m—

2.6.4 Building Programs -

1. Storage Locations on Networks

All signed, 8-digit, decimal arithmetic instructions require three vertical elements on a
network, one top element, one middle element, and one bottom element. They can thus
be stored anywhere on a 5-row by 10-column matrix (rows 1 through 5 and columns 1
through 10) on the network. ‘

Note Signed, 4-digit, decimal arithmetic instructions cannot, however, be placed to the right of coils
(including output coils, internal coils, link coils, MC coils, and MC control coils).

Example

Column .
f 2 3 4 5 B 7 8 8 10 11

Row 1 —~] oot} - |
1aoeet oootet -+ Nothing can be stored in this area.
2 o3~ -
SDAD] 000182 @ e e
3 0005

o o P B s W s M g e M e e B e P

100021 100022 100023 100024 100025 100026 1O0OZT 100028 100029

5 1 |—eooozr}

100041 100042

>

coptos

6 0023+
7 002s
2. Inputs

Inputs to signed, 8-digit, decimal math instruction can be connected to refay elements
{except coils) and/or outputs from timers, counters, math instructions, data transfer
instructions, etc.

Example
Column
1 2 3 4
Row 1 ~400011
2 - 4000131
ISDAD
8 400015

—2.83

Math Instructions
2.6.4 Ruilding Programs cont.

3. Outputs

Outputs from signed, 8-digit, decimal math instruction can be connected to any of the
following: coils, contacts, inputs to math instructions, inputs o data transfer instructions,
ete.

Example

Column

Row 1 — |—l40c001H 400011
001001

2 400003 - { 400101

— 2-84 —

2.7 Decimal Square Root Instructions

M

2.7 Decimal Square Root Instructions

This section describes the functions, structures, and operation of the decimal square
root instructions and provides simple examples of their application.,

271 ANSHUCHONS - ...ttt e 2-85
2.7.2 SINGLE PRECISION DECIMAL SQUARE ROOT (SQRT)y 2-85
2.7.3 DOUBLE PRECISION DECIMAL SQUARE ROOT (DSQR) 2-87

2.7.4 Building Programs

2.7.1 Instructions

Decimal square root instructions find the square root of a 4-digit or 8-digit, decimal value, V.
The instructions that are available are shown in Table 2.386.

Table 2.36 Decimal Square Root Instructions

Name Symbol | Operation v Result
SINGLE PRECISION | SQRT N 010 9,999 0 to 99.9949
DECIMAL SQUARE
ROOT
DOUBLE PRECISION | DSQR 0 10 99,999,999 0 to 9999.9999
DECIMAL SQUARE
ROOT

2.7.2 SINGLE PRECISION DECIMAL SQUARE ROOT (SQRT)

1. Function

The square root of a 4-digit decimal value, V, is found.

2. Structure

ON:Rootof Vfound. Input1 =i Origir(l \?‘lt)value — Qutput 1: Echoes state of input 1.

SQRT

Result (R}

1) SQRT is the symbol for SINGLE PRECISION DECIMAL SQUARE ROOT.

2) SQRT requires two elements, one top element and one bottom element, located vertical-
ly on the network. Table 2.37 lists the register reference numbers that can be specified.

— 2-85 —

Math Instructions

2.7.2 SINGLE PRECISION DECIMAL SQUARE ROOT (SQRT) cont.

Example
input1— 400001 p— Output 1 400001: Stores the value of V.
400002: Stores the square root of V as follows:
SQRT '
400002 400002 | Integer portion of result
400003 | Decimat portion of result
Table 2.37 Structural Elements of SQRT
Element Meaning Possible Settings
Top (V) | The contents of the specified ragister | Input register: 300001 to 300512
is used as V. (Z00001 to Z00512)
V must be between 0 and 9,999. Holding register: 400001 to 409999
‘ ' {WO00001 to W09929)
Constant register: 700001 to 704096
(K00001 to K04096)
Link register: R10001 to R11024
R20001 to R21024
Bottom] The square root of V is stored in Holding register: 400001 to 409958
(R) registers as shown below. The {WO0O0001 to W09988)
decimal portion is truncated after the
4th decimali place. Link register: R10001 to R11023
In the example, “400002" was R20001 to R21023
specified for the bottom element.
400002 | Integer portion of result
400003 | Decimal portion of result

3. Operation

1) SQRT will take the square root of V when input 1 is ON and process the result as follows:

a) Theinteger portion of the square root is stored in R and the decimal portion is stored in
R+1. The decimal portion is truncated after the 4th decimal place.

b) Output 1 turns OFF.
2) The result in R and R+1 remains even if input 1 turns OFF.

3) The operation of SQRT is summarized in the following table.

— 2-86 —

2.7 Decimal Square Root Instrictions

m

Table 2.38 Operation of SORT

Input 1 Condition Operation Output 1
ON None The square root of V is stored as shown below. The ON
decimal portion is truncated after the 4th decimal
place.
R Integer portion of result .

R+1 | Decimal portion of result

OFF Nothing is done. OFF

Note V must be between 0 and 9,999. SQRT will not operate properly if V is not within this range.

<EXAMPLEp 4, Application Example

1) Ladder Programming © 2) Operation
— 400001 Output 1 /1000 = 81,6227
100001 }
SQRT
400002 400002 400003
| 31] 62271 |
400001 Intéger Dacimal

portion portion

For the above SQRT, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON. When input relay 100001 turms OFF, output 1 will
turn OFF, but the result will remain in holding registers 400002 and 400003.

2.7.3 DOUBLE PRECISION DECIMAL SQUARE ROOT (DSQR)

1. Function

The square root of an 8-digit decimal value, V, is found.

2. Structure

N:Rootof Viound, Input1 =t Original L oumi1: Echoes state of input 1.
ON: Root of V found np value (V1) tpu oes inpu

DSQR

Result {R)

1) DSQR is the symbol for DOUBLE PRECISION DECIMAL SQUARE ROOT.

—2-87 —

Math Instructions
s s e - ___]

2.7.3 DOUBLE PRECISION DECIMAL SQUARE ROOT (DSQR) cont.

2) DSQRrequires two elements, one top element and one bottom element, located vertical-
ly on the network. Table 2.39 lists the register reference numbers that can be specified.

Example

400001: Stores the value of V as follows:

400001 | Upper 4 digits

input 1~ 400001 — Output 1 400002 | Lower 4 digits

DSQR
400003 400003: Stores the square root of V as follows:

400003 | Integer portion of result

400004 | Decimal portion of result

Table 2.39 Structural Elements of DSQR

Element . Meaning Possible Settings
Top (V1) | The contenis of the specified register | input register: 300001 to 300511
and the next register is used as V as (Z00001 to Z00511)
shown below. Holdi ist 400001 to 408938
olding register: o
V must be between 0 and
99,999,999, (WO00001 to W09998)
In the example, “400001” was Constant register: 700001 to 704095
specified for the bottom element. (K0Q001 to K04095)
. Link register: R10001 to R11023
400001 | Upper 4 digits R20001 to R21023

400002 | Lower 4 digits

Bottom | The square root of Vis stored in Holding register: 400001 to 409998
{R} registers as shown below. The (WO00001 to W(Q9998)
decimal portion is truncated after the
4th decimal place. Link register: R10001 to R11023

In the example, “400003” was R20001 to R21023

specified for the bottom element.

400003 | Integer portion of resuit

400004 | Dacimal portion of result

3. Operation

1) DSQR will take the square root of V when input 1 is ON and process the result as follows:

a) Theinteger portion of the square root is stored in R and the decimal portion is stored in
R+1. The decimal portion is truncated after the 4th decimal place.

b) Qutput 1 tums ON.

2) The result in R and R+1 remains even if input 1 turns OFF.

—2-88 —

2.7 Decimal Square Root Instructions

3) The operation of DSQR Is summarized in the following table.

Table 2.40 Operation of DSQR
input 1 Condition Operation Output 1
ON None The square root of V is stored as shown below. The ON
decimal portion is truncated after the 4th decimal
place.
R Integer portion of result

R+1 | Decimal portion of result

OFF Nothing is done. OFF

Note V mustbe between 0 and 99,999,999. DSQR will not operate property if V is not within this
range.

<EXAMPLEp 4, Appliéation Example

1) Ladder Programming 2) Operation
1 400001 |— output1 /20000 = 141, 4213
100001 i

DSQR

400003 400003 400004

L a4 |

400001 2 . Intege Decimal

400002[0000 }"'320"’"" porton porton.

For the above DSQR, the operation shown at the right wili be performed when input relay
100001 is ON, and output 1 will turn ON. When inputrelay 100001 tums OFF, output 1 will
turn OFF, but the result will remain in holding registers 400003 and 400004.

—2-89 —

Math Instructions

2.7.4 Building Programs

2.7.4 Building Programs

Note

1. Storage Locations on Networks

The decimal square root instructions require twb vertical elements on a network, one top
element and one bottom element. They can thus be stored anywhere on a 6-row by
10-column matrix (rows 1 through 6 and columns 1 through 10) on the network.

The decimal square root instructions cannot, however, be placed to the right of coils (includ-
ing output coils, internal coils, link coils, MC coils, and MC control coiis).

Example

Cofumn

Row 1| ooe~C D~ Nothing can be stored in this area. :
100001 [gl BOBIO Eo e

aH = = el -

100021 100022 100023 100024 100025 100026 100027 1000I8 100029 DSQR oopi02

5 0031

6 g0&!

100041 100042
SCRT

7 0051

2. Inputs

Inputs to decimal square root instruction can be connected to relay elements (except
coils) and/or outputs from timers, counters, math instructions, data transfer instructions,
other instructions, etc.

Example

Column

Row 1 — 1400001 400003
000101 SQRT
2 400002} | 400004

3 400003+

— 290 —

2.7 Decimal Square Root Insiructions
m

3. Outputs

Outputs from decimal square root instruction can be connected to any of the following:
coils, contacts, inputs to math instructions, inputs to data transfer instructions, etc.

Example

Column
1

Row 1~ |—40000iHs00002}
" joa002 SQRT
2 400002! (400004
ADD

—2-91 —

Math Instructions

L
2.8.1 Instructions

2.8 Decimal Trigonometric Instruction

This section describes the functions, structures, and operation of the decimal
trigonometric instructions and provides simple examples of their application.

281 INSHUCHONS . ..ot ittt it rsaeaaaaaea s iaaasiinannancennnnasas 2-92
282 DECIMALSINE (SIN) . ..ot ettt eens 2-92
283 DECIMALCOSINE (COS) .. .iiiiriiinsiiiieniiiiiiiieesainnns 2-95
284 Building Programsomiriiiia ittt aaa s 2-98

2.8.1 Instructions

Decimal trigonometric instructions find the sine and cosine of a specified angle, 8. The
instructions that are available are shown in Table 2.41.

Table 2.41 Decimal Trigonometric Instructions

Name Symbol | Operation 0 Result
DECIMAL SINE - SIN SINe 0.0000° to 360.0000° | 0.0000 to 1.0000
DECIMAL COSINE CcOs COSe

Note The value for which the sine or cosine is to be found (6) must be an angle. The decimal trigo-
nometric instructions will not operate properly if the value is in radians.

2.8.2 DECIMAL SINE (SIN)

1. Function

The sine of an angle, 0, between 0° and 360° is found.

2. Structure

ON: Sineofffound. Inputy = Angla(s) [— Output1: ONifsing<0

SIN

Result(R) |— Output2: ONif 8 <0" or 8> 360°

1) SIN is the symbol for DECIMAL SINE.

2) SIN requires two elements, one top element and one bottom element, located vertically
on the network. Table 2.42 lists the register reference numbers that can be specified.

— 292 —

2.8 Decimal Trigonometric Instruction

Example

400001: Stores the value of 6 as follows:

400001 | Integer porticn of @

Input1— 400001 [— Output1 400002 | Decimal portion of @

SIN
400003 |— outputz 400003: Stores the sine of 0 as foilows:

400003 | Integer portion of result

400004 | Dacimal portion of resuit

Table 2.42 Structural Elements of SIN

Element Meaning Possible Settings

Top {6} | The contents of the specified register | input register: 300001 to 300511
and the next register is used as 8 as {Z00001 to Z00511)
shown below.

Holding register: 400001 to 409998

g srgl.g;ggobehveen 0.0000° and (WO00001 to W09998)
in the example, “400001” was Constant register: 700001 to 704095
specified for the bottom element. _ (K000O01 to KD4095)

Link register; R10001 to R11023

400001 | Integar portion of & R20001 to R21023

400002 | Decimal portion of 8

Botlom | The resuit is stored in registers as Holding register: 400001 to 409998
(R) shown below. The decimal portion is (WO00001 to WD9998)
truncated after the 4th decimai place.

In the example, “400003" was
specified for the bottom element.

Link register: R10001 to R11023
R20001 to R21023

400003 | Integer partion of Isingl

400004 | Decimal portion of Isingl

3. Operation

1) SIN will find the sine of 8 when input 1 is ON and process the result as follows:

a) The integer portion of the absolute value of the sine is stored in R and the decimal
portion is stored in R+1. The decimali portion is truncated after the 4th decimal place.

b} If sine 2 0, outputs 1 and 2 remain OFF.
c) If sinb < 0, output 1 turns ON and output 2 remains OFF,
d) 1f8 <0ore>360°, the operation cannot be performed and output 2 turns ON,

—293 —

Math Instructions
2.8.2 DECIMAL SINE (SIN) cont.

2) The result in R and R+1 remains even if input 1 turns OFF.

3) The operation of SIN is summarized in the following table.

Table 2.43 Operation of SIN

Input 1 Condition _ Operation Outputs -

1 2

ON 0.0000° < 6 < 180.0000° The absolute vélue of the sine is storedin | OFF | OFF
R and R+1. The decimal portion is
truncated after the 4th decimal place.

180.0001° < 6 < 359,9999° ON OFF
R Integer portion of 1sinél
6 = 360.0000° - - - OFF | OFF
: R+1 | Decimal portion of lsinel
8 < 0 or = 360.0001° Nothing is done. OFF |ON
OFF |None _ ' OFF | OFF

«EXAMPLEp 4, Application Examples

Example 1
1) Ladder Programming . 2) Operation
|——- 400001 p— Outputi s | ndf. 0000°=0. 5000
100001 SIN it
400003 — Output2 400003 400004

L 0] 5000 |

400001 400002
| 30 | 0000 | eis30.0000°.

For the above SIN, the operation shown at the right will be performed when input relay
100001 is ON. Outputs 1 and 2 will remain OFF. The result will remainin holding registers
400003 and 400004 even after input relay 100001 turns OFF.

Example 2
1) Ladder Programming 2} Operation
|— 4060081 +— Output1 s i n270.0000°=-1, 0000
100001 SIN i
400003 — Output2 400003 400804
b] o000 |

Absolute value is stored.
400001 4000802

| 270 | 0060 | ois270.0000°.

For the above SIN, the operation shown at the right will be performed when input relay
100001 is ON. The result is negative, so output 1 will turm ON and output 2 will remain
OFF. When input relay 100001 turns OFF, output 1 will tum OFF, but the result will remain
in holding registers 400003 and 400004.

— 294 —

2.8 Decimal Trigonometric Instruction

Example 3

t) Ladder Programming

1 400001 [~ Output 1
100001 SIN
400003 — oOumput2

400001 400002
400 00080 | ais 400.0000°.

For the above SIN, the value of 8 is greater than 360°, so no operation will be performed
and output 2 will turn ON.,

2.8.3 DECIMAL COSINE (COS)

1. Function

The cosine of an angle, 8, between 0° and 360° is found.

2. Structure

ON: Cosine of 8 found. jnput1 —f Angle® |— Output1: ONifcosd <0
cos

Result(R) = Output2: ONif6 <0° or 8> 360°

1) COS is the symbol for DECIMAL COSINE.

2) COS requires two elements, one top element and one bottom element, located vertically
on the network. Table 2.44 lists the register reference numbers that can be specified.

Example

400001: Stores the value of 8 as follows:

400001 | Integer portion of 6

Input 1 = 400001 = Output 1 400002 Decimal porﬁol‘l ofé

cos
400003 |— output2 400003: Stores the cosine of 8 as follows:

400003 | Integer portion of result

400004 | Decimal portion of result

— 295 —

Math Instructions

2.8.3 DECIMAL COSINE (COS) cont.

Table 2.44 Structural Elements of COS

Element

Meaning

Possible Settings

Top (8)

and the next register is used as 6 as
shown below.

8 must be between 0.0000° and
360.0000°.

In the example, "400001” was
specified for the bottom element.

400001 | Integer portion of 0

400002 | Decimal portion of &

The contents of the specified register

Input register:
Holding register:

Constant register:

Link register:

300001 to 300511
{Z00001 to Z00511)

400001 to 409998
(WO00001 to W09998)

700001 to 704005
(K0O0001 to K04095)

R10001 to R11023
R20001 to R21023

Bottom

(R

The result is stored in registers as
shown below. The decimal portion is

In the example, “400003" was
specified for the bottom element.

400003 | Integer portion of lcosél

400004 | Decimal portion of lcosel

truncated after the 4th decimal place.

Holding register:

Link register:

400001 to 409998
{WO0D0001 to W09998)

R10001 to R11023
R20001 to R21023

3. Operation

1) COS will find the cosine of 8 when input 1 is ON and process the result as follows:

a) The integer portion of the absolute value of the cosine is stored in R and the decimal
portion is stored in R+1. The decimal portion is truncated after the 4th decimal place.

b) If cose = 0, outputs 1 and 2 remain OFF.

c) If cosd < 0, output 1 turns ON and output 2 remains OFF.

d) Ife <0 oré=360°, the operation cannot be performed and output 2 turns ON.

2) The result in R and R+1 remains even if input 1 turns OFF.

3) The operation of COS is summarized in the foliowing table.

Table 2.45 Operation of COS

Input1 Condition Operation Outputs
1 2
ON 0.0000° < & < 90.0000° The absolute value of the cosine is stored | OFF | OFF
in R and R+1. The decimal portion is
truncated after the 4th decimal place.
90.0001° £ 6 £ 269.9999° ON |OFF
R Integer portion of resukt
270.0000° < 6 < 360.0000° R+l | Decimal portion of result OFF | OFF
8 < 0° or 82 360.0001° Nothing is done. OFF |ON
OFF None OFF | OFF

—2-96 —

<EXAMPLED

2.8 Decimal Trigonometric Instruction

4. Application Examples

Example 1
1) Ladder Programming 2) Operation
|—- 400001 [~ Output1 ¢ o s60,0000° =0, 5000
100001 CoSs i)
400003 ~ oOutpur2 400003 400004
[0 [5000 |

400001 400002
L 601 0000] oise0.0000°.

For the above COS, the operation shown at the right will be performed when input relay
100001 is ON. Outputs 1 and 2 wilf remain OFF. The result will remain in holding registers
400003 and 400004 even after input relay 100001 turns OFF. -

Example 2
1) Ladder Programming 2) Operation
i 400001 |— Output1 ¢ o s 180.0000°=-1. 0000
100001 cos S
400003 — oumputz _ 400003 400004
1 0000

Absolute value Is stored.
400801 400002

| 180 | 0000 | eis 180.0000°.

For the above COS, the operation shown at the right will be performed when input relay
100001 is ON. The result is negative, so output 1 will turn ON and output 2 will remain
OFF. When input relay 100001 turns OFF, output 1 will turn OFF, but the resuit will remain
in holding registers 400003 and 400004.

Example 3

1) Ladder Programming

8— 406001 =~ oOutput1
100001 COS

400003 |~ output2

400001 400002
[400 | 0000 | eis400.0000°.

For the above COS, the value of € is greater than 360°, so no operation will be performed
and output 2 will turn ON.

— 297 —

- Math Instructions

B e e

2.8.4 Building Programs

2.8.4 Building Programs

1. Storage Locations on Networks

The decimal trigonometric instructions require two vertical elements on a network, one
top element and one bottom eiement. They can thus be stored anywhere on a 6-row by
10-column matrix (rows 1 through 6 and columns 1 through 10) on the network.

- Note The decimal frigonometric instructions cannot, however, be placed to the right of coils (includ-
ing output coils, internal coils, link coils, MC coils, and MC control coils).

Example

Column
1 2 3 4 5 6 7 8] {3

Row 1 won - -1

aH M a-C >

100021 100022 100023 100024 160023 100026 100027 100020 100029 cos 280103

DO4s T
100041 100042 SIN

2. Inputs

Inputs to decimal trigonometric instruction can be connected to relay elements (except
coils) and/or outputs from timers, counters, math instructions, data transfer instructions,
other instructions, etc.

Example
Column
1 2 3
fRowl — |—{400001H 400003—C -
000103 SIN | 000102
2 400002F | 400004
SuUB
3 400003}

—2-98 —

2.8 Decimal Trigonometric Instruction

3. Outputs

Outputs from decimal trigonometric instruction can be connected to any of the following:
coils, contacts, inputs to math instructions, inputs to data transfer instructions, etc.

Exampie

Column

Row 1 H }—a00001s00003
goo1o0t cos
2 400002 F [400004

—2-99 —

Math Instructions
2.9.1 Instructions

29 Sixteen-bit Arithmetic Instructions

This section describes the functions, structures, and operation of the 16-bit arithmetic
instructions and provides simple examples of their application.

291 INSIUCHONS . ..ot ir i i e i e e 2-100
29.2 16-BITADDITION(ADTB)ccvviiriniviiiiiriria i naiaannans 2-101
29.3 16-BITSUBTRACTION(SU16)ccviiiniiiiii ittt iiieinens 2-105
2.9.4 16-BITMULTIPLICATION (MU16B)ciiiiiiiiieii it 2-109
295 16-BITDIVISION(DVIB)ovveenii it ieaeeeiinaeaas 2.113
296 BuildingProgramscoiiiiiiiiii i 2-118

2.9.1 Instructions
Sixteen-bit arithmetic instructions perform unsigned or signed addition, subtraction, multi-

plication, and division on two 16-bit binary numbers, V1 and V2. A negative number is treated
as its two’'s complement. The instructions that are available are shown in Table 2.46.

Table 2.46 Sixteen-bit Arithmetic Instructions

vzj

Name Symbol | Operands w1 Result
16-BIT ADDITION | AD16 V1+V2 1} Unsigned: 0 to 65,535
16-BIT SuU16 V1 -V2
SUBTRACTION Comparison 2) Signed: -32,768 10 32,767
16-BIT MU16 Vi xVv2 1} Unsigned: 0 to 65,535 1) Unsigned:
MULTIPLICATION Oto
4,294,967,295
2) Signed: -32,76810 32,767 |2) Signed:
-2,147,483,648
t0 2,147,483,647
16-BIT DIVISION | DV16 Vi=—Vv2 1) Unsigned: 1)} Unsigned: 0 io 65,535
Oto
4,294,967,295
2) Signed: 2) Signed: -32,768 10 32,767
-2,147,483,648
10 2,147,483,647

— 2-100 —

2.9 Sixteen-bit Arithmetic Instructions

2.9.2 16-BIT ADDITION (AD16)

1. Function

Unsigned or signed addition is performed between two 16-bit binary numbers, V1 and
V2. A negative number is treated as its two's complement.

2. Structure

ON: Executes addition Input 1 — Augend (V1) F— Output 1: Echoes state of input 1

Addend (V2)
AD16
OFF: Unsigned addition Input3 —— == Qutput 3: Unsigned Addition
ON: Signed addition Result (R) ON when V1 + V2 > 65,536
U Sligned Addition
ON when V1 + V2 < -32,769 or
V1+V2232,768

1) AD16 is the symbol for 16-BIT ADDITION.

2) AD16 requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.47 lists the register reference num-
bers and constants that can be specified.

Example
Input 1 — §50000 }~~ Output1 #50000: Augend (V1 = 50,000)
#00000 #00000: Addend (V2 =0)
AD16

400001: Refarence number of holding
register to store result (50,000)

Input3—] 400001 [~ Oupu3

—2-101 —

Math Instructions
2.9.2 16-BIT ADDITION (AD16) cont.

Table 2.47 Structural Elements of AD16

Element Meaning Possible Settings

Top (V1) |1} If a constant is specified, its value is Constant: #00000 to #65535
used as the augend, V1. If a reference
number is specified, the contents of the
register is used.

Input register: 300001 to 300512
{(Z00001 to Z00512)

Holding register: 400001 to 409999
2) V1 must be between the following {W00001 to W09999)

values:
Uz:?:n od Addition Constant register: 7}2383;1t? 7}%2?)96)6
Between 0 and 65,535 (°)
Signed Addition Link register: R10001 to R11024
Between -32,768 and 32,767 R20001 to R21024
Middle 1) If a constant is specified, its value is
{ve) used as the addend, V2. If a reference

number is specified, the contents of the
register is used.

2) V2 must be within the same ranges as

V1.
Bottom 1) The result is stored in the register. Holding register: 400001 to 409999
{R) (W00001 to W09999)
2) The result must be within the same Link register: R10001 to R11024
ranges as V1. R20001 to R21024

Note If the value of the top or middle element is between 32,768 and 65,535 for signed addition, the
numbers will be handled as two's compiements, i.e., between -32,768 and -1.

3. Operation

1) AD16 adds the 16-bit binary valuesin V2to V1 wheninput 1 is ON and process the resuit
as follows:

a) If input 3 is OFF, 18-bit unsigned addition is performed as follows:
(1) O£ V1 +V2<85,535:
o The result of V1 + V2 is stored in R.
¢ Output 1 turns ON and output 3 remains OFF.
(2) 165,536 <V1+V2:
¢ The result of V1 + V2- 65,536 is stored in R.
» Outputs 1 and 3 turn ON.
b) If input 3 is ON, 18-bit signed addition is performed as follows:
(1) If -32,768 < V1 + V2 < 32,767:
e The result of V1 + V2 is stored in R.

. Output 1 turns ON and output 3 remains OFF.

—2-102 —

2.9 Sixteen-bit Arithmetic Instructions

(2) 432,768 <V1 +V2:
e The result of V1 + V2- 65,536 is stored in R.
| o Outputs 1 and 3 turn ON.
(3) HV1+V2<-32769:
e The resultof V1 + V2 + 65,536 is stored in R.
» OQutputs 1 and 3 turn ON.
2) The result remains i_n R even if input 1 turns QOFF,

3) The operation of AD16 is summarized in the following table.

Table 2.48 Operation of AD16

inputs Condition Operation Outputs
1 3 1 3
ON |OFF [0sV1+V2<65,535 V1 + V2 stored in R. ON |OFF
65,636 <V1+ V2 V1 + V2 — 65,536 stored in R. " {ON
ON |-32,768<V1+V2<32767 |V1+V2stored in R. OFF
32,768 s V1 +V2 V1 + V2 - 65,536 stored in R, ON
V1 + V2 <-32769 V1 + V2 + 65,536 stored in R. -
OFF | Any {None Nothing is done. QFF | OFF

—2-103 —

Math Instructions
2.9.2 16-BIT ADDITION (ADI6) eont.

<4EXAMPLEp 4. Application Examples

Example 1: Unsigned 16-bit Addition

1) Ladder Programming 2) Operation
1000I-_ §50000 |~ output Constant [20000
01 T
200000 Constant[___0]
AD16 1
=1 400001 = Output3 ' 400001

For the above AD16, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will tum ON. Output 3 will remain OFF, and the result will
remain in holding register 400001 even after input relay 100001 turns OFF.

Example 2: Signed 16-bit Addition

1). Ladder Programming 2) Operation
1 400001 { : 400001 [20000 |
100001 000101 +
400002 406002
AD186 1
-1 400003 —A{)}— 400003} 50000
000102

400001] 20000 400002 30800

For the above AD16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF, and the result
will remain in holding register 400003 even after input relay 100001 tums OFF.

Example 3: Signed 16-bit Addition

1) Ladder Programming 2) Operation
400001 —) 400001] 20000
100001 000101 ' +
:(SOM 400002§-10000
16]
400003 —— 4000637 10000
000102

400001{ 20000 400002]-10000

For the above AD16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 turns ON. Coil 000102 will remain OFF and the result will
remain in holding register 400003 even after input relay 100001 turns OFF,

— 2-104 —

2.9 Sixteen-bit Arithmetic Instructions

Example 4: Signed 16-bit Addition

1) Ladder Programming 2) Operation
400001 p——)} 400001]-20000
100001 600101 +
4?;002 ‘ 400002]-10000
AD16]
400003 —~)»— 400003
g00102

400001]-20000 400002 {-10000

For the above AD16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF and the result
will remain in holding register 400003 even after input relay 100001 turns OFF.

Example 5: Signed 16-bit Addition with Overfiow in Result

1) Ladder Programming ' 2) Operation
| 400001 —{)~ ‘ 400001 [-20090 |
100091 000101 +
400002 400002
AD16 1
400003 ——() 400003 [75538 |
000102

' (-20000) + (-30000) +65536
400001}-20000 400002 [-30000 =15536

For the above AD16, the operation shown at the right will be performed when input relay
100001 is ON, and coils 000101 and 000102 will tumn ON. The result will remain in holding
register 400003 even after input relay 100001 turns OFF. '

2.9.3 16-BIT SUBTRACTION (SU16)

1. Function

Unsigned or signed subtraction is performed between two 16-bit binary numbers, V1 and
V2. A negative number is treated as its two’s complement.

2. Structure

ON: Executes subtraction Input1 =] Minuend (V1) |=— Output 1: ON when V1>V2

Subtrehend [~ Output 2: ON when V1=V2

(v2)
SUts
OFF: Unsigned subtraction Input3 = = Output 3: ON when Vi< V2
ON: Signed subtraction Resuit (R)

— 2-105 —

Math Instructions

2.9.3 16-BIT SUBTRACTION (SU16) cont.

1) SU16 is the symbol for 16-BIT SUBTRACTION.

2) SU16 requires three elemenits, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.49 lists the register reference num-
bers and constants that can be specified.

Example
Input1 ==4 #50000 |~ Output1 #50000: Minuend (V1 = 50,000)
£00000 |~ Output 2 #00000: Subtrahend (V2 =0)
SU16 : .
400001: Reference number of holding
input3 =1 400001 [~ Output3 register to store result {50,000)
Table 2.49 Structural Elements of SU16
Element Meaning Possible Settings
Top (V1) | 1) ifa constant is specified, its valus is Constant: #00000 to #65535
d as the minuend, V1. If a ref .
usec as Mo minuen a rotererice Input register: 300001 to 300512

number is specified, the contents of the
register is used.

Holding register:

{Z00001 to Z00512)
400001 to 409999

2) V1 must be between the following {WO00001 to W(09999)
values: fetenre
Unsigned Subtraction Constant register: Zggggéf?g%%gs)
Between 0 and 65,535
Signed Subtraction Link register: R10001 to R11024
Between -32,768 and 32,767 R20001 to R21024
Middle 1) If a constant is specified, its value is
(V2) used as the subtrahend, V2. If a
reference number is specified, the
contents of the register is used.
2) V2 must be within the same ranges as
V1.
Bottom | 1) The result is stored in the register. Holding register: 400001 to 409999
{R) (W00001 to W09999)
2) The result must be within the same R10001 to R11024

ranges as V1.

Link register:

R20001 to R21024

Note

If the value of the top or middle element is between 32,768 and 65,535 for signed subtraction,

the numbers will be handled as two's complements, i.e., between -32,768 and -1.

3. Operation

1) SU16 subtracts the 16-bit binary value in V2 from the 16-bit binary value V1 when input 1
is ON and process the result as follows:

a) i input 3 is OFF, 16-bit unsigned subtraction is performed as follows:

— 2-106 —

2.9 Sixteen-bit Arithmetic Instructions

(1) 0= V1 -V2<65,535, the result of V1 — V2 is stored in R.
(2) V1 -V2z-1,theresult of V1 - V2 + 65,536 is stored in R.
b) Ifinput 3 is ON, 16-bit signed subtraction is performed as follows:
(1) If-32,768 < V1 - V2 < 32,767, the result of V1 — V2 is stored in R.
(2) 1732,768 <V1-V2, the result of V1 - V2 - 65,536 is stored in R.
(3) Hvi-vac —32,%69, the result of V1 — V2 + 65,536 is stored in R.
¢) The outputs are treated as follows regardiess of the status of input 3:
e 1fV1>V2, output 1 turns ON.

o fV1=V2, output 2 turns ON.

s V1<V2, output 3 turns ON.
2) The result remains in R even if input 1 turns OFF.,

3) The operation of SU16 is summarized in Table 2.50.

Table 2.50 Operation of SU16

Inputs Condition . Operation Qutputs 1to 3
1 3
ON |OFF [0<V1-V2<65535 Vi =V2storedin R. ® i V1>V2, output 1
tums ON.
Vi -V2< -1 V1 -V2 + 65,536 stored in R.
ON |-32,768 <V1-V2<32767 | Vi - V2 stored in R. ® [fV1=V2, output 2
turns ON.
32,768 <V1-V2 V1 - V2 - 65,536 stored in R,
V1 -V2< 32,769 VI-V2+ 65,536 storedin R, | © | V1<Y2 output3
OFF | Any |None Nothing is done. OFF
<EXAMPLEp 4. Application Examples
Example 1: Unsigned 16-bit Subtraction
1) Ladder Programming 2) Operation
-—I100001_1 #50000 t~ outputi Constant | 50000
$00000 [— output2 ‘ Constant] : |
sUtle6]
—] 408001 [~ Output3 400001 50000

— 2-107 —

Math Instructions

2,9.3 16-BIT SUBTRACTION (SU16) cont.

For the above SU18, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 wilt turn ON. Outputs 2 and 3 will remain OFF, and the result
will remain in holding register 400001 even after input relay 100001 turns OFF.

Example 2: Unsigned 16-bit Subtraction

1) LadderAProgramming 2) Operation
— 400001 —< : 400001 30000
100001 000101 —
400002 { 400002 20000 |
SU16 000102 : |
—1 400003 { + 400003} 10000
000103

400001 30000 400002[20000

For the above SU16, the operation shown at the right will be performed when input relay
100001 is ON, and coll 000101 will turn ON. Coils 000102 and 000103 will remain OFF,
and the result wilt remain in holding register 400003 even after input relay 100001 turns

OFF.

Example 3: Signed 16-bit Subtraction

1) Ladder Programming 2) Operation
400000 ——{)} 400001
100001 000101 -
400002 ——) 400002 [=70000]
sut1s| 000102
400003 f——eef)= 400003
000103

400001] 20000 400002 -10000

For the above SU16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 turn ON. Coils 000102 and 000103 will remain OFF, and
the result will remain in holding register 400003 even after input relay 100001 turns OFF.

Example 4: Signed 16-bit Subtraction

1) Ladder Programming 2) Operation
400001 p—ef }— 400001
120001 oco101 -
400002 ~—i }— 490002
SU16 000102]
400003 — 400003
000143

400001)-20000 4000021-10000

For the above SU16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000103 will turn ON. Coiis 000101 and 000102 will remain OFF,

—2.108 —

2.9 Sixteen-bit Arithmetic Instructions

and the result wilt remain in holding register 400003 even after input relay 100001 turns
OFF.

Example 5: Signed 16-bit Subtraction with Overflow in Result

1) Ladder Programming 2) Operation
' 400001 { 400001
100001 : 000101 +
400002 —o)— 4000021 30000 |
SU16 000102 i
400003 —{ - 400003 [15536 |
0co103

‘ (~20000) - {30000) +65535
400001[~70000 400002 [35000 =15536

For the above SU16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000103 will turn ON. Coils 000101 and 000102 will tum OFF, and
the result will remain in holding register 400003 even after inputrelay 100001 turns OFF.

2.9.4 16-BIT MULTIPLICATION (MU16)

1. Function

Unsigned or signed multiplication is performed between two 16-bit binary numbers, V1
and V2. A negative number is treated as its two's complement.

2. Structure

ON: Executes multiplication Input 1 =~ Mult:;\)}:c;and — Output 1: Echoes state of input 1.

Multiplier (V2)

MU1 &

OFF: Unsigned multiplication Input3 =
ON: Signed multiplication Result (R)

1) MU16 is the symbol for 16-BIT MULTIPLICATION.

2) MU16 requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2,51 lists the register reference num-
bers and constants that can be specified.

—2-109 —

Math Instructions
m'

2.9.4 16-BIT MULTIPLICATION (MU16) cont.

Example

#50000: Multiplicand (50,000)
Input1 —{ #50000 [— Output1

#00100: Muttiplier (100)

#00100
MU16 400001: Stores the result (5,000,000} as
Input3 =1 400001 follows:
400002 400001
5000000
32 bits

Table 2.51 Structural Elements of MU16

Element Meaning " Possible Settings
Top (V1) | 1) If a constant is specified, its value is Constant: #00000 to #65535

used as the multiplicand, V1. If a
: : Input register: 300001 to 300512
reference number is specified, the (200001 to Z00512)

contents of the register is used.
Holding register: 400001 to 4099989

2) V1 must be between the following {WO00001 to W09899)
values:
- T Constant register: 700001 to 704096
Unsigned Multiplication
Betwgen 0 and 6?5.535] (00001 1o K04096)
Signed Multiplication Link register: R10001 to R11024
Between =32,768 and 32,767 R20001 to R21024
Middle 1) If a constant is specified, its value is
(V2) used as the multiplier, V2. If a

referance number is specified, the
contents of the register is used.

2) V2 must be within the same ranges as

V1.
Bottom |1) The resultis stored in two consecutive |Holding register: 400001 to 409998
(R) registers, as shown in the following (W00001 to W09998)
example.

Link register: R10001 to R11023

R20001 to R21023
2) The range of the result is the range that

can be expressed with a 32-bit binary
number. The value of the result must
thus be between 0 and 4,204,967,295
for unsigned multiplication and
between -2,147,483,648 and
2,147,483,647 for signed multiplication.

3} In the example, “400001” was specified
for the bottom element.

400002 | Upper 16 bits
400001 | Lower 16 bits

Note If the value of the top or middle element is between 32,768 and 65,535 for signed multiplica-
tion, the numbers will be handied as two's complements, i.e., between -32,768 and -1.

—2-110 —

: 2.9 Sixteen-bit Arithmetic Instructions

3. Operation

1) MU16 muitiplies the 16-bit binary values in V2to V1 when input 1is ON and process the
result as follows:

_ a) lfinput 3 is OFF, 16-bit unsigned multiplication is performed and the upper 16 bits of
the result of V1 x V2 are stored in R+1 and the lower 16 bits are stored in R.

b) Ifinput 3 is ON, 16-bit signed multiplication is performed and the upper 16 bits of the
result of V1 x V2 are stored in R+1 and the lower 16 bits are stored in R.

c) Output 1 is ON while input 1 is ON and is not affected by the status of input 3.

2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of MU16 is summarized in Table 2.52.

Table 2.52 Operation of MU16

Inputs Condition Operation Output 1 Remarks
1 3
ON |OFF [Nons V1 xV2stored in R+1 and R. | ON Unsigned multiplication is
’) performed. :
ON Signed muttiplication s
performed.
OFF | Any Nothing is done, OFF

<EXAMPLEM 4, Application Examples

Example 1: Unsigned 16-bit Multiplication

1) Ladder Programming 2) Operation
:ﬂ 1 #50000 |~ output1 Constant | 50000
100001 X
00100 Constant
MU16 !
—| 400001 400002 400001
[5000000 |

For the above MU18, the operation shown at the right will be performed when input relay
100001 is ON, and output 1 will turn ON.The result will remainin holding registers 400001
and 400002 even after input relay 100001 turns OFF,

— 2-111 —

Math Instructions

2.9.4 16-BIT MULTIPLICATION (MUI6) cont.
Example 2: Signed 16-bit Multiplication
1) Ladder Programming © 2)Operation
1 400001 foef }— 40000130000
100001 000161 %
400002 400002} 20000
MU16 l
— 400003 400004 400003
| 600000000 §

400001[30000 4000021 20000 | -

For the above MU16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. The result will remain in holding registers
400003 and 400004 even after input relay 100001 turns OFF.

Example 3: Signed 16-bit Multiplication

1) Ladder Programming 2) Operation
400001 ——) 400001]-20000 |
100801 00101 X
400002 400002
|—| MU1E '
400003 400004 400003
[200000000 |

400001]-20000 4000021 10000

For the above MU16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 tumn ON. The resuit will remain in holding registers
400003 and 400004 even after input relay 100001 turns OFF.

— 2112 —

’ 2.9 Sixteen-bit Arithmetic Instructions

2.9.5 16-BIT DIVISION (DV16)

1. Function

Unsigned or signed division is performed between two 16-bit binary numbers, V1 and V2.
A negative number is treated as its two’s complement. The remainder is also found.

2. Structure

ON: Executes division input 1 ={ Dividend (V1) Output 1: ON if division is completed.

Divisor (V2) ™ Output 2: Unsigned Division
ON if quotient = 65,536
Signed Divislon

Dvies ON if quotient > 32,768 or
ON if quotient < -32,769
OFF: Unsigned division Input 3 =~ Result (R) ™ Output3: ONifVv2=0

ON: Signed division

1) DV16 is the symbol for 16-BIT DIVISION.

2) DV16 requires three elements, one top element, one middie element, and one bottom
element, located vertically on the network. Table 2.53 lists the register reference num-
bers and constants that can be specified. :

Example
400001: Stores the dividend, V1, as follows:
Input 1 — 400001 f=— Output1 400002 400001
100000000
400003 |~ oupur2
Dvie 32 bits
Input3 =1 400004 [~ ouputa 400003: Stores the divisor, V2,

400004: Stores the result as follows:

400005 | Quotient
400004 Remainder

—2-113 —

Math Instructions

2.9.5 16-BIT DIVISION (DV16) cont.

Note

for the bottom element.

Quotient
Remainder

400005
400004

_
Table 2.53 Structural Elements of DV16
Element Meaning Possible Settings
Top (V1) | 1) If a constant is specified, its vaiue is Constant: #00000 to #65535
used as the dividend, V1. The range of Inout rég'ster' 300001 o 300511
" V1 is the range that can be expressed | MPU Fegistet: ;
with a 16-bit binary number, i.e.,] (200001 to Z00511)
between 0 and 65,535 for unsigned Holding register: 400001 to 409998
division and between -32,768 and (W00001 to W09998)
32,767 for signed division.
Constant register: 700001 to 704095
2) If a reference number is specified, the (K00001 to K04095)
" contents of the specified register and Link register: R10001 to R11023
the next reference is used. The range R20001 to R21023
of the result is the range that can be
expressed with a 32-bit binary number,
i.e., between 0 and 4,294,967,295 for
unsigned division and between
-2,147,483,648 and 2,147,483,647 for
signed division.
3) In the example, “400001° was specified
for the top element,
400002 | Upper 16 bits
400001 Lower 16 bits
Middle 1) If a constant is specified, its value Is Input register: 300001 to 300512
(V2 used as the divisor, V2. (Z000O01 to Z00512)
| Holding register: 400001 to 409999
2) If a reference number is specified, the euing reg (W00001°to W09999)
contents of the register is used. '
Constant register: 700001 to 704026
3) The range of the result is the range that _ (K000O01 to K04096)
can be expressed with a 16-bitbinary iy egister: ~ R10001 to R11024
number, i.e., between 0 and 65,535 for R20001 to R21024
unsigned division and between
-32,768 and 32,767 for signed division.
Bottom 1) The result is stored in two consecutive | Holding register: 400001 to 409998
(R) registers, as shown in the following {WO0001 to W09998)
example. . .
Link register: R10001 to R11023
. R20001 to R21023
2} The range of the result is the same as
that of V2.
3) In the example, “400004” was specified

if the value of the top or middle element is between 32,768 and 65,535 for signed division, the
numbers will be handled as two's complements, i.e., between -32,768 and -1.

—2-114—

. 2.9 Sixteen-bit Arithmetic Instructions
M

3. Operation

1) DV16divides the 16-bitbinary value in V1 by the 16-bitbinary value in V2 when input 1 is
ON and process the result as follows:

a) Ifinput 3 is OFF, 16-bit unsigned division is performed as follows:
(1) H#0=V1+V2<65,535;
e The quotient and remainder of V1 + V2 is stored in R+1 and R.
e Output 1 tums ON.

(2) Division will not be executed in the following cases and zero (0)is stored in Rand
R+1. :

2

e V2=0. In this case, output 3 turns ON.
e ifthe q.uotient is not between 0 and 65,535. In this case, output 2 turns ON.
b) Ifinput 3 is ON, 16-bit signed division is performed as follows:
(1) 1f -32,768 < V1 + V2 < 32,767:
e The quotient and remainder of V1 + V2 is stored in R+1 and R.
o Output 1 turns ON.

(2) Division will not be executed in the following cases and zero (O)is storedinRand
R+1.

s V2 =0. In this case, output 3 turns ON.

e Ifthe quotient is not between -32,768 and 32,767. In this case, output 2 turns
ON.

2) The result remains in R+1 and R even if input 1 turns OFF,

3) The operation of DV16 is summarized in Table 2.54.

—2-115 —

Math Instructions

2.9.5 I6-BIT DIVISION (DVI6) cont.

Table 2.54 Operation of DV16

inputs Condition Operation Outputs
1 3 1 2 3
ON |OFF [0=sV1+V2<65535 |V1+V2stored as follows: ON | OFF {OFF
R+1| Quotient
R Remainder
V1 + V2>65,535 or Accurate division not possible. Zero |OFF |ON | OFF
Vi+V2<0 {0) stored in R+1 and R.
v2=0 Execution not possible. Zero (0) OFF |OFF [ON
stored in R+1 and R.
ON [-32,768<V1+V2< | V1+ V2 stored as follows: ON |OFF |OFF
32,767 R+1| Quotient
R Remainder
V1 + V2<-32768 or | Accurate division not possible. Zero | OFF |ON | OFF
V1 + V2 > 32,767 {0) stored in R+1 and R.
vV2=0 Execution not possible. Zero (0) OFF |OFF |ON
stored in R+1 and R.
OFF |Any | None Nothing is done. OFF
«EXAMPLEp 4, Application Examples
Example 1: Unsigned 16-bit Division
1) Ladder Programming 2) Operation
400002 400001
i 400008 — | 1000000 }
100001 000101 +
400003 —{) 480003
DV18 oo0102 Il
— 400004 —{)}— 400005 4000084
000103 [3333 | 100]
400002 400001 Quotient Remainder
{ 1000000 |
400003300 |

For the above DV16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Qutputs 2 and 3 will remain OFF. When input
relay 100001 turns OFF, coil 000101 will turmn OFF and the result will remain in holding
registers 400004 and 400005.

—2-116 —

2.9 Sixteen-bit Arithmetic Instructions
]

Example 2: Signed 16-bit Division

1) Ladder Programming 2} Operation
400002 400001
400001 p—m{)}— i ~1000000 |
100001 000101 +
400008 f——o()}~ 400003300 |
DV1e 000102]
400004 [)}— 400005 400004
000103 [=3333 [<100 }
400002 400001 Quotient Remainder
I ~1000000 |
400003300]

For the above DV 16, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will tum ON. Outputs 2 and 3 will remain OFF. When input
relay 100001 turns OFF, coil 000101 will tum OFF and the result wili remain in holding
registers 400004 and 400005.

Example 3: Signed 16-bit Division

1) Ladder Programming 2) Operation

400002 400001
| 400000 ——o)}~ I =1000000 I

100001 000101 +
400008 —— }— 400008 70 |

DvVi1s 000102 i

400004)— 400005 400004
' 000103 o] 0]
400002 400001 Quotient Remainder

-1000000

~1000000+20=-50000=327638

400003 20]

For the above DV 186, the operation shown at the right will be performed when input refay
100001 is ON, zeros will be stored in 400004 and 400005 because the quotient exceeds
32,767, and coil 000102 will turn ON. Outputs 1 and 3 will remain OFF,

—2-117 —

Math Instructions

w
2.9.6 Building Programs

2.9.6 Building Programs

1. Storage Locations on Networks

All 16-bit arithmetic instructions reguire three vertical elements on a network, one top ele-
ment, one middle element, and one bottom element. They can thus be stored anywhere
on a 5-row by 10-column matrix (rows 1 through 5 and columns 1 through 10) on the net-
work.

Note Sixteen-bit arithmetic instructions cannot, however,'be placed to the right of coils (including
output coils, internal coils, link coils, MC coils, and MC control coils).

Example

Column
H 2 3 4 5 -] 7 8 S 1¢ 1

Row 1 HeownC -

100001 oot !
2 Woosozp-(-
SU16) bootoe | 1

3 wovoe3—C - '

iHF M oazit-C -

100021 190022 100023 100024 tODOZ5 10DG26 100027 100028 100029 ' oBo104

s F— —sonearr mzzr

100041 100042 &

8 400042, 003t
AD16

7 400043 [

2. Inputs

Inputs to 16-bit math instructions can be connected to relay elements (except coils) and/
or outputs from timers, counters, math instructions, data transfer instructions, other
instructions, etc.

Example

Row 1

AD16

T

3 400012

— 2-118 —

2.9 Sixteen-bit Arithmetic Instructions

3. Outputs

Outputs from 16-bitmath instructions can be connectedto any of the following: coils, con-
tacts, inputs to math instructions, inputs to data transfer instruction, etc.

Example
Cofumn
1 2 3
Row 1 | 400001 400011}
001001
2 ooomk- 400101

su16
3 400002

—2-119 —

Math Instructions
2.10.1 Instructions

2.10 Thirty-two-bit Arithmetic Instructions

This section describes the functions, structures, and operation of the 32-bit arithmetic
instructions and provides simple examples of their application.

2101 INSIrUCHONS . . oot i i i i et e s 2-120
2.10.2 32-BIT ADDITION (AD32) e e aaae e e e, 2121
210.3 32-BITSUBTRACTION (SUB2)coviiiiit ittt i iianeaenns 2-126
2.10.4 32-BIT COMPARE (TEST) ...ciitiii it iiie i ttaenrnannsnnnannanns 2131
2.10.5 Building Programs oo ittt e i e 2-136

2.10.1 Instructions
Thirty-two-bit arithmetic instructions perform unsigned or signed addition or subtraction on

two 32-bit binary numbers, V1 and V2. A negative number is treated as its two’s complement.
The instructions that are available are shown in Table 2.55.

Table 2.55 Thirty-two-bit Arithmetic Instructions

Name Symbol | Operands Vi | v2 | Result
32-BIT ADDITION | AD32 Vi+V2 1) Unsigned: O to 4,294,967,295
32-BIT su32 V1-V2
SUBTRACTION Comparison 2) Signed: -2,147,483,648 to 2,147,483,647
32-BIT TEST Comparison | ® 16-bit Comparison
COMPARE

1} Unsigned: 0 to 65,535
2) Signed: -32,768 to 32,767
e 32-bit Comparison

1) Unsigned: O to 4,294,967,295

2) Signed: -2,147,483,648 to 2,147,483,647

— 2-120 —

2.10 Thirty-two-bit Arithmetic Instructions
M
2.10.2 32-BIT ADDITION (AD32)

1. Function

Unsigned or signed addition is performed between two 32-bit binary numbers, V1 and
V2. A negative number is treated as its two's complement,

2. Structure

" ON: Executes addition Input1 ==] Augend (V1) [= Output 1: Echoes state of input 1

Addsnd (V2)
AD32
OFF: Unsigned addition Input3 = == Qutput 3: Unsigned Addition
ON: Signed addition Result (R) ON when V1 + V2 > 4,204,967,296

Signed Addition
ON when V1 + V2 < -2,147,483,649 or
V1+V222,147,483,648

1) AD32 is the symbol for 32-BIT ADDITION.

2) AD32 requires three elements, one top element, one middle element, and one botiom
element, located vertically on the network. Table 2.56 lists the register reference num-
bers that can be specified.

Example
Input t =4 400001 Output 1 400001: Stores the augend as follows:
400002 400001
400003 | ‘ Upper 16 bits | Lower 16 bits
AD32
— - 32 bits
Input3 — 400005 Output 3 400003: Stores the addend as follows:

400004 400003
Upper 18 bits l Lower 16 bits

32 bits
400005: Stores the resuit as follows:
400008 400005

Upper 16 bits l Lower 16 bits

32 bits

—2-121 —

Math Instructions

2.10.2 32-BIT ADDITION (AD32} cont.

Table 2.56 Structural Elements of AD32

Element Meaning Possible Settings

Top (V1) |1) The contents of the specified register Input register: 300001 to 300511
and the next register is used as the (200001 to Z00511)
augend, V1.

Holding register: 400001 to 409998

_ {W00001 to W09998)
2) V1 must be within the range of the

result is the range that can be Constant register: 700001 to 704095
~ expressed with a 32-bit binary number, (K00001 to KO4095)
i.e., the following ranges: . N
Urigned Addion Lk regser. £1000 0 r12s
Between 0 and 4,294,967,295
Signed Addition
Between -2,147,483,648 and
2,147,483,647

3) Inthe example, “400001" was specified
for the top element.
400002 | Upper 16 bits
400001 | Lower 16 bits

Middle 1} The contents of the specified register

(vVa2) and the next register is used as the
addend, V2.

2) V2 must be within the same ranges as
Vi.

3) In the example, “400003" was specified
for the middle element.

400004 | Upper 16 bits
400003 | Lower 16 bits

Bottom [1) The result is stored in the specified Holding register: 400001 to 409998
(R) register and the next register. (WO00001 to W09998)
Link register: 10001 to R1102
2} R must be within the same ranges as Nk regh 223331 :g ngzg
Vi,

3) In the example, “400005" was specified
for the bottom element.

400006 | Upper 16 bits
400005 | Lowsr 16 bits

3. Operation

1) AD32 adds the 32-bit binary values in V2to V1 wheninput 1 is ON and process the result
as follows:

a) If input 3 is OFF, 32-bit unsigned addition is performed as follows:

— 2-122 -

2.10 Thirty-two-bit Arithmetic Instructions

(1) HO<V1+V2<4,294,967,295:

¢ The upper 18 bits of result of V1 + V2 are stored in R+1 and the lower 16 bits
are stored in R.

e Output 1 turns ON and output 3 remains OFF.
(2) 1f 4,294,967,296 <V1 + V2

e The upper 16 bits of result of V1 + V2 —-4,294,967,296 are stored in R+1 and
the lower 16 bits are stored in R.

¢ Outputs 1 and 3 turn ON.
b) If input 3 is ON, 32-bit signed addition is performed as follows:
(1) If-2,147,483,648 <V1 + V2 < 2,147,483,647:

*» The upper 16 bits of result of V1 + V2 are stored in R+1 and the lower 16 hits
are stored in R.

e Output 1 turns ON and output 3 remains OFF.
(2) 1£2,147,483,648 < V1 + V2

» The upper 16 bits of result of V1 + V2 - 4,294,967,296 are stored in R+1 and
the lower 16 bits are stored In R.

o Outputs 1 and 3 turn ON.
(3) IfV1 +V2<-2,147,483,649;

¢ Theupper 16 bits of resultof V1 + V2 + 4,294,967,296 are stored in R+1 and
the lower 16 bits are stored in R.

e Outputs 1 and 3 turn ON,
2) The result remains in R and R+1 even if input 1 turns OFF.

3} The operation of AD32 is summarized in Table 2.57.

Table 2.57 Operation of AD32

Inputs Condition QOperation Outputs
1 3 1 3
ON |OFF {0<V1+V2<4,294,967,295 |V1 + V2 stored in R+1 and R. ON | OFF
4,294,967,296 <V1+V2o0r |V14+V2 - 4,294,967,296 stored in ON
Vi+V2<0 R+1 and R.
ON [-2,147,483648<V1+V2 < |V1 + V2stored in R+1 and R. OFF
2,147,483,647
2,147,483,648 <V1 + V2 V1+ V2 ~ 4,284,967,296 stored in ON
R+1and R.
V1 + V2 < -2,147,483,649 V1 + V2 + 4,294,987,296 stored in
R+t and R.
OFF | Any | None Nothing is dons. OFF | OFF

— 2-123 —

Math Instructions
2.10.2 32-BIT ADDITION (AD32) cont.

«EXAMPLEp- 4. Application Examples

Example 1: Unsigned 32-bit Addition

1} Ladder Programming 2) Operation

400002 400001
F—{ 400001 —(> [2000000]

100001 000101 +
400003 400004 400003
AD32 [5000000 |

— 400005 b——{)}~ 1
000102 400006 400005
[5000000 |

400002 400001 400004 400003

[2000000 | L 3000000 |

For the above AD32, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 wilt remain OFF. When input
relay 100001 turns OFF, coil 000101 will turn OFF and the result will remain in holding
registers 400005 and 400006.

Example 2: Signed 32-bit Addition

1) Ladder Programming 2) Operation

400002 400001
I 400001 —{) [~ -2000000]

100001 000101 +
400003 400004 400003
AD32 [3000000 |

— 400005 ——)— 1
000102 ' 400006 400005
| 1000000 |

400002 400001 400004 400003

] -2000000 § | 3000000 |

For the above AD32, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF. When input
relay 100001 turns OFF, coil 000101 will turn OFF and the result will remain in holding
registers 400005 and 400006.

— 2124 —

2.10 Thirty-two-bit Arithmetic Instructions

Example 3: Signed 32-bit Addition

1) Ladder Programming 2) Operation

_ 400002 400001
0000 ——{)}— 1 -2000000 |

100001 000101 : +
400003 400004 400003
AD32 [-3000000]

400005 p—o }— i
d00102 400006 400005
I ~5000000 |
460002 400001 400004 400003 ‘

L -2000000 } [-3000000 |

For the above AD32, the operation shown at the right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coil 000102 will remain OFF. When input
relay 100001 turns OFF, coil 000101 will turn OFF and the result will remain in holding
registers 400005 and 400006.

Example 4: Signed 32-bit Addition with Overfiow in Resu[t

1) Ladder Programming 2) Operation '
_ 400002 400001
400001 ——{)}— | 2000000000 |
109001 g60101 <+
400003 ' 400004 400003
AD32 1 1000000000 |
400005 ——)— +
00102 400006 400005

|_-1294967288 §

400002 400001 400004 400003
[2000000000] [1000000000 |

- Forthe above AD32, the operation shown at the right will be performed when input relay
100001 is ON, and coils 000101 and 000102 will turn ON. The result will remain in holding
registers 400005 and 400006 even after input relay 100001 turns OFF.

— 2-125 —

Mazth Instructions
2.10.3 32-BIT SUBTRACTION (SU32)

2.10.3 32-BIT SUBTRACTION (SU32)

1. Function

Unsigned or signed subtraction is performed between two 32-bit binary numbers, V1 and
V2. A negative number is treated as its two’s complement.

2. Structure

ON: Executes subtraction Input1 =4 Minuend {¥1) p=~ Output 1: ON when Vi>Vv2

Sutrahend {§2) = Output2: ON whan Vi=v2

suU32

OFF: Unsigned subtraction Input3 == N Qutput 3: ON when V1< V2
ON; Signed subtraction Result ®)

1) SU32 is the symbol for 32-BIT SUBTRACTION.

2) 8U32 requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.58 lists the register reference num-

bers that can be specified.

Example

input 1 = 400001 = OGutput1 400001: Stores the minuend as follows:

400002 400001
400003 {~ Output2 Upper 16 bitsJ Lower 16 bits
SU32 T
i

Input 3 —1 400005 — Output3 400003: Stores the subtrahend as follows:

400004 400003

Upper 16 bits | Lower 16 bits

32 bits
400005: Storas the result as follows:
400006 400005

Upper 16 bits | Lower 16 bits

32 bits

—2-126 —

2.10 Thirty-two-bit Arithmetic Instructions

Table 2.58 Structural Elements of SU32

Element Meaning Possible Settings

Top (V1) (1) The contents of the specified register Input register: 300001 to 300511
and the next register is used as the (200001 to Z00511)

minuend, V1. Holding register: 400001 to 409998 .
(W00001 to W09998)

2} V1 must be within the range that can
be expressed with a 32-bit binary Constant register: 700001 to 704095
number, i.e., the following ranges: (K00001 to K04095)
Unsigned Subtraction . ,

Between 0 and 4,204,967,295 Link register: Raooo! 1o 11 o
Signed Subtraction
Between —2,147,483,648 and
2,147,483,647

3) Inthe example, “400001” was spemﬁed
for the top element.

400002 | Upper 16 bits

400001 | Lower 16 bits
Middle 1) The contents of the specified register
(v2) and the next register is used as the
subtrahend, V2.

2) V2must be within the same ranges as
Vi,

3) In the example, “400003" was specified
for the middle slement.

400004 | Upper 16 bits
400003 | Lower 16 bits

Bottom | 1) The result is stored in the specified Holding register: 400001 to 409998
(R) register and the next register. (W00001 to W09998)

i ister: R1 11
2) R'must be within the same ranges as Link register Rzggg} :g Smggg

V1.

3) In the example, “400005" was specified
for the bottom element.

- 400006 | Upper 16 bits
400005 | Lower 16 bits

— 2-127 —

Math Instructions
e
2.10.3 32-BIT SUBTRACTION (8U32) cont.

3. Operation

1) SU32 subtracts the 32-bithinary valuein V2from the 32-bit binary value V1 wheninput 1
is ON and process the result as follows:

a) if input 3 is OFF, 32-bit unsigned subtraction is performed as follows:

(1) f0<V1-V2<4,294,967,295, the upper 16 bits of result of V1 — V2 are stored in
R+1 and the lower 18 bits are stored in R.

(2) V1 -V2<-1,the upper 16 bits of result of V1 - V2 + 4,294,967,296 are stored in
R+1 and the lower 16 bits are stored in R.

b) If input 3 is ON, 32-bit signed subtraction is performed as follows:

(1) 1f-2,147,483,648<V1-V2<2,147,483,647, the upper 16 bits of result of V1 -V2
are stored in R+1 and the lower 16 bits are stored in R.

(2) If 2,147,483,648 < V1 -V2, the upper 16 bits of result of V1 - V2 - 4,294,867,286
are stored in R+1 and the lower 16 bits are stored in R.

(3) ¥ V1 — V2 £ -2,147,483,649, the upper 16 bits of result of V1 - V2 +
4,294 967,296 are stored in R+1 and the lower 16 bits are stored in R.

c) The outputs are treated as follows regérdless of the status of input 3:
e IfV1>V2, output 1 turns ON.
o If V1 =V2, output 2 turns ON.
s If V1< V2, output 3 tumns ON.
2) The result remains in R and R+1 even if input 1 turns OFF.

3) The operation of SU32 is summarized in the following table.

Table 2.59 Operation of SU32

Inputs Condition Operation Outputs 1 to 3
1 3
ON |[OFF |0<V1-V2<4,.294967,295 | V1-V2 stored in R+1 and R, | e If V1>V2, oulput 1
4,294.967,296 < V1 - V2or |V1-V2+4,204,967,296 tuns ON.
V1i-V2<0 stored in R+1 and R.

ON | -2,147,483,648<V1-V2< |Vi-V2storedinR+1andR. {|*® If V1i=V2, output 2
2,147,483,647 Mms ON.
2,147,483,648 <= V1 ~V2 V{-V2-4,294,967,296 stored

in R+1 and R. e [f V1<V2, output 3
V1 -Vv2<-2,147,483,649 V1-V2+4,294 967,296 turns ON.
stored in R+1 and R.
OFF | Any |None Nothing is done. OFF

— 2-128 —

2.10 Thirty-two-bit Arithmetic Instructions

<«EXAMPLEp 4, Application Examples

Example 1: Unsigned 32-bit Subtraction

1) Ladder Programming 2) Operation

' 400002 400001
F—1 400001 o) I 3000000 |

100001 000101 -
400003 ——) 1400004 400008
SU32f o102 [2000000 |

—1 400005 ~]
000103 400006 400005
[1000000]

400002 400001 400004 400003

L 3000000] [2000000 |

For the above SU32, the operation shown atthe right will be performed when input relay
100001 is ON, and coil 000101 will turn ON. Coils 000102 and 000103 will remain OFF,
and the result will remain in holding registers 400005 and 400006 even after input relay
100001 turns OFF.,

Example 2: Signed 32-bit Subtraction

1) Ladder Programming 2) Operation

' 400002 400001
400001 i) | ~2000000 |

100001 000101 -
400003 ——i)}~ 400004 400003
SuU32 000102 i 3000000 |

400005 [— J }
000103 400006 400005
| -5000000 |

400002 400001 400004 400003

| -2000000 | [3000000 |

For the above SU32, the operation shown at the right will be performed when input relay

100001 is ON, and coil 000103 will tur ON. Coils 000101 and 000102 will remain OFF,

and the result will remain in holding registers 400005 and 400006 even after input relay
100001 turns OFF.

—2-129 —

Math Instructions
2.10.3 32-BIT SUBTRACTION (SU32) cont.

Example 3: Signhed 32-bit Subtraction

1) Ladder Programming

400001

100601
400003

SU32
400005

400002 400001

-2000000 }

2) Operation
400002 400001
—{ }— | -2000000 {
000101 -
—{ 400004 400003
000102 L -30000080 |}
—{ = }
000103 400006 400005
| 1000000 |

400004 400003 .
-3000000 |

For the above SU32, the operation shown at thé right will be performed when input relay
100001 is ON, and coil 000101 turn ON. Coils 000102 and 000103 will remain OFF and
the result will remain in holding registers 400005 and 400006 even after input relay

100001 tumns OFF.

Example 4: Signed 32-bit Subtraction with Overflow in Resuit

1) Ladder Programming

2) Operation

400001
100001
400003
su32
400005

400002 4b0001

-2000000000 |

400004 400003

2000000000 |

—

400002 400001
[=Z000000300 |

}
400006 400005

294867286 |

400004 400003
2000000000 |

For the above SU32, the operation shown at the right will be performed when input refay
100001 is ON, and colt 000103 will turn ON. Coils 000101 and 000102 will turn OFF, and

100001 turns OFF.

— 2-130 —

the result will remain in holding registers 400005 and 400006 even after input relay

2.10 Thirty-two-bit Arithmetic Instructions

2.10.4 32-BIT COMPARE (TEST)

1. Function

1) Sixteen-bit Comparison

Unsigned or signed comparison is performed between two 16-bit binary numbers, V1
and V2. A negative number is treated as its two's complement.

2) Thirty-two-bit Comparison

Unsigned or signed comparison is performed between two 32-bit binary numbers, V1
and V2. A negative number is treated as its two's complement.

2. Structure

ON: Exscutes comparison Input 1 =
(V1)

(v2)
TEST
OFF: Unsigned comparison Input3 = ,
ON: Signed comparison COmp(aZr)a size

1) TEST is the symbol for 32-BIT COMPARE.

Istnumber fe Quput 1: ON when Vi»v2

2nd numbér = OQuiput 2: ON when V1=v2

= Oufput 3: ON when V1< V2

2) TEST requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 2.60and table 2.61list the register refer-

ence numbers and constants that can be specified.

Example 1: Sixteen-bit Comparison

Input1 ~— 400001 |— Output1

400002 — ouput2
TEST
Input3 = #00081 =~ Output3

—2-131 —

400001:

400002;

#00001:

Reference number of the holding
register storing V1.

Reference number of the holding
register storing V2.

Set to 1 to indicate 16-bit
comparison.

Math Instructions

S —

2.10.4 32-BIT COMPARE (TEST) cont.

Example 2: Thirty-two-bit Comparison

Input 1 =

Input 3 =

400013 }— Output?
400013
TEST
$#00002

= Output 2

~= Output 3

£00002:

400001:

400003:

Stores V1 as follows:
400012

Upper 16 bits

400011
Lower 16 bits

32 bits
Stores V2 as follows:

400014
Upper 16 bits

400013
Lower 16 bits

32 bits
Setto 2 w indicate 32-bit
comparson.

Table 2.60 Structural Elements of TEST for 16-bit Comparison

Element Meaning Possible Settings
Top (V1) [1) The contents of the register is used as | Input register: 300001 to 300512
V1. {(Z00001 to Z00512)
e Holding register: 400001 to 409999
2) V1 must be within the range thatcan . (WO00001 to W09999)
be expressed with a 16-bit binary
number, i.e., the following ranges: -] Constant register: 700001 to 704096
Unsigned Comparison ‘ (KOOOO1 to KO4096)
Betwsan 0 and 65,535 Link register: R10001 to R11024
Signed Comparison R20001 to R21024
Between 32,768 and 32,767
Middle 1) The contents of the register is used as
(v2) V2.
2) V2 must be within the same range as
Vi,
Bottom | Comparison size Constant: #00001
4]

— 2-132 —

2.10 Thirty-two-bit Arithmetic Instructions

Table 2.61 Structural Eiements of TEST for 32-bit Comparison

Element Meaning ' Possible Settings
Top (V1) |1) The contents of the specified register | Input register: 300001 to 300511
and the next register is used as V1. - (Z00001 to Z00511)
Holding register: 400001 to 409998
2) V1 must be within the range that can 9160 (W00001 to W09998)
be expressed with a 32-bit binary
number, i.e., the following ranges: Constant register: 700001 to 704095
Unsigned Addition (K00001 to K04095)
oomwean 0 A 4.294,967,295 Link register: R10001 to R11023
igned Addition R20001 to R21023
Between -2,147,483,648 and
2,147,483,647

3) In the example, “400001” was specified
for the top element.

400002 | Upper 16 bits
400001 | Lower 16 bits

Middle 1) The contents of the specified register
{va) and the next register is used as V2.

2) V2 must be within the same ranges as
V. :

3) In the example, “400003" was specified
for the middie element.
400004 | Upper 16 bits
400003 | Lower 15 bits

Bottom | Comparison size Constant: #00002
(2

3. Operation

1) If the comparison size is “1,” the following operation is performed.
a) Ifinput 1 is ON, TEST performs 16-bit comparison as follows:

(1) If input 3 is OFF, the values are compared as unsigned integers expressed as
16-bit binary numbers (0 to 65,535).

{2) Ifinput3is ON, the values are compared as signed integers expressed as 16-bit
binary numbers (-32,768 to 32,767).

2) if the comparison size is “2,” the following operation is performed.
a) Hinput 3is ON, TEST performs 32-bit signed comparison as follows:

(1) tfinput 3 is OFF, the values are compared as unsigned integers expressed as
16-bit binary numbers (0 to 4,294,967,295).

—2-133 —

Math Instructions

s s
2.10.4 32-BIT COMPARE (TEST) cont.

(2) lfinput 3is ON, the values are compared as signed integers expressed as 32-bit

binary numbers (—2,147,483,648 to 2,147,483,647).

3) The outputs are treated as follows depending on the size of the two operands.

If V1 > V2, output 1 turns ON.
If V1 = V2, output 2 turns ON.

If V1 < V2, output 3 turns ON.

4) The operation of TEST is summarized in the following two tables.

Table 2.62 Operation of TEST for 16-bit Comparison

Inputs Operation Qutputs 1 to 3
1 3
ON | OFF | V1 and V2 are compared as unsigned integers e |f V1=V2, output 1 turns ON.
expressed as 16-bit binary numbers (0 to ‘
65,535). _ o If V1=V2, output 2 turns ON.
ON | V1 and V2 are compared as signed integers
expressed as 16-bit binary numbers (-32,768 to
32.767). . ® 1f V1<V2, output 3 furns ON.
OFF | Any | Nothing is done. OFF
Table 2.63 Operation of TEST for 32-bit Comparison
_ Inputs Operation Outputs 1 to 3
1 3
ON | OFF | V1 and V2 are compared as unsigned integers ¢ If V1>V2, output 1 turns ON.
-expressed as 32-bit binary numbers (0 to
4,924,967,295). o If V1=V2, output 2 tums ON.
ON | V1 and V2 are compared as signed integers
expressed as 32-bit binary numbers
(-2,147,483,648 to 2,147,483,647). e If V1<V2, cutput 3 fums ON.
OFF | Any [Nothing is done. OFF
«EXAMPLE» 4. Application Examples
Example 1: Unsigned 16-bit Comparison
1} Ladder Programming 2) Operation
|—- 400001 ——{)} 400081} 30000V1
100001 toos1 Comparison
400002 ——)}— 400002 20000]v2
TEST go0102 I
— #0000 —{)} Results: Vi > V2
pog103

400001 | 30000 400002]_20000

For the above TEST, the comparison shown at the right will be performed when input
relay 100001 is ON, and coil 000101 will turn ON.

—2-134 —

. 2.10 Thirty-two-bit Arithmetic Instructions

Example 2: Signed 16-bit Comparison

1) Ladder Programming . 2) Operation
400001 P—— J
100001 000101 400001 V1
400002 p—or) Comparison
TEST| 000102 4ooouzvz
HON —~——)
000103 Results: V1 < V2

400001 |-30000 400002{-20000

For the above TEST, the comparison shown at the right will be performed when input
relay 100001 is ON, and coil 000103 will turn ON.

Example 3: Unsigned 32-bit Comparison

t) Ladder Programming 2) Operation
400001 —~ - 400002 400001
100001 000101 _ [30000000 Jvi
400003 P—oA)+ Comparison
TEST 000102 400004 400003
ROO00? ——~ . [20000000 vz
000103 }

Results: V1 = v2

400002 400001 400004 400003
| 30000000 } [20000000]

For the above TEST, the comparison shown at the right will be performed when input
relay 100001 is ON, and coil 000101 will turn ON.

Example 4: Signed 32-bit Comparison

1) Ladder Programming : 2) Operation
400007 [——)}— 400002 4006001
100001 000101 | -30000000 Jv1-
400008 —~)} Comparison
TEST 008102 400004 400003
go0002 P——) I 20000000 Jv2
000103)

Results: Vi < V2
400002 400001 480004 400003
L -30000000] | 20000000 |

For the above TEST, the comparison shown at the right will be performed when input
relay 100001 is ON, and coil 000103 will turn ON.

—2-135 —

Math Instructions
2.10.5 Building Programs

2.10.5 Building Programs

1. Storage Locations on Networks

All 32-bit arithmetic instructions require three vertical elements on a network, one top ele-
ment, one middle element, and one bottom elernent. They can thus be stored anywhere
on a 5-row by 10-column matrix (rows 1 through 5 and columns 1 through 10) on the net-
work.

Note Sixteen-bit arithmetic instructions cannot, however, be placed to the right of coils (including
output coils, internal coils, link coils, MC coils, and MC control coils).

Example

Column
1 2 3 4 5 [7 8 9 10 11

Row 1~ 00001 —C)— :
100001 ooc1or :
: Nothing can be stored in this area. !
2 0002 —(i :
SU32| ooo102 :
3 o - ;
) L1 TT T S !
4 A enn=C -
100021 100022 100023 100024 100025 10002¢ 100027 100028 10002% Q00104
5] | |—eco0ar} paco22}-
100041 100042 SU3z
& 400042 —A00D3 T~
AD32
7 -uooneaf
2. Inputs

Inputs to 32-bit math instruction can be connected to relay elements (except coils) and/or
outputs from timers, counters, math instructions, data transfer instructions, other instruc-
tions, etc.

Example

Row 1 400001}

2 400003
SU32
3 “aoooos

— 2-136 —

2.10 Thirty-two-bit Arithmetic Instructions

3. Outputs

Outputs from 32-bit math instruction can be connected to any of the following: coils, con-
tacts, inputs to math instructions, inputs to data transfer instructions, ete.

Example

Row ' {40000

cotoa1

SUs2
3 400005p

— 2-137 —

Data Transfer Instructions

This chapter describes the data transfer instructions.

3.1 DataTransferInstructions . 5.

3.2 Data Transfer Instruction Terminology . ceee 36

321 DataTablesccoiiiiiiiiiannnnnn., 3-6
322 DataTableSizes.................. e 3-8
323 Source and Destination Tables 3-9
324 Pointers ... 3-10

3.3 Data Transfer Instruction Details 3-11

331 REGISTER-TO-TABLE MOVE (R—T)............ 3.11
332 TABLE-TO-REGISTER MOVE (TR} 3-19
333 TABLE-TO-TABLE MOVE (T=T) e 3.27
334 FIRSTIN(FIN) «.ooooinnn o 3.34
335 FIRSTOUT(FOUT) ..vvvvveneee 3.42
336 TABLESEARCH(SRCH)covvvvvroonnnn.. 3.49
33.7 TABLE SET(TSET}cou..... e 3-56
338 BLOCKMOVE®BLKM)o0vveee .. 3.58
339 BLOCK-TO-TABLEMOVE (BLKT).............. 3.65
33.10 TABLE-TO-BLOCKMOVE(TBLK).............. 3.72
33.11 INDIRECTBLOCK WRITE (IBKW).............. 3.79
33.12 INDIRECTBLOCK READ (IBKR) 3.86

3.4 Building Programs....................... 393

341 Storage Locations on Networks 3-93
342 Inputs ... e e 3-94
343 Outputs e 3-94
344 Duplicate Coil Usagecoovenen.... 3-95
345 Operation of Disabled Coils 3.96

—_3]—

Data Transfer Instructions

3.1

‘Data Transfer Instructions

» The twelve data transfer instructions are outlined in the following table.

Table 3.1 Data Transfer Instructions

This saction describes the data transfer instructions used to copy data stored in data
memory (such as holding registers, input relays, or coils) from one location to another
in word units. Difficult and complicated data processing can be performed by combining
these data transfer instructions with basic instructions and arithmetic instructions.

Instruction Name

Symbol

Function

Page

REGISTER-TO-TABLE
MOVE

R—T

Copies the content of the source word (S) to the
word in the destination table {DT) specified by the
pointer value {P).

Example

s
400001

400010 2| P
400011 | 1000] 1st

400012
400013
400014
400015

Transfer

2000
4000
5000

2nd
3rd
4th
5th

DT

3-1

TABLE-TO-REGISTER
MOVE

T—R

Copies the content of the word in the source table
(ST) specified by the pointer value (P) to the
destination word (D).

Example

1000 | 1st 400010 2|P
2000 2nd -~ 400011 i3000] D
23000 3rd Transfer

4000 | 4th

5000 | 5th

400001
400002
400003
400004
400005

ST

3-19

TABLE-TO-TABLE
MOVE

T-T

Copies the content of the word in the source table
(ST) specified by the pointer value (P} to the
corresponding word in the destination table (DT).

Example

400001

1000

400002

ST+ 400003

2000

400004

4000

400005

5000

1st
2nd
3rd
4th
Sth

400010
400011
400012
—" 400013
400014
400015

Transfer

2

100

200

: ‘

400

500

P
1st
2nd
3rd
ath
5th

DT

3-27

Abbreviations S: Source Word

ST: Source Table

D: Destination Word
DT Destination Table
P: Pointer

_—32—

3.1 Data Transfer Instructions

Symbol

Function

Page

FIRST IN

FIN

When there is an “empty register” in the destination
table, shifts all of the data down by one word and
copies the contents of the source word to the
leading word in the destination table.

Example

S ., Transfer 400010 2| P

400001 400011 [2000 1st
400012 |[160g] 2nd
s00013f of 3 >OT
400014 [o] ath

400015 0] 5th

3-34

FIRST QUT

FOUT

Transfers the first word of data inserted into the
table (at the end of the source table) to the
destination word. .

Example

400010 1] P
400011 | 1000} 1st
400012 [253d] 2nd
ST+ 400013 0] 3rd
400014 0] ath
400015 0] s5th

Transfer

3-42

TABLE SEARCH

SRCH

Searches for the search data specified in the
destination word and writes that table position in
the pointer.

Example

400010 |31 P
400011 | 3000] D
Position

400001 | 1000{ st
400002 | 2000] 2nd
ST+ 400003 | 3000| ard
400004 | 4000] ath

400005 | 5000) sth

3000: Search data

3-49

TABLE SET

TSET

Copies the contents of the source word to all of the
words in the destination table in a single scan.
Example
8 Transfer
400001 400011 [1000] st
400012 f1000] 2nd
400013 |H600] 3d DT
400014 1000} 4th
400015 |:1000] 5th

3-56

BLOCK MOVE

BLKM

Copies the contents of the words in the source
table to the corresponding words in the destination
table in a single scan,

Example Transfer

400011 [1000| 18t — 400011 [Fogn] 1st
400012 |-200012nd — 400012 [2060] 2nd
ST< 400013 [:3000|3rd — 400013 {3000 3rd DT
400014 [4000} 4th —= 400014 |-4000] 4th
400015 | 5000]5th — 400015 ['500

3-58

— 3.3 —

Data Transfer Instructions

Table 3.1 Data Transfer Instructions (Cont'd)

block (DBL).

Example
sT
(400011 1st 7 sBLY
400012 2nd |
400014 2nd | 400005 [#580] 18t
400015 [isp] 18t | 400006 |:¥:60] 2nd
400016 [igo] 2nd | SBL3
ﬁ 400017 tst | Transfer block
400018 2nd | SBL4
400019 18t |
400020 2nd J SBLS
k 1 ’ 1

Name Symbol _ Function Page
BLOCK-TO-TABLE BLKT Copies the contents of the source block (SBL) to 3-65
MOVE ’ the destination block {DBL) specified by the pointer

value (P).
Example
400010 2lp DT
peLt [400011 | 10] 1st)
. SBL 400012 | _20] 2nd
400011 [1000] 1st DBL2 | 400013 | 30| 1st
400012 |2000] 2nd } 400014 |__40] ond
Transfer block pBL3{ 400015 §°D§ 1st
400016 20001 2nd \
DBL4 | 400017 70{ 1st
400018 80§ 2nd
DBL5_ 400019 801 1st
400020} 100} 2nd
! ' i,
* | TABLE-TO-BLOCK TBLK Copies the contents of the source block (SBL) 3-72
MOVE specified by the pointer value (P) to the destination

Abbreviations SBL:
DBL:

Source Block
Destination Block

—_ 3

3.1 Data Transfer Instructions

m

Name Symbol Function Page
INDIRECT BLOCK IBKW Coples the contents of each word in the source 3-79
WRITE block (SBL) to the destination holding register (PR)

specified by the corresponding word in the pointer
block (PBL).
Exampte Transfer

400001 [1000| 1st —= 400101 [[1000] 1st
400002 }'2000| 2nd — 400801 {2000 2nd
400003 [:3000] 3rd — 400201 ['3000] 3rd

eovirmiasasm)

400004 |:4000| 4th —= 400501 [4000 4th
400005 [:5000] 5th — 400401 [“8000] 5th
SBL DBL

400000 is added to the 400011 |_101| 1st
content of the words in 400012] 301]| 2nd
the pointer block to 400013 | 201} 3rd
detprmina the destinatign 400014 | 5011 4th
registers for the words in
the source block, 400015 |_401] Sth
PBL

For example, 400000 is added to the content of the
leading word in the pointer block (101) to determine
the leading destination register (400101).

INDIRECT BLOCK IBKR Copies the contents of each source holding 3-86
READ register (SR) specified by the pointer block (PBL)
to the corresponding word in the destination block
(DBL).
Example
Transfer

400001 [:1000] 1st — 400011 |“o00] 1st

400301 ['2000f 2nd —= 400012 | 2006} 2nd
400201 [:3000] 3rd —= 400013 [4000] 3rd

R

400501 “4006‘ 4th — 400014 |“4000] 4th
400401 [5000] 5th — 400015 [:5000] 5th
SR T peL

400011 | 101 1st _
400012 | 301] 2nd 400000 is added to the

content of the words in
400013 | 201 3rd > w0 hointer block to
400014 | 501] 4th determine the source
400015 | _401] 5th registers.

PBL

For example, 400000 is added to the content of the
leading word in the pointer block (101) to determine
the leading source register (400101).

Abbreviations PBL: Pointer Block
DR: Destination Registers
SR: Source Registers

—_35

Data Transfer Instructions

3.2.1 Data Tables

3.2 Data Transfer Instruction Terminology

This section explains the terms required to understand the operation of the data transfer
instructions.

321 DataTablesooviiiiiiiriie et ia ittt e a sty 3-6
322 DataTable Sizescoviriiiiiii it ie it ti ettt rnea et tnanans 3-8
3.2.3 SourceandDestinationTablescvivriiiiriirinrrrsscnaacenas 3-8
R - N = o {11 1= - Ao 3-10

3.2.1 Data Tables

The following tables as known as data tables: register tables, coil tables, and relay tables.
These tables are described below. ‘

1. Register Tables

1) A register table is a group of registers with consecutive reference numbers.

2) The following registers can be used to make régister tables.
a) Input registers
b) Holding registers
¢) Constant registers

d) Link registers

Example 1 Example 2

A register table composed of 5 A register table composed of 5
consecutive input registers. consecutive holding registers.
300001 100 400001 1000
300002 200 4000021 2000
300003] 300 400003} 3000
300004] 400 400004 4000
300005 500 400005} 5000

2. Coil Tables

1) A coil table is a group of coils with consecutive reference numbers.
2) The following coils can be used to make coil tables.

a) Normal coils {output coils, internal coils)

b) Link coils

¢} MC coils

d) MC control coils

— 3.6 —

3.2 Data Transfer Instruction Terminology

M
3) The number of coils in a coil table must be a muitiple of 16.

4) The lower 5 digits of the reference number of the first coil in the coil table must bel6n +1

(wheren=0,1,2,...). Inthe following example, the reference number of the first coil in the
coil table (000001) satisfies this condition.

Example
This coil table is composed of 32 consecutive coils.
oN 0N oN
ot e el —
000001 © 000002 000016
OFF OFF OFF
Ll b el —
000017 | 000018 000032

3. Relay Tables

1) A relay table is a group of relays with consecutive reference numbers.

2) The following relays can be used to make relay tables,

a) Input relays
b) MC relays
¢) MC control relays
d) M code telays
3) The number of relays in a relay table must be a multiple of 16.

4) The lower 5 digits of the reference number of the first relay in the relay table must be16n

+1{wheren=90, 1, 2,...). In the following example, the reference number of the first relay
in the relay table (100001) satisfies this condition. :

Example
This relay table is composed of 32 consecutive relays.

oN ON oN
........ _l

100001 100002 100016

OFF OFF OFF

ol B I 5

108017 100018 100032

Note N.O, contacis are used to represént the input relays that make up input reiay tables.
Example

—13 . {h— ~ This symbol represents input refay 100001.
0

—_37

Data Transfer Instructions
3.2.2 Data Table Sizes

3.2.2 Data Table Sizes

1) The size of a data table is indicated by the “table size.” The following rules apply to the
table size.

a) For register tables, the table size is calculated with units of 1 register.
b) For coil tables, the table size is calculated with units of 16 coils.
¢) For relay tables, the table size is calculated with units of 16 relays.

Example 1
The following diagram shows a holding register table with a table size of 5.

400001] 1000
400002 2080
4000031 3000 |r Tablesize: 5
400004 4000
400605] 5000

Example 2
The following diagram shows a coil table with a table size of 2.
oN ON oN
— | = | e —
ooo00t 000002 000016 |{{ Table size: 2
OFF OFF OFF avle size:
e Wl s W el Rt —{
000017 000018 000032

Example 3 '
The following diagram shows an input relay table with a table size of 2.

oN ON ON]

A |

1000kt 10008 LTI |
A | - F

100017 | 100018 100032

2) The maximum table size depends on the data transfer instruction and type of reference
being used. Check the maximum table size in the instruction’s “component element
table” when creating the program.

— 38—

. 3.2 Data Transfer Instruction Terminology

3.2.3 Source and Destination Tables

1) The source location for a data transfer is known as the source word or source table and
the destination location for a data transfer is known as the destination word or destination
table.

2) When a data transfer instruction is executed, the data is copied from the source to the
destination. The source data is left unchanged,

Example
This example shows a data transfer with the BLOCK MOVE (BLKM) instruction.

1) Ladder Programming

P] 400001
100001
400011
BLKM
$0000

2) Transfer Operation

a) Status Before Execution

4000011000] 1st 400011105] st

4000022000 | 2na 400012 200 fzna |
S 440000313000] aro 400013300 | ara p Dostination
(Size:5) {400004] 4000] atn 400014]_400 | 4 | (Size: 5)

4000055000 | stn 400015 500] s

- b) The following data transfer is executed when input relay 100001 goes from OFF to
ON. The transfer is completed in one scan.

Transfer
400001 fiz%q000] 1st —— 400011 i 1st
Source 400002 2nd 400012 :% “‘ 2ng Destination
Table 400003 | 3rd T 400013 {8p00] 3rd [Table
(Size:5) | s00004 [554000) am —— 400014 [Tagie]| am | (Size:5)
400005 ¥:iif 5th —— 400015 |%ii5000] st

(1) The content of the n! word {n=1 to 5) in the source table is copied to the n"word
(n=1 to 5) in the destination table.

(2) The contents of the source table aren’t changed by executing the instruction.

—39

Data Transfer Instructions
3.2.4 Pointers

3.2.4 Pointers

1) Apointer is a register that is used to specify a particular location (a register, 16-coil group,
or 16-relay group) in a source table or destination table.

2) In data transfer instructions other than the BLOCK MOVE (BLKM) instruction and TABLE
SET (TSET) instruction, pointers are used to specify the source and/or destination.

Example
In this example, a data transfer is performed with the REGISTER-TO-TABLE MOVE (R—T)

instruction.

1) Ladder Programming

P —{ 400001
100001

400010 F
R—T
$00005

2) Transfer Operation

a) Status Before Execution

Source - 400010 n Pointer
A00001 6000 4000114 1000 | 1st

4000127000] 2ra | o
400013] 3000 | 3ra } Tape
400014] 4000 | am (Size: 5)
40001515060 | s

b) The following data transfer is executed when the pointer value is 2 and input relay
100001 goes from OFF to ON. The transfer is completed in one scan.

Source 400010 3| Pointer

3 400011 [1000] 1st
400012 2000| 2nd Destination

Transfer 400013 [6000] 3rd - Table
400014 | qoop| 4 | 775
400015 50001 Sth

400001

(1) The source data is copied to the third register in the destination table.
(2) The pointer vaiue is 3.

¢) The source data can be copied to any word in the table by setting the pointer value
from 0 to 4.

—3-10 —

3.3 Data Transfer Instruction Details

M
3.3 Data Transfer Instruction Details

This section describes the functions, structures, and operation of the data transfer
instructions and provides simple examples of their application.

3.3.1 REGISTER-TO-TABLE MOVE (RoT) « v v 3-1
8.3.2 TABLE-TO-REGISTERMOVE (T5R) .. vvseno e 3-19
3.3.3 TABLE-TO-TABLE MOVE (ToT) «.'uveeners oo . 327
334 FIRSTIN(FIN) ..ovvtiine it 3-34
8335 FIRSTOUT(FOUT) ..ouvire oo 3-42
3.3.6 TABLESEARCH(SRCH)vvivnirenns e 3-49
837 TABLESET(TSET) .'ovviinrnieeeee e 3-56
3.3.8 BLOCKMOVE (BLKM)c0cviviinininininininarninnnn.,. 358
3.3.9 BLOCK-TO-TABLE MOVE (BLKT) «vvvvreeonnineo 3-65
3.3.10 TABLE-TO-BLOCKMOVE (TBLK) ... 'vveeonrs o 3-72
3.3.11 INDIRECT BLOCK WRITE (IBKW) . ..o 3-79
3.3.12 INDIRECT BLOCK READ (IBKR)vvvseeeeeeee o 3-86

3.3.1 REGISTER-TO-TABLE MOVE (R—T)

1. Funection

1) Data from a single register is transferred to a data table. The pointer value determines
which register in the table is the destination register.

2) The word of datain the source is copied to the register in the destination table specified by
the pointer value.

Example
~ In this example, the instruction is executed with a pointer value of 2, which transfers the _
source data to the 3'd register in the destination table.

400010 2| Pointer
Source Transfor 400011 1000 1st
) 400012] 2000 2ng Destination
400013 }3846000] arg Table
400014 40007 amn (Size: 5)

400015 5000) sth

2. Structure

Executes the data transfer and Input 1 =~ Source S) — Output 1: Echoes state of input 1.

increments the pointer by 1.
. | . Destination
Disables automatic refreshing input2 — pointer P — Output2: Tums ON when the pointar
of the pointer value after the value = Z, ragardless of the
transfer. R—T status of input 1.
Resets the pointer valueto 0, Input3
regardless of the status of in- Tabie size (2)
puts 1 and 2.

—311—

‘Data Transfer Instructions
3.3.1 REGISTER-TO-TABLE MOVE (R—T) cont.

1) R—T is the symbol for REGISTER-TO-TABLE MOVE.

2) R—T requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.2 lists the reference numbers and
constants that can be specified. The leading register in the destination table is the one
just after the pointer.

Example
Input 1 =1 400001 = Output1 400001: Reference number of the source
400010: Reference number of the pointer
- - : (The next register is the leading regis-
Input 2 ﬁﬂ? Output 2 ter in the destination table.)
|nput 3 — ‘00005 #00005: Size of the destination table (5)
Table 3.2 Structural Elements of R—T
Element Meaning Possible Settings
Top (S) Reference Coil: 000001 to 008177 (000001 1o O0B177)
number of the :
source |ﬂp|.|t relay: 100001 1o 101009 (|00001 to 101 009)
Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704086 (K00001 to K04096)
Link coil: D10001 to D11008 or D2000T1 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: - X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001t to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Reference Holding register: 400001 to 409998 (W00001 to W09998)
(P} number of the
pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Constant: #00001 to #00999
(2 destination
table

Note (1) When a coil or relay is being specified, the last 5 digits of the reference number must
bel16n +1 {(wheren=20,1, 2, ...).

(2) The destination table starts from the register just after the pointer.

— 312 —

. 3.3 Data Transfer Instruction Details

3. Operation

1) Before Execution

P n
Source P+1] 1000
$
P+ntt] 3000
P+2] 5000

2) Pointer Value (n): 0 < n < Z-1

Pointer
1st
Destination Table
(m+t)th (Size: 2)
Zth

Ifthe pointer value is less than Z, the following data transfer will be executed when input 1
turns ON. The transfer is completed in one scan.

P n+1
P+1 1000
Transfer
P+n+1 [8000
P+Z| 5000

Pointer
1st
Destination Tabie
(n+1)th (Size: Z)
Zth

a) The data in the source is copied to the {n+1) register in the destination table..

b) The pointer value will be incremented by 1ifin

2 is ON.

€) The content of the source is left unchanged.

d} The status of the outputs is as foliows:

(1) Output 1: Turns ON.

put2is OFF; itis left unchanged if input

(2) Output2: Transfer result. Turms ON only when n=2.

3) Pointer Value (n): n=2

I the pointer value is equal to Z, the data transfer won't be executed even when input 1
turns ON. Both output 1 and output 2 will be ON.

4) The pointer value mustbe 0<n<Z, regardless of the status of inputs 1, 2, and 3. lf the
pointer value is less than zero, it will be set to zero; if itis greater than Z, it will be setto Z.

5) When input 3 is turned ON, the pointer will be reset to zero, regardless of the status of

inputs 1 and 2.

—313—

Data Transfer Instructions
e

3.3.1 REGISTER-TO-TABLE MOVE (R—T) cont.

6) The following table shows the operation of the R—T instruction for all possible input com-
binations. The pointer value is n and the destination table size is Z.

Table 3.3 R—T Operation

Inputs Condition of R—T Operation : Outputs
1 2 | 3 n ' 1 2

ON |OFF |OFF [0 < n<Z-2 |1) The source data is copied to the (n+1)P ON |CFF
register in the destination table.

n=2-1 2) The pointer value (n) is incremented by 1 ON
after the transfer.
n=Z 1) The transfer isn’'t executed. ON

2) The pointer value (n) ist't changed.

ON {OFF [0 <n<Z-1 |1) Thesource data is copied to the (n+1)® OFF
register in the destination table.

2) The pointer value (n) isn't changed.
n=2Z2 1) The transfer isn't executed. ON

2) The pointer value (n) isn't changed.
OFF [ON | None 1) After resetting the pointer value {n} to 0, " | OFF
the source data is copied to the leading
register in the destination table.

2} The pointer value {(n} is incremented by 1
after the transfer.

ON |[ON |None 1) After resetting the pointer value (n) to O, OFF

the source data is copied to the leading

register in the destination table.

2) The pointer value (n) isn't changed. (n=0)

OFF |Any |ON |None 1) The transfer isn't executed. OFF | OFF
2) The pointer value (n) is resetto 0.
OFF |n£Z 1) The transfer isn't executed. OFF
n=2 ON

2} The peinter value {n} isn't changed.

Note The pointervalue mustbe 0 <n<Z, regardless of the status of inputs 1, 2, and 3. If the pointer
value is less than zero, it will be set to zero; if it is greater than Z, it will be setto Z.

—3-14 —

4EXAMPLE p

4. Application Examples

Example 1

1) Ladder Programming

P 400001 —
—Tgom!_ 000101

1

_l — w0000 —)}
100002 | R—T | 000102

—

#00005

100003

2) Transfer Operation

a) Status Before Execution

Source 400018 n
B et e
400013} 3000
400014] 4000
400015] 5000

3.3 Data Transfer Instruction Details

Pointer
1st

2nd :
3rd Destination Table
4th (Siza: 5)

5th

b) The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transfer is compieted in one scan.

Source

400010
400011
400012
400013
400014
400015

Transfer

400001 |5

1| Pointer
26000 | 1st
20001] 2nd o
3000 3rd ?gg:?g?on Table
4000} 4th
5000] 5th

{1) The source data is copied to the leading register in the destination table.

(2) The pointer value will be incremented to 1 (n=1) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=0) if input relay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:

Coil 000101:

Turns ON only in scan where input 100001 changes from OFF to ON.

Coit 000102;
Remains QFF.

—315—

Data Transfer Instructions

3.3.1 REGISTER-TO-TABLE MOVE (R—T) cont.

c)

d)

g)

The following data transfer is executed when input relay 100001 changes from OFF to
ON and the pointer value is 4 {(n=4). The transfer is completed in one scan.

Source 400010 5] Pointer
400011 60001 1st

400012 2000 2nd o
400013 6000 ard E?gg?g;lon Table
400014 4000 4th

400015 |#456000] 5th

Transfer

(1) The source data is copied to the fifth register in the destination table.

(2) The pointer value will be incremented to 5 (n=5) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=4) i input retay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.

Coil 000102:
Turns ON only when n=5.

The source data can be copied to any register in the table (15t to 5™) by setting the
pointer value from 0 to 4.

If n=5, the data transfer won't be performed when input relay 100001 changes from
OFF to ON. In this case, the status of the outputs will be as follows:

Coil 000101: Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: Turns ON,

The pointer value must be 0 < n <5, regardless of the status of input relays 100001,
100002, and 100003. If the pointer value is less than 0, it will be set to 0; if it is greater
than 5, it will be setto 5.

When input relay 100003 is turned ON, the pointer value {n) will be reset to zero, re-
gardiess of the status of input relays 100001 and 100002,

4EXAMPLEp Example 2

1) Ladder Programming

P —{ 000001 —{)
100001 000101

— 400010 —{ >
R~T 000102

-1 #00005

— 3-16 —

3.3 Data Transfer Instruction Details

M
2) Transfer Operation

_a) Status Before Execution

1st 2nd 16th
ON O\ ON
Source —(}— —)_ """" —‘{)_
000001 000002 000016
408010 E Pointer
1st 2nd 16th
400011 0 0 wvmmmme—] 1st
Destination 4000 12 0 0 """"" 0 2nd
Table { 400013 0 I 0 3rd
(Size:5) | 480014] 0 0 | - 0 4th
400015 0 0] --cce--- 0 5th
Most significant bit Least significant bit

b) The following data transfer is executed when the pointer value {n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

Source

400010 [_1_| Pointer Transter

1st 16th
400011 [y oty | R R
Destination | 400012 Y 0 2nd
Table 400013 0 0 3rd
{Size; 5) 400014 0 0 4th
400015 0 0 5th
Most significant bit Least significant bit

(1) The status of the 16 coils in the source is transmitted to the leading register in the
destination table. When a coil is ON, the corresponding bit is set to 1; when a coil
is OFF, the corresponding bit is set to 0.

(2) The pointer value is setto 1.

(3) Coit 000101 is tumned ON only for the scan in which input relay 100001 changes
- from OFF to ON. Coil 000102 is left OFF,

—317—

Data Transfer Instructions
3.3.1 REGISTER-TO-TABLE MOVE (R—T) cont.

¢) The following data transfer is executed when input relay 100001 changes from OFF to
ON and the pointer value is 4 (n=4). The transfer is completed in one scan.

Source |

a00010[___5_] Pointer Transfer

ist 2nd 16th
400011 | 1 T EEEEREE 1 st
Destination | 400012 0 o 1 - ----- 0 2nd
Table 400013 0 o | -=----- 0 3rd
(Size:5) | ao00ia| 0 0 4t
"L 400015 Dt e i g a st S At sth
Most significant bit Least significant bit

{1) The status of the 16 coils in the source.is transmitted to the fifth register in the
destination table. When a coii is ON, the corresponding bit is set to 1; when a coil
is OFF, the corresponding bit is set to 0.

{2) The pointer value is incremented to 5.

{3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Turns ON.

d) The source data can be copied to any register in the table (15t to 51) by setting the
pointer value from 0 to 4.

e) If n=5, the data transfer won't be performed even when input relay 100001 changes
from OFF 1o ON. In this case, the status of the outputs will be as follows:
Coil 000101: Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: Turns ON.

f) The pointer value must be 0 < n <5, regardiess of the status of input relay 100001. if
the pointer value is less than 0, it will be set to ; if it is greater than 5, it will be setto 5.

- 3-18 —

: 3.3 Data Transfer Instruction Details

3.3.2 TABLE-TO-REGISTER MOVE (T—R)

1. Function

1) Data is transferred from a data table to a single register. The pointer is just before the
destination register and the pointer value determines which register in the source table is
the source register.

2) Any register in the source table can be specified by changing the pointer value. The data
in the specified register is copied to the destination register.

Example
In this example, the instruction is executed with a pointer value of 2, which transfers the
source data to the 39 register in the destination table.

4000011 1000] 1st 400010 2] pointer
4000021 __2000] 2nd - 4000M [%%3006| Destination
Source Table < 400003 I~ 23000 ard

Siza: 5
{Size: 5) 400004 2000] 4t Transfer
400005 5000 s5th

2. Structure

Executes the data transfer and Input1 = Source (§} I= Ouput: Echoes state of input 1.
increments the pointer by 1. - table

. : . Destination .
Disables automatic refreshing Input2 pointer () — ouputz: Tums ON when the pointer
of the pointer value after the value = Z, ragardless of the
transfer, . T—R status of input 1.
Resets the pointer value to 0, Input3 =
regardless of the status of in- Table size {7)
puts 1 and 2.

1) TR is the symbol for TABLE-TO-REGISTER MOVE.

2) T—R requires three eilements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.4 lists the reference numbers and
constants that can be specified. The destination register is the one just after the pointer.

Example

Input1 =1 400001 [~ Output1 400001: Referance number of the lsading word
in the source table.

nput2 — 400010 f— 400010: Refarence number of the pointer
P TR Output2 (The next register is the destination.)

nput3 — $00005 #00005: Size of the sourcs table (5)

— 3-19 —

Data Transfer Instructions »
m
3.3.2 TABILE-TO-REGISTER MOVE (T—R) cont.

Table 3.4 Structural Elements of T=R

Element Meaning Possible Settings

Top (S) | Reference Coil: 000001 to 008177 (000001 to 008177}
number of the
leading word in | Input relay: 100001 to 101009 (100001 to 101009)
the source .
tabie Input register: 300001 to 300512 (Z00001 to Z00512)

Holding register: _400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (K00001 to K04096)

Link coil: D10001 to D11008 or D20001 to D21008
Link register: R10001 to R11024 or R20001 to R21024
MG coil: . Y10001 to Y10241 or Y20001 to ¥20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to‘X10241 or X20001 to X20241

MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middle Reference Holding register: 400001 to 409998 (W00001 to W09998)
) number of the
pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Specify the constant. The maximum value of the constant differs
{Z) source table with specified reference type.
Coil: #00001 to #00512
Input relay: - #00001 to #00064

Input register: #00001 to #00512

Holding register or
constant register: #00001 to #00999

Link coil: #00001 to #00064
Link register: #00001 to #00999
MC coil,

MC relay or

MC controi relay: #00001 to #00016
MC control coil: #00001 to #00010
M code relay: #00001 to #00006

Note (1) When a coil or relay is being specified, the last 5 digits of the reference number must
bei6n +1 (wheren=0,1,2, ..).

(2) The destination register is the one just after the pointer.

—3.20 —

3.3 Data Transfer Instruction Details

3. Operation

1) Before Execution

$1 1080] 1st P n Pointer
P+ 100 | Destination

Source Table S+n| 3000 | (netih
(Size: Z)

S+1-1] 5000 | zh

2) Pointer Value (n): 0 <n< Z-1

Itthe pointer valueis less than Z, the following data transfer will be executed when input 1
turns ON. The transfer is completed in one scan. '

s 10001 1st P n+1 | Pointer
‘ Tm")f‘"' P+1 [:2°3000] Destination
Source Table < s.n [Fam08] e+ 1)th '

{Size: Z)

S+Z-1 5000| Zth

a) Thedatainthe (n+1)Mregister of the source table is copied to the destination register.

b) The pointer value will be incremented by 1 if input 2 is OFF; itis left unchanged if input
2is ON,

¢) The content of the source is left unchanged.
d) The status of the outputs is as follows:
(1) Output 1: Turns ON.
(2) Qutput 2: Transfer result. Turns ON onl} when n=Z.
3) Pointer Value (n): n=2

If the pointer value is equal to Z, the data transfer won't be executed even when input 1
turns ON. Both output 1 and output 2 will be ON.

4) The pointer value must be 0 < n < Z, regardless of the status of inputs 1, 2, and 3. if the
pointer value is less than zero, it will be set to zero; if it is greater than Z,itwillbe setto Z.

5) When input 3 is turned ON, the pointer will be reset to zero, regardless of the status of
inputs 1 and 2.

—3-21 —

Data Transfer Instructions
3.3.2 TABLE-TO-REGISTER MOVE (T—R) cont.

6) The following table shows the aperation of the T—+R instruction for all possible input com-
binations. The pointer value is n and the source table size is Z.

Table 3.5 T—+R Operation
Inputs Conditionof | - T—R Operation Outputs
1 2 3 n . 1 2
ON |OFF [OFF [0 << n< Z-2 | 1) The data in the (n+1)" register of the ON |OFF

source table is copied to the destination.

n=2- 2) The pointer value (n) is incremented by 1 ON
after the transfer.

n=2 1) The transfer isn't executed. ON

2} The pointer value (n) isn't changed.

ON |OFF |0 <n<Z-1 |1} The data in the (n+1) register of the QFF
source table is copied to the destination.

2) The pointer value {n} isn't changed.
n=2Z 1) The transfer isn't executed. ON

2) The pointer value (n} isn't changed.

OFF |ON [None 1) After resetting the pointer value (n) to 0, OFF
the data in the leading register of the
source table is copied to the destination.

2) The pointer value (n) is incremented by 1
after the transfer.
ON |ON | None 1) After resetting the pointer value (n) to O, OFF
the data in the leading register of the
_source table is copied to the destination.

2) The pointer value (n) isn’t changed. (n=0)
OFF |Any [ON |None 1) The transfer isn't executed. OFF | OFF

2) The pointer value (n) is resetto 0.
OFF {n$Z 1) The fransfer isn't executed. OFF

ON

n=2 2) The pointer value (n) isn’t changed.

Note The pointervalue mustbe 0 <n<Z, regardless of the status ofinputs 1, 2, and 3. If the pointer
value is less than zero, it will be set to zero; if it is greater than Z, it will be setto Z.

—3-22 —

3.3 Date Transfer Instruction Details

4. Application Examples

4EXAMPLEp Example 1

1) Ladder Programming

] P 400000 ——)}
—l!llﬂg-l— 00010t

= 400010 —()
__ulnuez T—R [000102

-—1 f—1 #00005
100003

2) Transfer Operation

a) Status Before Execution

400001 [1000 | 1st 400010 n] Pointer
400002 2000 | 2nd 400011100 | Destination
Source Table 4400003f 3000 | ara
Size:5) | 40000414000 | 4
400005(5000 | sth

b} The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

400001 |:£:51000] 1st \ 400010 1] Pointer
400002 2000| 2nd Transfer 400011 }:4°1000] Destination
Source Table £ 400003 3000/ 3rd
(Size: 5)
400004 | 4000] 4th
400005 5000| 5th

(1) The data from the leading register in the source table is copied to the destination
register,

(2) The pointer value will be incremented to 1 (n=1) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=0) if input relay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: :
Remains OFF.

— 323 —

Data Transfer Instructions
3.3.2 TABLE-TO-REGISTER MOVE (T—R) cont.

¢) The following data transfer is executed when input relay 100001 changes from OFF to
ON and the pointer value is 4 (n=4). The transfer is completed in one scan.

: 4000011 1000] tst 400010 5| Pointer
400002 § 2000 2nd Transfer 400011 |+ '5000 | Destination
"Source Table £ 400003 2000 3rd
(Size: 5)
4000041 4000] 4th :
400005 |2 '5000] 5th

(1) The data from the fifth register in the source table is copied to the destination.

(2) The pointer value will be incremented to 5 (n=>5) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=4) if input relay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Tums ON only when n=5.

d) The data from any register in the source table (15! to 5%) can be copied to the destina-
tion by setting the pointer value from 0 to 4.

e) If n=5, the data transfer won't be performed even when input relay 100001 changes
from OFF to ON. in this case, the status of the outputs will be as follows:
Coil 000101: Turns ON only in scan where input 100001 changes from OFF {o ON.
Coil 000102: Tums ON.

f) The pointer value must be 0 < n <5, regardless of the status of input relays 100001,
100002, and 100003. If the pointer value is less than 0, it will be set to 0; if itis greater
than 5, it will be setto 5.

g) When input relay 100003 is turned ON, the pointer value (n) wilt be reset to zero, re-
gardiess of the status of input relays 100001 and 100002,

4EXAMPLEp Example 2

1) Ladder Programming

PA— 000001 |——{)}—
100001 too101

400010 —
T—R 000102
— #00003

—324—

2) Transfer Operation

a) Status Before Execution

3.3 Data Transfer Instruction Details

m

15t 2nd 16th
ON ON ON
~ = | | == “{ | 1st
000001 000002 000016
ON OFF OFF
Source Table ¢ | ~{ = 1= | =maee-- —~{ J ond
®ize:3) 11 gog017 | 000018 000032
OFF ON o
— == = e — = | a0
[000033 000034 (00048
Pointer 1st 2nd 16th
400010 400011] 0] 0 | | 0 |
Most significant bit Least significant bit
Destination

3

b) The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

1st
Source Table <
(Size: 3) 2nd
3rd
Transfer
Pointer ist 2nd 16th
400010 400011 [yt oty R bR Rt
Most significant bit Least significant bit
. —
e
Destination

(1) The status of the 16 coils in the leading register of the source table is transmitted
to the destination. When a coil is ON, the corresponding bit is set to 1; when a coil
is OFF, the corresponding bit is set to 0.

(2) The pointer value is set to 1.

(3) Coil 000101 is turned ON only for the scan in which input relay 100001 changes
from OFF to ON. Coil 000102 is left OFF.

— 325 —

Data Transfer Instructions
3.3.2 TABLE-TO-REGISTER MOVE (T—R) cont.

c¢) The following data transfer is executed when input relay 100001 changes from OFF to
ON and the pointer value is 2 {n=2). The transfer is completed in one scan.

1st 2nd 16th
([ON ON. ON
—()— 1st
000016 |
OFF
Source Table < —
(Size: 3) 2nd
§ 3rd
LI
. Transfer
Pointer 15t 2nd’_ | 16th
sooto[__a] aocon [FEeERFEETATC S Ry
Most significant bit ‘ Least significant bit
. ' e
——
Destination

(1} The status of the 16 coils in the third register of the source table is transmitted to
the destination. When a coil is ON, the corresponding bit is set to 1; when a coil is
OFF, the corresponding bit is set to 0.

{2) The pointer value is incremented to 3.

{3) The status of the outputs is as follows:
Coil 000101: _
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Turns ON.

d) The data from any register in the source table (15tto 3™) can be copied to the destina-
tion by setting the pointer value from 0 io 2.

e) If n=3, the data transfer won’t be performed even when input relay 100001 changes
from OFF to ON. In this case, the status of the outputs will be as follows:
Coil 000101: Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: Turns ON. :

fi The pointer value must be 0 <n < 3, regardiess of the status of input relay 100001. If
the pointer value is fess than 0, it will be set to O; if it is greater than 3, it will be setto 3.

—3-26 —

3.3 Data Transfer Instruction Details

3.3.3 TABLE-TO-TABLE MOVE (T—T)

1. Function

1) Data is transferred from a data table to another data table of the same size. The pointeris
just before the destination table and the pointer value determines which register in the
table is copied.

2) The data from the specified register in the source table is copied to the corresponding
register in the destination table,

Example
Inthis example, the instruction is executed with a pointer value of 2, which copies the data
in the 3 register of the source table to the 3 register of the destination table.

400010 2| Pointer
400001 1000 1st 400011 1st
400002 2000f 2nd anefer 400012 2nd
Soun::sei Tabée 400003 523606 3rd 400013 ol ard Destination Table
2e: ize:
(5122:5) 1 400004 | 4000] 4t 400014 am | Size:5)
400005 5000 | Sth 400015 500 | 5th
2. Structure
Executes the data transfer and Input1 — Source (§) p— Output1: Echoes state of input 1.
incraments the pointer by 1. : table
. , . Destination
Disables automatic refreshing Input2 — pointer (P} [— Output2: Tums ON when the pointer
of the pointer vatue after the _ value = Z, regardiess of the
transfer, status of input 1.
T—T
Resets the pointer value 100, Input3 —
regardless of the status of in- Table size (7)
puts 1 and 2.

1) T—T is the symbol for TABLE-TO-TABLE MOVE.

2) T—T requires three elements, one top element, one middle element, and one bottom ele-
ment, [ocated vertically on the network. Table 3.6 lists the reference numbers and
constants that can be specified. The leading register in the destination table is the one
just after the pointer.

Example

Input1 —1 400001 [— Output 1 400001: Reference number of the leading word in the
source table.

— — 400010: Reference number of the pointer
Input2 41900 !:.] Output 2 (The next register is the leading word in the
- destination table.)

Input3 ~={ #00005 #00005: Size of the source and destination tables (5)

—327—

Data Transfer Instructions

-]
3.3.3 TABLE-TO-TABLE MOVE (T—T) cont.
Table 3.6 Structural Elements of T—+T

Element Meaning Possible Settings
Top (S) [Reference Caoil: 000001 to 008177 (000001 to O0B177)

number of the

leading word in | Input relay: 100001 to 101009 (100001 to 101009)

the source .

table Input register: 300001 to 300512 (Z000C1 to Z200512)

Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (K00001 to K04096)

Link coit: D10001 to D11009 or D20001 o D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q1 0061 to Q10145 or Q20001 to 020145
MC relay: X10001 to X10241 or X20001 to X20241

MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middle Reference Holding register: 400001 to 409998 (W00001 to W09998)
] number of the :

pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Specify the constant. The maximum value of the constant differs
(Z) source and with specified reference type.

destination .

tables Coil: #00001 to #00512

Input relay: #00001 to #00064

tnput register: #00001 to #00512

Holding register or
constant register: #00001 to #00999

Link coil: #00001 to #00064
Link register: #00001 to #00989
MC cail,

MC relay or

MC control relay: #00001 to #00016
MC control coil: ~ #00001 to #00010
M code relay. #00001 to #00006

Note (1) When a coil or relay is being specified, the last 5 digits of the reference number must
be16n +1 (wheren=20,1,2, ..).

(2) The destination table starts from the register just after the pointer.

—328—

l 3.3 Data Transfer Instruction Details

3. Operation

1) Before Execution

P n Pointer
S| 1000 | 1st P+1 100 § st
Destination
Source Table
(Size: 2) Stn{ 3000 | (n+1)th - P4n+1 300 | (n+)tn (nggzz)
S+I1-1] 5000 | zin P+l 500 | &

2) Pointer Value (n): 0 <n < Z-1

Itthe pointer value is less than 2, the following data transfer will be executed when input 1
turns ON. The transfer is completed in one scan.

P n+1| Pointer
s|__ 1000] st P+1 100] 1st
YA Transfer e Destination
Sourfsa};r:-bg S4n | FEB0001 ()Mh —— Panet [FB000] (M1 & Table
- (Size: Z)
S+Z1 50001 Zth P+Z 500| Zth

a) The data in the (n+1)™ register of the source table is copied to the (n+1)M register of
the destination tabie.

b) The pointer value will be incremented by 1 if input 2 is OFF: itis left unchanged if input
2is ON, :

¢) The content of the source is left unchanged,
d) The status of the outputs is as follows:
(1) Output 1: Turns ON.
(2) Output 2: Transfer result. Turns ON only when n=Z.
3) Pointer Value (n): n=2

If the pointer value is equal to Z, the data transfer won't be executed even when input 1
turns ON. Both output 1 and output 2 will be ON.

4) The pointer value must be 0 < n < Z, regardiess of the status of inputs 1, 2, and 3. If the
pointer value is less than zero, it will be set to zero; i it is greater than Z, it will be set to Z.

5) When input 3 is turned ON, the pointer will be reset to zero, regardless of the status of
inputs 1 and 2.

- 3-29 —

Data Transfer Instructions
3.3.3 TABLE-TO-TABLE MOVE (T—T) cont.

8) The following table shows the operation of the T—T instruction for all possible input com-
binations. The pointer value is n and the table size is Z. -

Table 3.7 T—7T Operation
inputs Condition of T—T Operation Outputs
1] 2 | 3 n ’ 112
ON |OFF |OFF |0<n<Z-2 |1) The data in the (n+1)" register of the ON |OFF

source table is copied to the (n+1)h
register of the destination table.

n=27-1 . ‘ ON
2) The pointer value {n) is incremented by 1
after the transfer. -
n=2Z 1) The transfer isn’t executed. ON

2) The pointer value (n) isn't changed.

ON |OFF |0<n<Z-1 |1) The data in the (n+1)" register of the OFF
source table is copied to the (n+1)h
register of the destination table.

2) The pointer value (n) isn't changed.

n=2 1) The transfer isn't executed. ON

2} The pointer value (n) isn’t changed.

OFF |ON |None 1) After resetting the pointer value (n) to 0, OFF
the data in the leading register of the
source table is copied to the leading
register of the destination table.

2) The pointer value {n) is incremented by 1
after the transfer.

ON [(ON |None 1) After resetting the pointer value (n) to 0, OFF
the data in the leading register of the
source table is copied to the leading
register of the destination table.

2) The pointer value (n) isn’t changed. (n=0)
OFF | Any |ON | None 1) The transfer isn't executed. OFF |OFF

2} The pointer value (n) is reset to 0.

OFF jn#£Z 1} The transfer isn't executed. OFF

n=~=2 ON

2) The pointer value (n) isn’t changed.

Note The pointer value mustbe 0 <n<Z, regardless of the status of inputs 1, 2, and 3. lf the pointer
value is less than zero, it will be set to zero; if it is greater than Z, it will be set to Z.

—3-30 —

3.3 Data Transfer Instruction Details

4. Application Examples

4EXAMPLE Example 1

1) Ladder Programming

P 40000 —
—_IAGOOI-I_ 000101

—! ‘!— 400010 —()—

100002 | T—T 000102
200005

ulwoja

2) Transfer Operation

a) Status Before Execution

400010 n Pointer
400001 [7000 | 1t 400011100 | 1t
400002 2000 | 2ng 400012200 | 2na -
Source Tabie 400008 [3080 | ara 400013] 300 | o b mosunation
14000044000 | a1, 400014] 400 | am | (Size:5)
4000055000 | 51, 400015500] 5t

b) The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

— Transier 100010 — %l Pointer
400001 |::271000| 1st ——— 400011 |<551pg0 | 1st
400002 2000| 2nd 400012 200| 2nd)
Destination
S°”'f§i:§f’§)' 400003 | 3000] 3rd 400013[500] 3¢ ¥ Tabie
400004 4000] 4th 400014 400 4th (Size: 5)
400005 5000] 5th 400015 500 5th

(1) The data from the leading register in the source table is copied to the leading reg-
ister in the destination table.

{2) The pointer value will be incremented to 1 (n=1) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=0) if input relay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: :
Remains OFF.

— 331 —

Data Transfer Instructions

3.3.3 TABLE-TO-TABLE MOVE (T—T) cont.

c) The following data transfer is executed when input relay 100001 changes from OFF to

ON and the pointer value is 4 (n=4). The transfer is completed in one scan.

400010 51{ Pointer
400001 1000} 1st 400011 1000| 1st
400002 2000 2nd 400012 200| 2nd .
L Dastination
Sourfsei;:%? 4060003 30001 3rd 400013 s00| 3d ¢ Tabie
400004 4000 | 4th Transfer 400014 a00| 4th {Size: 5)
400005 |:5i5000] 5th ~ ——— 400015 |5 =5000} Sth

d)

f)

9

(1) The data from the fifth register in the source table is copied to the fifth register in
the destination table.

(2) The pointer value will be incremented to 5 (n=5) if input relay 100002 is OFF.
The pointer value will be left unchanged (n=4) if input relay 100002 is ON.

(3) The content of the source is left unchanged.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Turns ON only when n=>5.

The data from any register in the source table (15'to 51) can be copied to the corre-
sponding register in the destination table by setting the pointer value from 0 to 4.

If n=5, the data transfer won't be performed even when input relay 100001 changes
from OFF to ON. In this case, the status of the outputs will be as follows:

Coil 000101: Tums ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: Tums ON. :

The pointer value must be 0 < n £ 5, regardless of the status of input relays 100001, -
100002, and 100003. If the pointer value is less than 0, it will be setto 0; if it is greater
than 5, it will be set to 5.

When input relay 100003 is turned ON, the pointer value (n) will be reset to zero, re-
gardless of the status of input relays 100001 and 100002.

4EXAMPLEp Example 2

1) Ladder Programming

P 000001 ——
100001 000101
—{ 400010 ——{)»—
T—-T 060102

— $00003

v 3-32 —

3.3 Data Transfer Instruction Details

M

2) Transfer Operation

a) Status Before Execution

15t 2nd 16th

(T oN ON ON
—~{ =1 | ------- —{ | st

000601 000002 000016

ON OFF OFF
Sourcse_Ta.ble S = = |= }— | =cecaas ~{ = | 2ng

5ze:3) 11 000017 | 000018 000032

OFF ON ON
—~ = |~ = | -eee--- — — |3

| | 000033 000034 000048

Pointer 1st 2nd 16th
40000 n] [s00011 o 0~ [--meeee- [T
Destination Table 4400012 [} 0 | ===eee-- 0 2nd
(Size: 3) 400013 0 0 | =meeeee- __ 0 3rd

Most significant bit Least significant bit

b) The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transter is completed in one scan.

1st
SourceTable < |~ —| —{ || ------ —{ || 2na
(Size: 3} 000017 || o00018 000032
OFF ON ON
~ || O] - ~ 1|
\, 1000033 000034 000048
Pointer] Transfer
400011 | e Peah | U '] st
Dgsﬁnaﬁon Table < 400012 0 0 - - 0 2nd
(Size: 3) 400013 0 0 | -----=< 0 3rd
Most significant bit Least significant bit

(1) The status of the 16 coils in the leading register of the source table is transmitted
to the leading register of the destination table. When a coil is ON, the correspond-
ing bit is set to 1; when a coil is OFF, the corresponding bit is set to 0.

(2) The pointer value is setto 1.

{3) Coil 000101 is turned ON only for the scan in which input relay 100001 changes
from OFF to ON. Coil 000102 is left OFF.

—333—

Data Transfer Insiructions
3.3.4 FIRST IN (FIN)

¢) The following data transfer is executed when input relay 100001 changes from OFF to
ON and the pointer value is 2 (n=2). The transfer is completed in one scan.

1st 2nd ' 16th
([oN ON ON
() ._()_ _____ _()_ 1st
000001 000002 000016
ON OFF OFF
Sourz:g_Tab:lg || | ------ ~ = long
1Ze:

' Transfer
Pointer 1st 2nd 16th
400010 {400011 1 Y] 1 ‘] ------ ; 1st
: Destination Table 4 400012 o | o. | ------ 0 ond
(Size:3) sooo1s [FE0 e [e ad
Most significant bit i Least significant bit

(1) The status of the 16 coils in the third register of the source table is transmitted to
the third register of the destination table. When a coil is ON, the corresponding bit
is set to 1; when a coil is OFF, the corresponding bit is set to 0.

(2) The pointer value is incremented to 3.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Turns ON.

d) The data from any register in the source table (15! to 3'9) can be copied to the corre-
sponding register in the destination table by setting the pointer value from 0 fo 2.

e) lfn=3, the data transfer won't be performed even if input relay 100001 changes from
OFF to ON. In this case, the status of the outputs will be as follows:
Coil 000101: Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102: Tums ON.

f) The pointer value mustbe 0<n<3, regardléss of the status of input relay 100001. If
the pointer value is less than 0, it will be set to 0; if itis greater than 3, it will be set to 3.

3.3.4 FIRST IN (FIN)

1. Function
1) Data is transferred from a single register to a data table. The pointer value indicates how
many words of data have been stored in the table by the FIRST IN instruction.

2) When there is an “empty register” in the destination table, all of the data s shifted down by
one word to empty the leading register in the table and the contents of the source word
are copied to that empty register.

—334—

3.3 Data Transfer Instruction Details

m

3) The registers farther down in the table contain older data (data that was transferred earli-
er).

4) The FIRST IN instruction is usually used in conjunction with the FIRST OUT instruction.
The FIRST QUT instruction transfers the oldest data from the table to a specified destina-
tion register. Refer to 3.3.5 FIRST OUT (FOUT) for detalils.

Example
This example shows the operation of the FIRST IN instruction and the changes thatoccur
in the source, pointer, and destination.

Source 400010 0 | Pointer
4000010] 400011 0 | 1st
400012 0 {2nd
400013 0 | and Destination Table
400014 0 | any | 9
400015 0] sth

a) First, the instruction is executed with the source data set to 1000; the source data is
copied to the leading register in the destination table and the pointer value is increm-
-ented to 1.

400010 1] Pointer

400011 5573000) 1st

400012 0{ 2nd

400013 ol 3rd (Ds?gg?gfon Table
400014 ol 4th

400015 ol sth

b) Whentheinstruction is executed again with the source data setto 2000, the older data
s shifted down one register, the source data is copied to the leading register in the
destination table, and the pointer value is incremented to 2.

Source Transfer 400010 Pointer
400001 |-£2000] ———= 400011 [*1{2000} 1st
400012 |27 Jopo] 2nd
400013 Srg Destination Table
(Size: 5)
400014 0{ 4th
400015 ol sih

2. Structure

Executes the data ransferand Input1 = Source (S) [~ Output1: Echoes state of input 1.
increments the pointer by 1.

E;zlt]:ratlon(p) — Output2: Tums ON when the pointer
value = Z, regardless of the
FIN status of input 1.

= Output3: Tums ON when the pointer
; value = 0, regardiess of the
Table size (Z) status of input 1.

—335—

Data Transfer Instructions
3.3.4 FIRST IN (FIN) cont.

1) FIN is the symbol for FIRST IN.
2) FIN requires three elements, one top element, one middie element, and one bottom ele-

ment, located vertically on the network. Table 3.8 lists the reference numbers and
constants that can be specified. The leading register in the destination table is the one

just after the pointer.
Example
Input1 —§ 400001 — Output 1 400001: Reference number of the source.
400010: Reference number of the pointsr
400010 |— Output2 (The next register is the leading word
FIN in the destination table.)
#00005 L Ou!pUt 3 #00005: Size of the destination table (5)

Table 3.8 Structural Elements of FIN

Element Meaning Possible Settings

Top (8) | Reference Coil: 000001 to 008177 (000001 to O08177)
number of the
source Input relay: 100001 to 101009 (100001 to 101009}

Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09599)
Constant register: 700001 to 704086 (KOD0O01 to K040986)

Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: ¥Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241

MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middle Reference Holding register: 400001 to 409998 (W00001 to W09898)
P number of the

pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Constant: #00001 to #00100
(V4] destination

table

Note (1) When a coil or relay is being specified, the last 5 digits of the reference number must
be16n+1 (wheren=0,1, 2, ..).

(2) The destination table starts from the register just after the pointer.

—3-36 —

. 3.3 Data Transfer Instruction Details

3. Operation

1) Before Execution

’ P n Pointer
Source P+1] 3080 | 1a

s[4]

Ptni 1000 | nn Dastination Table
P+nt1 0 | (n+)th (Size: 2)
. P4l ¢ | zth

2) Pointer Value (n): 0 < n < Z-1

Itthe pointer value is less than Z, the following data transier will be executed when input 1
turns ON. The transfer is completed in one scan.

Transfer P e — Pointer
P41 [1st
P+n J§es nth Destination Table
P+n+1 {n+1)th {Size: 2)
P+Z 0] Zth

a) Allof the data in the destination table is shifted down one word, emptying the leading
register in the table,

b) The source data is copied to the leading register of the destination table.
c) The pointer value is incremented by 1.
d) The content of the source is left unchanged.
€) The status of the outputs is as follows:
(1) Output1: ON
~ (2) Output 2: Transfer result. ON only when n=Z.
(3} Output 3: OFF
3) Pointer Value (n): n=2

If the pointer value is equal to Z, the data transfer won't be executed even when input 1
turns ON. The status of the outputs is as follows:

—3.37—

Data Transfer Instructions
3.3.4 FIRST IN (FIN) cont.

Qutput 1: ON
Output2: ON
Output 3: OFF

4) The pointer value must be 0 < n < Z, regardless of the status of inputs 1, 2, and 3. If the
pointer value is less than zero, it will be set to zero; if itis greater than Z, it will be setto Z.

5) The pointer value indicates how many words of data have been stored in the table by the
FIRST IN instruction.

6) The following table shows the operation of the FIN instruction for all combinations of input
1 and the pointer value. The pointer value is “n” and the destination table size is “Z.”

Table 3.9 FIN Operation
Input 1 | Condition of FIN Operation Outputs
n 1 2 (3
ON 0 < n< Z-2 | 1) The data in the destination table is shifted ON |OFF |OFF
down one word, emptying the leading register
in the table.
2) The source data is copied to the leading
n=Z-1 register of the destination table. ON | OFF
3) The pointer value (n) is ihcremented by 1 after
the transfer.
n=2 1) The transfer isn't executed. ON | OFF
2) The pointer value {n} isn't changed.
OFF n=0 1} The transfer isn't executed. OFF |OFF |ON
1<ngZA OFF | OFF
n=7 2} The pointer value (n) isn’t changed. ON [OFF

Note The pointer value mustbe 0 <n<Z, regardless of the status ofinputs 1, 2, and 3. If the pointer
value is less than zero, it will be set to zero; if it is greater than Z, it will be set to Z.

<EXAMPLEp 4, Application Example

1) Ladder Programming

P 400001 —)}
100001 000101
400010 |—{)
FIN| oo0t02

$00005 —{
000103

— 3-38 —

3.3 Data Transfer Instruction Details

2) Transfer Operation

a) Status Before Execution

Source 400010 0 | Pointer
400001 400011 0| 1st
400012 0] 200 | s
400013 0} and astination Table
400018 0 | 4 | ©=9
400015 0 | st

b} The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Pointer

400010 1

400011 |7=230007 1st

400012 0l znd

400013 0] 3rd Destination Table
(Size: 5)

400014 01 4th

400015 0} 5th

(1) The source data is copied to the leading register of the destination table.
(2) The pointer value is incremented to 1.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF.
Coil 000103:
Remains OFF.

c) The following data transfer is executed when the source data is changed to 2000 and
input relay 100001 is turned from OFF to ON. The transfer is completed in one scan.

Transfer 400010 2| Pointer
s00011 (57355 1s1
400012 [-{£41p00] 2nd
400013 ol ard I:)quﬁpgﬁon Table
400014 ol an | €9
400015 ol 5

(1) The data in the leading register of the destination table is shifted to the second
register, so the leading register is empty.

—3-39—

Data Transfer Instructions
3.3.4 FIRST IN (FIN) cont.

{2) The source data is copied to the Ieadiniq register of the destination table.

(3) The pointer value is incremented to 2.

(4) The status of the outputs is as foilows:
Coit 000101: '

Turns ON only in scan where input 100001 changes from OFF to ON.

Coil 000102:

Remains OFF.
Coil 000103:

Remains OFF.

d) The following data transfer is executed when the source data is changed to 3000 and
input relay 100001 is turned from OFF to ON. The transfer is completed in one scan.

400010
400011
400012
400013
400014
400015

3

e A Ay
ﬁ*.&%m-
R gL s 20

S o

Al T d
] 000

0

o

Pointer
1st

2nd

Daestination Tabie
3rd {Size: 5)
4th

5th

(1) All of the data in the destination table is shifted down one word, so the leading

register is empty.

(2) The source data is copied to the destination table’s leading register.

(3) The pointer value is incremented to 3.

{(4) The status of the outputs is as follows:
Coil 000101:

Turns ON only in scan where input 100001 changes from OFF to ON.

Coil 000102:

Remains OFF.
Coil 000103:

Remains OFF.

e) The foliowing data transfer is executed when the source data is changed to 4000 and
input relay 100001 is turned from OFF to ON. The transfer is completed in one scan.

Source Transfer 400010

Pointer

061 1st

400001 | 34000 400011 |25
400012 | £%i30001 2nd
400013 Goos 3rd Destination Table
Y] {Size: 5)
400014 i ath

400015

—3-40 —

5th

3.3 Data T?an.;'fer Instruction Details

g)

(1) All of the data in the destination table is shifted down one word, so the ieading
register is empty. '

(2) The source data is copied to the leading regiser of the destination table.
(3) The pointer value is incremented to 4.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF.
Coil 000103 '
Remains OFF.

The following data transfer is executed when the source data is changed to 5000 and
input relay 100001 is turned from OFF to ON. The transfer is completed in one scan.

Sourcs rrangfer 400010 - _5 Pointer
400011 |. { 1st
400012 3540007 2nd
400013 %] 3rd Destination Table
] (Size: 5)
400014 4th
400015 Y000l sth

(1) All of the data in the destination table is shifted down one word, so the leading
register is empty.

(2) The source data is copied to the leading register of the destination table.
(38) The pointer value is incremented to 5.

(4) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.
Coil 000102:
Turns ON.
Coil 000103:
Remains OFF.

Since there aren’t any empty registers in the table, the source data won't be trans-
ferred to the table if it is changed to 6000 and input relay 100001 is tumed from OFF to
ON. Also, the pointer value will remain unchanged (n=5) and the outputs will have the
following status:

Coil 000101:
Turns ON only in scan where input 100001 changes from OFF to ON.

— 341 —

Data Transfer Instructions
oA e, e~ e

3.3.5 FIRST OUT (FOUT)

Coil 000102:

Turns ON.
Coil 000103

Remains OFF.

h} The pointer vaiue must be 0 <n < 5, regardiess of the status of input retay 100001. K
the pointer value is less than 0, it will be set to 0; if it is greater than 5, it will be setto 5.

3.3.5 FIRST OUT (FOUT)

1. Function

1) Data is transferred from a data table to a single register. The pointer is located just before
the source table and it indicates how many words of data can be read by the FIRST OUT
instruction.

2) The data that was transferred to the table first (the oldest data) is transferred to the des-
tination. :

3) The FIRST QUT instruction is usually used to read data entered into the table with the
FIRST IN instruction.

Example
This example shows the operation of the FIRST OUT instruction and the changes that
occur in the source table, pointer, and destination.

400010 5 | Pointer
400011] 5000 | 1st
Source Table 400012] 4000 | 2nd
(Size: 5) 400013] 3000 | 3nd o
400014 2000 | ath Destination

400015]_1000 | sth Q0]

a) When the instruction is executed, the data in the 5™ register of the source table is
transferred to the destination, the pointer value is decremented to 4, and the sth regis-
teris set to 0.

400010 4| Pointer

400011 5000] 1st

400012 2nd
Source Table 4000

(Size: 5)3 400013 | 3000| 3rd
4000141 2000 4th Transfer Destination
400015 [idiig

i Tt

400021 2551000

— 342 —

3.3 Data Transfer Instruction Detgils

b) When the instruction is executed again, the data in the 41h register of the source table
is transferred to the destination, the pointer value is decremented to 3, and the 4t

register’is set to 0.

400010 31 Pointer
400011 5000 1st
400012 4000 2nd
Source Tabl
(Size: 57 3 400013 | 3000 3rd
400014 0{ 4th
400015 [ssidhed't] Sth

Transfer

Destination

2. Structure

Executes the data transferand jnputy — SOUC® () I~ Output1: Echoes state of input 1.
decrements the pointar by 1. pointsr

Destination (D) = Output2: Turns ON when the pointer
value = Z, regardless of the
FO UuT status of input 1.

F— Output3: Turns ON when the pointer
Table size (Z) value =), regardiess of the
status of input 1.

1) FOUT is the symbol for FIRST OUT,

2) FOUT requires three elements, one top element, one middie element, and one bottom
element, located vertically on the network. Table 3. 10 lists the reference numbers and
constants that can be specified. The leading register in the source table is the one just
after the pointer.

Example

nput1 =1 400010 [— Output1 400010: Rsference number of the pointer
(The next register is the leading word
in the source tabls.)

400021; Retference number of the destination
#00005: Size of the source table (5)

400021 — output2
FOUT '
#00005 — outputa

—343—

Data Transfer Instructions :
rEEEEEEEE—— e e e -

3.3.5 FIRST OUT (FOUT) cont.
Table 3.10 Structural Elements of FOUT
Element Meaning Possible Settings
Top (P) | Reference Holding register: 400001 to 409998 (W00001 to W09998)
number of the :
pointer Link register: R10001 to R11023 or R21001 to R21023
Middle Reference Coil: 000001 to 0081681 (000001 to ©08161)
(D) number of the .
destination Holding register: 400001 to 408999 (W00001 to W09999)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11023 or R21001 to R21023
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC conirol coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom Size of the Constant: #00001 to #00100
{Z) source table

Note (1) When a coil or relay is being specified, the [ast 5 digits of the reference number must
be16n +1 (wheren=0,1,2, ...).

(2) The source table starts from the register just after the pointer.

3. Operation

1) Before Execution

Pointer

n
P41] 4000 | 1st

Pin=1} 2000 | (n-th
[Table <
ourfgize: ZE)’ P+n| 1000 { nth

Destination

P+ 0| zth ‘ D

2) Pointer Value (n): 1<n<Z

If the pointer value (n}is1 <n < Z, the following data transfer will be executed when input 1
turns ON. The transfer is completed in one scan.

P n-1| Pointer
P+1 4000 1st

Source Table < P+ 2000} (-1t

(Size: Z) P+n [afi g nth Transfer
Destination

| P+z ol zth D [FE£1040

—3-44 —

3.3 Data Transfer Instruction Details

a) The data in the n® register of the source table is copied to the destination.
b) After the source data is transferred, the nth register is set to 0.

c) The pointer value is decremented by 1.

d) The status of the outputs is as follows:

Output1: ON
Ouiput2: OFF
Output 3: Transfer result. ON only when n=0.

3) Pointer Value (n): n=0

If the pointer value is 0, the data transfer won’t be executed even when input 1 turns ON.
The status of the outputs is as follows:

Output 1: ON
Output 2: OFF
Output 3; ON

4) The pointer value mustbe 0<n< Z, regardless of the status of input 1. If the pointer value
is less than zero, it will be set to zero; if it is greater than Z, it will be set to Z.

5) The pointer value indicates how many words of data can be read by the FIRST OUT
instruction.

6) The following table shows the operation of the FOUT instruction for combinations of input
1 and the pointer values. The pointer value is “n” and the destination table sizeis “2.”

Table 3.11 FOUT Operation

Input 1 | Condition of FOUT Operation Outputs
n 1 2 3
ON n=1 1) The data in the n™ register of the source table |ON | OFF | ON

is transferred to the destination.

2) After the source data is transferred, the nt

2<n<z register is set to 0. OFF | OFF
3) The pointer value (n) is decremented by 1 after
the transfer,
n=0 1) Thae transfer isn’t executed. OFF |ON

2) The pointer value (n) isn't changed.

OFF 1< n<Z-1 [1) The transfer isn’t executed. _ OFF [OFF | OFF
n=Z ON |OFF
n=0 2) The pointer value (n) isn’t changed. OFF |ON

— 345 —

Data Transfer Instructions
3.3.5 FIRST OUT (FOUT) cont.

Note The pointer value must be 0 < n<Z, regardless of the status of input 1. If the pointer value is
less than zero, it will be set to zero; if it is greater than Z, it will be setto Z.

«EXAMPLEp 4, Application Example

1) Ladder Programming

Pl 400010 [—)—
100002 000104
400021 —)=~
FOUT 000103
§o6005 ——)

2) Transfer Operation

a) Status Before Execution

400010 § | Pointer
400011] 5000 | 1st
Source Tabl 400012 4000 | 2nd
urce Table
o 44000131 3000 | 3rd
(Size: b) 40001402000 | 4th Destination

400015] 1000 | 5th 400021

b) The following data transfer is executed when input relay 100002 changes from OFF to
ON. The transfer is completed in one scan.

400010 4| Pointer

400011 5000| 1st

400012 | aco0} 2nd

5°”"(’Sei;r§,b§ 400013 | 3000] 3rd
’ 400014 | _ 2000] 4th Transter Destination
400015 F 50026 5th 400021 |2:51006

{1) The data in the 5 register of the source table (1000} is copied fo the destination.
(2) After the transfer, the 5% register is set to 0.
(3) The pointer value is decremented to 4.

(4) The status of the outputs is as follows:

Coil 000104: _
Turns ON only in scan where input 100002 changes from OFF to ON.

—_3-46 —

3.3 Data Transfer Instruction Details

Coil 000105:

Changes from ON to OFF,
Coil 000106:

Remains OFF.

c) Thefollowing data transfer is executed when inputrelay 100002 s turned from OFF to
ON again. The transfer is completed In one scan.

400010 g| Pointer
40001t | __s000) 15t
400012 [4000|2nd

Soucs Tabe | 400013 [so00]

400014 | 5T 0p) 4th m‘ Destination
400015 ol5th 400021 |25 0006]

(1) The data in the 4% register of the source table (2000) is copied to the destination.
(2) After the transfer, the 4™ register is set to 0.

(3) The pointer value is decremented to 3.

(4) The status of the outputs is as follows:
Coil 000104:
Turns. ON only in scan where input 100002 changes from OFF to ON.
Coil 000105:
Remains OFF.
Coil 000106
Remains OFF.

d)} The following data transfer is executed when input relay 100002 is turned from OFF to
ON again. The transfer is compieted in one scan,

400010 2| Pointer
400011 5000 [1st
400012 4000 [2nd

Source Tabl o
our?Sizea:bﬁﬁ 400013 |7 4,7 0| ard Transfer
400014 0] 4th \ Destination
400015 5th 400021 [3000

(1) The data in the 3" register of the source table (3000) is copied to the destination.

(2) After the transfer, the 3" register is sat to 0.
(3) The pointer value is decremented to 2.

{4) The status of the outputs is as follows:
Coil 000104:

—3-47 —

Data Transfer Instructions
3.3.5 FIRST OUT (FOUT) cont,

Turns ON only in scan where input 100002 changes from OFF to ON.
Coil 000105:

Remains OFF.
Coif 000106:

Remains OFF.

e) Thefollowing data transfer is executed when input relay 100002 is turned from OFF to
ON again. The transfer is completed in one scan.

400010 Pointer
400011 5000] ist

s by 400012 {757 550] 2nd Transf
Qurce lable ranster
(Sing a3 400013 o) ard

400014 4th

400015 5th

{1) The data in the 2"d register of the source table (4000) is copied to the destination.

-

v

8%,

)

3

¥,

o

o

(2) After the transfer, the 2™ register is setto 0.

(3) The pointer value is decremented to 1.

{4) The status of the outputs is as follows:

Coil 000104: .
Turns ON only in scan where input 100002 changes from OFF to ON.

Coil 000105:

Remains OFF.
Coil 000106:

Remains OFF.

f) Thefollowing data transfer is executed wheninputrelay 100002 is turned from OFF to
ON again. The transfer is completed in one scan.

400010 Q] Pointer
400011 |70 15t
Soumg_TaPlse :ggg:g g z:: Transfer
(Size: 5) 400014 ol 4th Destination
2400015 1 st e

(1) The datain the 15t register of the source table (5000) is copied to the destination.
(2) After the transfer, the 15t register is set to 0.
(3) The pointer value is decremented to 0.

(4) The status of the outputs is as follows:
Coil 000104:

— 3-48 —

3.3 Data Transfer Instruction Details
.

Tumns ON only in scan where input 100002 changes from OFF to ON.
Coil 000105:

Remains OFF.
Coil 000106:

Turns ON.

g) Since there isn't any data stored in the table, the data transfer won't be executed if
input relay 100002 is turned from OFF to ON again. Also, the pointer value will remain
unchanged (n=0) and the outputs will have the following status:

Coil 000104: Tums ON only in scan where input 100002 changes from OFF to ON.
Coil 000105: Remains OFF. '
Coil 000106: Remains ON.

3.3.6 TABLE SEARCH (SRCH)

1. Function

1} The source is a data table and the destination is a single register (the next register after
the pointer). When the specified search data is found in the source table, that table posi-
tion is stored in the pointer. :

3

2) Searches the source table for the search data and writes that table position in the pointer.

Example

This example shows the operation of the TABLE SEARGCH instruction and the changes
that oceur in the source table, pointer, and destination. When the instruction is executed
after setting the search data (3000) in the destination, the instruction searches the table
for the same data and writes that position (3) in the pointer.

400001 1000]8t Trangier .~ 400010 [5:2427 3] Pointer
400002 | 2000 2nd / 400011 | 3000 | Destination

.(Size: 5) 400004 4000 | ath 3000: Search data
400005 | 5000 5t

2. Structure

Executes the search. input1 — 2%‘”9""9 (S} [~ Output1: Echoes stats of input 1.

inati
Determines the start Input2 —1 E;f‘tt':f I"m(F’) — Output2: Turns ON when the

tocation for the search. search data is found in

When input 2 is OFF, the search SRCH the source table.
begins from the 15! ragister.

When input 2 is ON, the pointer (n)
is incremented by 1 and the Table size {Z)
search begins from the n!" register.

— 349 —

Data Transfer Instructions
3.3.6 TABLE SEARCH (SRCH) cont.

1) SRCH is the symbol for TABLE SEARCH.

2) SRCH requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3,12 lists the register reference num-
bers and constants that can be specified. The destination is the register just after the
pointer.

Example

1

Input 1 =1 400081 | Output1 400001: Referance number of the leading reg-
Ister in the source table

input 2 =4 400011 = Output2 400011: Reference number of the pointer
SRCH (The next register is the destination.)

o005 #00005: Size of the source table (5)

Table 3.12 Structural Elements of SRCH

Element Meaning Possible Settings
Top (S) | Reference number of the leading register | input register: 300001 to 300512
in the source table (Z00001 to Z00512)

Holding register: 400001 to 409899
(W00001 to W09999)

Constant register: 700001 to 704096
(KOO001 to K04096)

Link register: R10001 to R11024
R20001 to R21024
Middle Reference number of the pointer Holding register: 400001 to 409998
P) {WO00001 to W09998)
Link register: R10001 to R11023
R20001 to R21023
Bottom | Size of the source table Constant: #00001 fo #00100

4]

Note The register just after the pointer is the destination register.

3. Operation

1) Before Execution

S| 1000 | 1st P n Pointer
3000 | Destination
Source table < Sta-1| 3000 | mth 3000 : searchdata
(Size: Z) S+m 4000 {m+1)th
The search data can be found in the m¥
$+7-1 3000 | zm and zth register of the source table.

— 3-50 —

3.3 Data Transfer Instruction Details

M

2) The following data transfer will be executed when input 1 alone is turned ON. The transfer
is completed in one scan. '

] 1000 1st P |5a%im | Pointer
3000 | Destination
Source table J S+m-1 3000 mth Transfer
{Size: Z) S+m 4000 | {m+1)th

S+Z-1 3000| zth

a) The search begins from the 15t register in the source table, regardless of the pointer's
original value (n).

b) Ineveryscan, the firstmatch for the search data is found in register m and this position
is written to the pointer. Qutputs 1 and 2 are both turned ON.

c) Evenif several registers in the source table contain the search data, only the first reg-
ister containing the search data is found.

3) The following data transfer will be executed when both input 1 and input 2 are turned ON.
The transter is completed in one scan.

a) Pointer Value (n}: n<m

S| 1o000[1st P [:&5543mT Pointer
3000] Destination
Source table < S*Mm-1 3000 mth Transfer
(Size: Z) 8+m 4000 | (m+1)th

S+Z-1 3000 | Zth

(1) In the first scan, the search begins from the (n+1)? register in the source table.
The first match for the search data is found in register m and this position is written
to the pointer. Outputs 1 and 2 are both turned ON.

(2) Inthe next scan, the search begins from the (m+1)h register in the source table.
The first match for the search data is found in register Z and this position is written
to the pointer. Outputs 1 and 2 both remain ON.

(3) Inthe next scan, the search begins from the leading register in the source table.
The first match for the search data is found in register m and this position is written
to the pointer. Outputs 1 and 2 both remain ON,

{(4) Steps 2 and 3 repeat in subsequent scans.

— 3-51 —

Data Transfer Instructions
3.3.6 TABLE SEARCH (SRCH) coni.

b) Pointer Value{(n): n2m

5 1000 1st P | 7] Pointer
3000 | Destination

Transter
Source table) S+m-1 3000 | mth

{Size: Z) S+m| 4000 | (m+1)th

S+2-1 3000 | Zth

(1) Inthe first scan, the search begins from the (n+1)! register in the source table.
The first match for the search data is found inregister Z and this position is written
to the pointer. Qutputs 1 and 2 are both turned ON.

(2) Inthe next scan, the search begins from the leading register in the source table.
The first match for the search data is found in register m and this position is written
to the pointer. Qutputs 1 and 2 both remain ON.

(3) Inthe next scan, the search begins from the (m+1)t" register in the source table.
The first match for the search data is found in register Z and this position is written
to the pointer. Outputs 1 and 2 both remain ON.

(4) Steps 2 and 3 are repeated in subsequent scans.

4) If the source table doesn’t contain the search data, the pointer is set to 0 and that scan’s
search ends.

5) The pointer value mustbe 0 <n<Z, regardiess of the status of input 1. If the pointer value
is less than zero, it will be set to zero; if it is greater than Z, it will be set fo Z.

6) The following table shows the operation of the SRCH instruction for all combinations of
inputs 1 and 2 and the pointer values. The pointer value is n and the source table size is Z.

— 3-52 —

3.3 Data Transfer Instruction Details

Note

4EXAMPLEp

Table 3.13 SRCH Operation

Inputs Condition of SRCH Operation Outputs
ON (OFF (0<n<Z 1) The search begins from the 15t ON (1) ON when the
register in the source table. search data is
found.
2) When the search data is found, that
position (m) is transferred to the ' 2) OFF when the
_pointer and the search is source fable
ON [n=z completed for that scan, - doesn't contain
the search
3) When the source table doesn't data.

contain the search data, the pointer
is set to 0 and the search is
completed for that scan.

0=<n=<2-1 1) The search begins from the (n+1)h
register in the source table.

2) When the search data is found, that
position (m) is transferred to the
pointer and the search is
completed for that scan.

3) When the source table doesn't
contain the search data, the pointer
is set to 0 and the search is
completed for that scan.

OFF | Any | None 1) The search isn’t executed. OFF | OFF

2} The pointer value (n} is set to 0.

The pointer value must be 0 < n < Z, regardless of the status of inputs 1 and 2. if the pointer
value is less than zero, it will be set to zero; if it is greater than 2, it will be setto Z.

4. Application Examples

Exampie 1

1) Ladder Programming

; P I— 400001 '/} {)} ON when the source table doesn't
100001 000102 000101 contain the search data.
— 400010 —roA)}
SRCH 000102 ON when the search data is found
$00005 in the source table.
—3.53 —

Data Transfer Instructions .
L 0o ot
3.3.6 TABLE SEARCH (SRCH) cont.

2) Transfer Operation

a) Before Transfer

400001 [3000 1t 400010 [0 Pointer
s o 400002] 2000 |2nd ‘4000111 3000 | Destinaticn
ource table J 400003 [3000 | ara
(Size: 5) 400004] 4000 | 2t 3000 © Search data
4000053000 | 5 '

b) The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

o3| Pointer
Destination

400001 1000 1st
400002 2000 2nd

Source table
(Size: 5) 400003 3000] 3rd Transfer

400005 3000] 5th

(1) The search begins from the leading register in the source table. The first match for
the search data is found in the third register and this position (3) is written to the
pointer.

{2) The status of the outputs is as follows:
Coil 000101:
Remains OFF.
Coil 000102: .
Turns ON only in scan in which input 100001 changes from OFF to ON.

(3) Since input 2 is OFF, the search begins from the leading register in the source
table and always finds the search data in the third register. The search datain the
fifth register can't be found with this ladder programming.

AEXAMPLEp Example 2

1) Ladder Programming

400001 M { }— ON when the source table doesn’t
100001 000102 000101 contain the search data.
400010 ——)

SRCH 000102 ON when the search data is found
200005 in the source table.

—3-54 —

. 3.3 Data Transfer Instruction Details
%
2) Transfer Operation

a) Before Transfer

400001] 1000 | 1st 4000190 0 | Pointer
400002| 2000 | 2nd 400011] 3000 | Destination
(oeale 14000033000 | ara
' 4000047 4000] ath 3000 : search data
400005[3000 | sh

b) When input relay 100001 changes from OFF to ON, the search begins from the lead-
ing register in the source table. The first match for the search data is found in the third
register, this position (3) is written to the pointer, and this scan’s search is completed,
Coil 000101 is OFF and coil 000102 is ON.

400001 1000 | 1st e 400010 [E0228%] Pointer
400002 2000] 2nd 400011 3000 | Destination
Source table ¢ 400003 [~ 3000 3rd Transfer

(Size: 5)

400004 | 4000] 4th
400005| _ 3000] Sth

c) Inthe next scan, the search begins from the fourth register in the source table. The
search data is found in the fifth register, this position (5) is written to the pointer, and
this scan’s search is completed.

Coil 000101 is OFF and coil 000102 is ON.

[] N
400001 1000 1st 400010 |#5E2dg]| Pointer
400002 | 2000 2nd 400011 | 300p] Destination
(Sst?:;?%:able 400003 3000 3rd Transfer
400004 40001 4th
400005| 3000} 5th

d) Inthe nextscan, the search begins from the leading register in the source table. The
search data is found in the third register, this position (3} is written to the pointer, and
this scan’s search is completed. :

Coil 000101 is OFF and coil 000102 is ON.

400001 | 1000/ 1st 400010 [:::8: 5 | Pointer
400002 20001 2nd 400011 3000 | Destination
Source table 400003 30001 3rd Transfer

(Size: 5)
400004 4000 | 4th

400005 3000 | 5th

&) As long as input relay 100001 is ON, steps 2 through 4 are repeated in subsequent
scans.

— 355 —

Data Transfer Instructions
3.3.7 TABLE SET (TSET)

3.3.7 TABLE SET (TSET)

1. Function

1) The source is a single register and the destination is a data table. There is no pointer.

2) Copies the content of the source (1 word of data) to all of the registers in the destination

table. The transfer is completed in one scan.

Example

This example shows the operation of the TABLE SET instruction and the changes that
occur in the source and destination table. When the instruction is executed, the source
data is copied to all of the registers in the destination table.

Transter
400011 [Z:27000
400012 y
400013 |
400014 &5
400015 [3:5:1000
2. Structure
Execuies the transfer. input1 — Source (8} f— Output1:
Destination
table ‘m
TSET
Table size (I) ‘

1) TSET is the symbol for TABLE SET.

1st

2nd
Destination table
8d ¢ (Size: 5)
4th
5th

Echoes state of input 1,

2} TSET requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.14 lists the register reference num-

bers and constants that can be specified.

Example
Input 1 =~ 400001 — ouput 1 400001: Reference number of the source
400011: Reference number of the leading reg-
400011 ister in the destination table
TSET #00005: Size of the destination table (5)
$00005

— 3-56 —

3.3 Data Transfer Instruction Details

Table_ 3.14 Structural Elements of TSET

Element Meaning Passible Settings
Top (8} { Reference number of the source Input register: 300001 to 300512
(Z00001 to Z00512)

Hotding register: 400001 to 409999
(W00001 to W09939)

Constant register: 700001 to 704006
{K00001 to KD4096)

Link register: R10001 to R11024
R20001 to R21024
Middle Reference number of the leading register Holding register: 400001 to 409999
(D) in the destination table (W00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024

Bottom Size of the destination table Constant; #00001 to #00100
(2)

3. Operation

1) Before Transfer

Source

s[_1000] D100] 1st

- Destination table
D+n-1 300 }nh Size: 2)

D421 500 | zth

2) The following data transfer is executed when input 1 is turned ON. The transfer is com-
pleted in one scan.

_ Transfer

o 72 00

Destination table

D4n-1)| nth (Size: 2)

D+Z-1 [5=1p00] Zth

a) The source data is copied to all of the registers in the destination table in one scan.
b) Output 1 is turned ON.

3) The following table summarizes the operation of TSET.

Table 3.15 TSET Operation

Input 1 TSET Operation Qutput 1
ON The source data is copied to ali of the registers in the destination table in ON

one scan.
OFF The transfer is not executed. OFF

—3.57 —

———

Data Transfer Instructions
3.3.8 BLOCK MOVE (BLEM)

<«EXAMPLEp 4, Application Example

1) Ladder Programming

P j— 400001 [—()»—
100001 000101
400011
TSET
#00005

2) Transfer Operation

a) Before Transfer

Source

4000011008] 400011100 | 1st

4000127700 f na |
estination e
400013[300 | ara Rosiral

400014] 400 | 4
400015 300 | st

b) The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Source Transfer
000 | 1st
000{ 2nd Destination tabl
o estination table
3rd (Size: 5}

y| 4th
o] sth

(1) The source data is copied to all of the registers in the destination table in one
scan.

(2) Coil 000101 is ON only in scan in which input 100001 changes from OFF to ON.

3.3.8 BLOCK MOVE (BLKM)

1. Function

1) The source and destination are data tables of the same size. There is no pointer.

2) Copies the contents of the registers in the source table to the corresponding registers in
the destination table in a single scan.

—3-58 —

3.3 Data Transfer Instruction Details

Example

This example shows the operation of the BLOCK MOVE instruction and the changes that
oceur in the source and destination tables. When the instruction is executed, all of the
data in the source table is copied to the destination table in one scan.,

Transfer
400001 [7:%1p00] 1st ———— 400014] 1st
400002 | ¥5i2000]| 2nd = —————= 400012 [| 2nd
Source table ' 400003 {7ia000] 3d = ——— 400013 | ard } Destination table
(Size: 5) 400004 [74000 4h ———— 400014 [Fibanoo| an | (57285)
400005 [% 5p0G] 5th ~ ———= 400015 [5o60] 5th

2. Structure

Executes the transfer. Input1 = g%llgcs {S) - output1: Echoes state of input 1.

Destination
table D)

BLKM

Table size (l)

1) BLKM is the symbol for BLOCK MOVE.

2) BLKM requires three elements, one top element, one middle element, and one bottom
efement, located vertically on the network. Table 3.16 lists the register reference num-
bers and constants that can be specified.

- Example
Input1-— 408001 [— Output 1 400001: Reference number of the leading register in
: the source table
400011t . 400011: Reference number of the leading register in
BLKM the destination table
#00005 #00005: Size of the source and destination tables (5}

— 3-59 —

Data Transfer Instructions
3.3.8 BLOCK MOVE (BLKM) cont.

Table 3.16 Structural Elements of BLKM
Element Meaning Possible Settings
Top{S) |Reference Coil: 000001 to 008177 (000001 to O08177)
number of the
leading register | Input relay: 100001 to 101009 (100001 o 101009)
in the source :
{:ble Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (K00001 to K04096)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC cail: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Reference Coil; 000001 to 008161 (000001 to O08161)
(D) number of the
leading register { Holding register: 400001 to 409999 (W00001 to W0S999)
in th
Lj‘egtﬁ,aﬁo,, Link coil: D10001 to D11009 or D20001 to D21009
table Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of the Specify the constant. The maximum value of the constant differs
2) source qnd with specified reference type.
destnaton i #00001 to #00100
Input relay: #00001 to #00064
Input register,
holding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MG cail,
MC relay or
MC control relay: #00001 to #00016
MC control coil: #00001 to #00010
M code relay: #00001 to #00006

Note When a coil or relay is being specified, the lower 5 digits of the reference number mustbe16n

+1 (wheren=0,1,2,..).

— 3-60 —

3.3 Data Transfer Instruction Details

4EXAMPLE p

3. Operation

1) Before Transfer

S| 10600 | 1st

s tab! -
(93:;092) e Stn-1] 3000 |nth
$+2-1] 5800 [z

D

D+n-1

D+I-1

100

300

500

st

th Destination table
n (Size: 2)
Zth

2) The following data transfer is executed when input 1 is turned ON. The transfer is com-

pleted in one scan.

s |3 1000] 1st

Source table W o
(Size: 2) S+n-1 |- 3000} nth
S+Z-1.] zih

Transfer

D

D+n--1

D+Z-1

Rl

ey
~

e
s

BT
ks
hY)

ﬁ;g;lw-’ o

Ll

L5000

1st

Destination table
nh o Size: 7)
Zth

a) All of the data in the source table is copied to the corresponding registers in the des-
tination table. The transfer is completed in one scan.

b) The contents ofthenh(n=11t02) register of the source table are copiedto the nth (n=
1 to Z) register of the destination table.

c) Output 1 is turned ON.

3) The following table summarizes the operation of BLKM.,

Table 3.17 BLKM Operation

Input 1 BLKM Operation QOutput 1
ON Ali of the data in the source table is copied to the corresponding registersin | ON

the destination table. The transfer is completed in one scan.
OFF The transfer is not executed. OFF

4, Application Examples

Example 1

1) Ladder Programming

Pl—1 400001 ——)}
100001 000101
400011
BLKM
§00005
— 3-61 —

3

Data Transfer Instructions
3.3.8 BLOCK MOVE (BLEM) cont.

2} Transfer Operation

a) Before Transfer

4000011000] 1st 400011100] 181

400002 [2000 | 2na W02 20 fong |
Source table $400003 3000] 3rd 400013) 300 Y3 | moe sy
(Size: 5) 4000044000 | 4tn 400014400 J gy | OO

400005 [5000 | 5tn 400015500 | 5,

b) The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Transfer

y| 1st 400011 [24510001 1st

00] 2nd 400012 |'552000] 2nd o
Source table] 3rd ————— 400013 [i%3000] 3rd I(Dse;gpg;lon table
(Size: 5) 4 ———— 400014 |7 d00] 4t '

5th 400015 [Z515000| 5th

(1) All of the data in the source table is copied to the corresponding registers in the
destination table.

(2) The contents ofthe n' (n = 1 to 5) register of the source table are copied to the nh
(n = 1 to 5) register of the destination table.

(3) Coil 000101 is ON only in scan in which input 100001 changes from OFF to ON.

AEXAMPLEp Example 2

1) Ladder Programming

P 000001 ——)}
100001 000101
400001
BLKM
#00001

— 362 —

—_——

2) Transfer Operation

a) Before Transfer

Source table (Size: 1)

3.3 Data Transfer Instruction Details

M

1st

2nd

15th 16th
ON OFF ON OFF
~ = [| e ~ = =
¢oogo1 000002 200015 000016
1st 2nd 15th 16th
40001 0] 0 T ----=----ttol |
Most significant bit Least significant bit

Destination table (Sizp: 1)

b) The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer.is completed in one scan.

Source table (Size: 1)
—e

e
ST B
Transter
2nd 16th
RIESUCNtS Py AT A L
e g Tl *[12:5«‘53’,;;0 "@Té-l

Least significant bit
——

——
Destination table (Size: 1)

(1) The status of the 16 coils in the source table are transferred to the corresponding
16 bits in the destination table. When a coil is ON, the corresponding bitis setto 1;
when a coil is OFF, the corresponding bit is set to 0.

(2) Coil 000101 is ON only in scan in which input 100001 changes from OFF to ON.

4EXAMPLEp Example 3

1) Ladder Programming

P 400001 F——ro)}
100001 000101
000001
BLKM
§00001
—3-63—

Data Transfer Instructions
3.3.8 BLOCK MOVE (BLKM) cont.

2) Transfer Operation

a) Before Transter

Source table (Size: 1)

Ll g A

ist 2nd . 15th 16th
400001 1 | 0 | mmemmmeememcemene | 1 | 0 |
Most significant bit ’ . Least significant bit
1st 2nd 15th 16th
OFF OFF ' OFF OFF
s — ey
600001 | 000002 : p00015 | 00006

At vl

Destination table (Size: 1)

b} The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Source table (Size: 1)
S
— —

1st 2nd 15th 16th
400001 |2 T R io B s e T SR R R R e o]

15th
g ﬁhﬂbi*?— et
e

a,mocn £ 50¢

Destination table (Size: 1)

{1) The status of the 16 bits in the source table are transferred to the corresponding
16 coils in the destination table. When a bitis “1”, the corresponding coil is tumed
ON; when a bit is “0”, the corresponding coil is turned OFF.

(2) Coil 000101 is ON only in scan in which input 100001 changes from QFF to ON.

Note When coils 000001 through 000016 are used like they are in the BLKM instruction in this ex-
ample, the same reference numbers cannot be programmed as coils in other locations in the
program.

— 3-64 —

3.3 Data Transfer Instruction Details

“‘

-

3.3.9 BLOCK-TO-TABLE MOVE (BLKT)

1. Function

1) Datais transferred from a data block to a data table. The pointer is the register just before
the destination table and the pointer value determines which block in the table is the des-
tination block.

2) The source block is a single data block. (The size of a data block is defined by the userin
the third element of the instruction.)

3) The destination table is made up of a series of data blocks which are referred to as des-
tination biock 1, destination block 2, destination block 3, etc.

4) The data in the source block can be copied to any destination block in the destination
table by adjusting the pointer value. The transfer is completed in one scan.

Example

This example shows the operation of the BLOCK-TO-TABLE MOVE instruction and the
changes that occur in the source block, pointer, and destination table. When the instruc-
tion is executed with a pointer value of 2, the data in the source block is copled to destina-
tion block 3 (400015 and 400016).

—— Source block Size: 2) 400010 2| Pointer
00] 1st Destination | 400011 10] 18t)
06| 2nd } block 1 7 400012 20| 2nd

Destination :400013 ag]| 1st
Block transfar block 2 | 400014 40| 2nd

0] 18t | Destination table
5| 2nd | (Size: 9988)

Destination J 400015 |:*. 510y
block3 | 400016 [i57 29

Destination] 400017 st >
block 4 L 400018 2nd
)
1
*Destination block size: 2 b
’ Destination 409987 90| 1st
block 4894 | 409908 100]| 2nd

2. Structure

Executes the data ransterand Input1 == Source {§) Output 1: ON when the fransfer
increments the pointer by 1, block has been successful.

Disabies automatic refreshing npyrp — Destination (p) [— oy, 2: ON when the transfer has
of the pointer value after the pointer failed.

transfer. BLKT

Resets the pointer value to 0, Input3 =
regardless of the status of in-

puts 1 and 2 Block size 4]

—3-65—

Data Transfer Instructions - .
L ____________________ -~

3.3.9 BLOCK-TO-TABLE MOVE (BLKT) cont.
1) BLKT is the symbol for BLOCK-TO-TABLE MOVE.
2) BLKT requires three elements, one top element, one middle element, and one bottom
element, located verticafly on the network. Table 3.18 lists the register reference num-

bers and constants that can be specified. The register just after the pointer is the leading
register in the destination table.

Example

Input1— 400001 p— Output1 400001: Reference number of the leading register in
the source block

INDLt 2 = - 400010: Refersnce number of the pointer
P 400019 Ouiput2 (The next register is the leading register in
BLKT the destination table.)

input3=—{ #00002 #00002: Size of the source and destination blocks

- 3-66 —

3.3 Data Transfer Instruction Details

Table 3.18 Structural Elements of BLKT

Element Meaning Possible Settings
Top(S) |Reference Coll: 000001 to 008177 (O000D1 to C08177)
number of the :
leading register | Input relay: 100001 to 101009 (100001 to 101009)
in th
block "0 |input register: 300001 to 300512 (200001 to Z00512)

Holding registar: 400001 to 409999 (W00001 to W02989)
Constant register: 700001 to 704096 (K00001 to K04096)

Link coil: D10001 to D11009 or D20001 to D21009
Link register: RA10001 to AR11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241

MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middle Reference Holding register: 400001 to 409998 (W00001 to W09998)
P number of the .
pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Specify the constant. The maximum value of the constant differs
{Z) source and with specified reference type.
Soctnation | Goil #00001 to #00100
Input relay: #00001 to #00064

Input register,
tolding register or
constant register: #00001 to #00100

Link coil: #00001 to #00064
Link register: #00001 to #00100
MC cail,

MC relay or

MC control relay: #00001 to #00016
MC control coil: #0C001 to #00010

M code relay: #00001 to #00006

Note (1) When acoil or relay is being specified, the lower 5 digits of the reference number must
bei6n +1 (wheren=0, 1, 2, ...).

(2) The destination table starts from the register just after the pointer.

—3-67 —

Data Transfer Instructions
3.3.9 BLOCK-TO-TABLE MOVE (BLKT) cont.

3) The Destination Table and Destination Blocks

P n Pointer

s[1000] 1st P41 T | 1st
S block _ inati lock p
e Stn-1] 5000 | min Destinaon block 1 Lpap ™57 run
§+2-1{_5000 | zin P41 5 | zth
{0110] 1st
Destination block .
n+1) 1 Dm 20 | mth > Destination table
(Size: Z)
L Dz 50 | zth
[L1100 | 1st
Destination block N ¢
(Sei:e:Z) Lm 300 | mt
Lz _ 500 | zn |

The destination table and destination blocks are determined by the source block size (Z)
and the reference number of the pointer (P), as shown below.

a) Destination Table

(1) Reference number of the leading register =P+1

(2) Reference number of the last register Ly =P+ [%} xZ

The[}symbols are Gauss’ notation. For any real number V, the term [V] yields the
maximum integer that doesn’t exceed V. For example: [1.5] = 1.

b) Destination Blocks

(1) The number of blocks (N) = [___.,“4099929 - P]

(2) The reference numbers of registers in block n+1 are calculated from the following
equations:
Reference number of the 15t register (Dy) = P+1+nZ
Reference number of the mth register (D) = P+m+nZ
Reference number of the Zt" register (Dz) = P+Z+nZ

4) Valid Pointer Values

If the number of destination blocks is N, the valid pointer values (n) are: 0 < n < N-1.

—3-68 —

3.3 Data Transfer Instruction Details

3. Operation

1) Before Execution

. P [Paointer
S| 1000 | 1st P+1 1] 1st
Scurce biock - Destination block 1 :
(S(?;e:Z) C Stm-11 3000 | mth (Size: 2) < P+n 3 mth
S+1-11_5000 | zin P+l 5 | zth
[D1 10 | 1t
Destination block ' o
{n+1) { Om 30 | mth | Destination table
(Size: Z)

. D2 50 | :
Registers in destination block n+1 are se- N .Zth
lected with the following rules,
{Z is the data block size.):

Reference number of the 15! register (D): [L1 100 | 1s
P+1+nZ " .
Reference number of the mi" register (Dy,): Destination block N 4

P+m+nZ i (Size: 2) Lm 300 mth
Raference number of the Z register (Dy): ‘ _
P+Z+nZ . Lz 500 | - J

LY

2) Operation with a Valid Pointer Value (0 <n < N~1):

If the pointer value is valid, the following data transfer will be executed when input 1 turns
ON. The transfer is completed in one scan.

P I:I Pointer

o Transfer r—
S pies —— Di=P+1+n2 ity 1 1st
- Destination block
Source block 4 §4m-1 Dm=P+m+nZ | mth > (ned)
(Size: Z) : 7 : (Size: Z)
S+Z-1 [YEnor Dz=P4Z+nZ |iiE] Zth

a) The block of registers Dy through Dy is selected as the destination block (destination
block n+1) based on the pointer value (n) and the source block size (Z).

b) Allof the data in the source block is copied to the corresponding registers of destina-
tion block n+1.

¢) The pointer value is incremented by 1 if input 2 is OFF: it is left unchanged ifinput 2 is
ON.

d) The status of the outputs is as follows:
Output 1: Turns ON.
Output 2: Remains OFF.

— 3-69 —

Data Transfer Instructions .
o ——————————————————]
3.3.9 BLOCK-TO-TABLE MOVE (BLKT) cont.

3) Operation with an Invalid Pointer Value (n < 0 or n = N):

If the pointer value is invalid, the data transfer won’t be executed even when input 1 turns
ON. Output 1 will remain OFF and output 2 will be turned ON.

4) When input 3 is tumed ON, the pointer value (n) will be reset to zero, regardiess of the
status of inputs 1 and 2.

5) The following table shows the operation of the BLKT instruction for all possible input com-
binations. The pointer value is n and the number of destination blocks is N.

Table 3.19 BLKT Operation
Inputs Condition of BLKT Operation Outputs
1 2 [3 n ' ; - 1 2
ON |OFF |OFF [0<n<N-1 |1) Allof the data jn the source block is ON |OFF

copied to the corresponding registers of
destination block n+1.

2) The bointer value (n) is incremented by 1
after the transfer.
n < 0,n>N | 1) The transfer isn’t executed. OFF |ON

2) The pointer value {n) isn't changed.

ON- |OFF [0<<n<N-1 |1} The data in the source block is copiedto |ON |OFF

- the corresponding registers of destination
block n+1.

2) The pointer value (n) isn’t changed.
n<0,n>N |1} The transfer isn't executed. OFF |{ON

2) The pointer value (n) isn't changed.
OFF |ON |[None 1) After resetting the pointer value (n)te 0, [ON | OFF
the data in the source block is copied to
the corresponding registers of destination
block 1.

2) The pointer value {n} is incremented to 1
after the transfer.

ON jON |None 1) After resetting the pointer value (n) to 0,
the data in the source block is copied to
the corresponding registers of destination
block 1.

2) The pointer value (n) isn’t changed. (n=0)
OFF |Any |ON | None 1) The transfer isn’t executed. OFF | OFF

2) The pointer value (n) is reset to 0.
OFF 1} The transfer isn't executed.

2) The pointer value (n) isn’t changed.

—3-70 —

3.3 Data Transfer Instruction Details

e T b

«EXAMPLE» 4, Application Example

1) Ladder Programming

|P| #00004 400001 ——
100001 000101
400010 400010
SUB BLKT
400100 |— — 200002
Limits the pointer value
tothe range 0<n<4.
2) Transfer Operation

a) Before Transfer

400010[] Pointer
4000011000] 1st o 40001110] 1st)
ey {400{:02 2000 |2ng DoSinatonblock 19409012820] 2na
o 400013[30 | 1st
Destination block 2 400014 40 | 2nd
L | 400015 80 | 1st Destination table
Destination block 3 { 4906 [™g0 | 2na [(Size: 5988)
"Destination block size: 2 o 400017 70 | 1st
Destination block 4 400018 8¢ | 2nd
o 40001990 | 1st
Destination block 5 400020 100 2nd]

b) The following data transfer is executed when the pointer value {n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

Block transfer 400010 555 7| Pointer
Source biock] 400001 [\254600] 1st Destination | 400011] st)
(Size: 2) 400002 |53 2006 | 2nd block 1 400012 33000 2nd
Destination [400013 1st
block 2 400014 20| 2nd
Destination [400015 50| st Dsstination table
block 3 400016 &0] 2nd r(Size: 9988)
Destination | 400017 7o] st
biock 4 2
*Destination biock size: 2 s 400018 80| 2nd
Destination | 400019 op| 1st
block 5 400020 100] 200 J

(1) Alofthedatainthe source blockis copied to the corresponding registers (400011
and 400012) of destination block 1.

— 371 —

Data Transfer Instructions
3.3.10 TABLE-TO-BLOCK MOVE (TBLK)

(2} The pointer value is left unchanged.

(3} Coil 000101 turns ON only in scan in which input 100001 changes from OFF to
ON.

¢) The following data transfer is executed wheninputrelay 100001 changes from OFF to
ON and the pointer value is 4 (n=4). The transfer is completed in one scan.

—m
T,

400010 55 5] Pointtir
Source block | 400001 | j0] 18t Destination | 400011 1000 | 1st
(Size: 2) 400002 [+ 52000 2nd block 7] 400012 2000 2nd
Destination [400013 30| 1st
block 2 400014 40| 2nd

Destination | 400015 50] 1st | Destination table
Block transter block3 | 400018 60} 2nd ?(Size: 9988)

Destination |, 400017 1st
block 4 400018 2nd
*Destination block size: 2 Ef;i";ﬁon 100013 . | 1st

400020 [2ng

(1) All of the data in the source block is copied to the corresponding registers
(400019 and 400020} of destination block 5.

(2) The pointer value is left unchanged.

(3) Coil 000101 turns ON only in scan in which input 100001 changes from OFF to
ON.

d) The source block can be copied to any destination block in the table (1 to 5) by setting
the pointer value from 0 to 4.

e) Inthis example, the pointer value is limited to the range 0 £ n < 4 by the UNSIGNED
SINGLE PRECISION DECIMAL SUBTRACTION (SUB) instruction, so the BLKT
instruction won't operate if n<0 or n25.

3.3.10 TABLE-TO-BLOCK MOVE (TBLK)

1. Function

1) Data is transferred from a data table to a data block. The pointer is the register just before
the destination block and the pointer value determines which block in the source table is
the source block.

2) The destination block is a single data block. (The size of a data block is defined by the
user in the third element of the instruction.)

3) The source table is made up of a series of data blocks which are referred to as source
block 1, source block 2, source block 3, etc.

4) The data from any source block in the source table can be copied to the destination block
by adjusting the pointer value. The transfer is completed in one scan.

Example
This example shows the operation of the TABLE-TO-BLOCK MOVE instruction and the

~3-72 —

3.3 Data Transfer Instruction Details

changes that occur in the source table, pointer, and destination block. When the instruc-
tion is executed with a pointer value of 2, all of the data in source block 3 (400015 and
400016) is copied to the corresponding registers in the destination block.

(a00011 10] 18t 7 source 400004 Pointer
400012 2072nd | block 1 400005 |2505861 15t | Destination
400013 30|18t | source 400006 | inii6p] 2nd | block
400014 40| 2nd | biock2 (Size: 2)
400015 %’?%59: Ist | Source Block transfer

Source table | 400016 {7.;%1.7'gg] 2nd - block 3

(Size: 9988) ADOD17 70| 18t 1 Source
400018 aol2nd] blocka
409997 90| 15t | Source
\ 409998 100} 2nd g';;: Source block size: 2

2. Structure

Exacutes the data transferand Input1 ~{ SOUrce (§} E— Output1; ON when the transfer
increments the pointer by 1. table has been successful,

Disabies automatic rafreshing jnpyrz —] Destination (p) k— o4t 2: ON when the transter has

of the pointer value after the pointer falled.
transfer. TBLK

Resets the pointer value to 0, Input3 —

ragardless of the status of in- .

puts 1and 2. Block size ()

1) TBLK is the symbol for TABLE-TO-BLOCK MOVE.

2) TBLK requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.20 lists the register reference num-
bers and constants that can be specified. The register just after the pointer is the leading
register in the destination block.

Example

tnput1 —1 400011 — Output1 40001t: Reference number of the leading register in
the source table

— 400004: Reference number of the pointer
Input 2 400004 = Output2 (The next register is the lsading register in
TBLK the destination block.)

input3 == #00002 #00002: Size of the source and destination blocks (2)

— 373 —

Data Transfer Instructions

3.3.10 TABLE-TO-BLOCK MOVE (TBLK) cont,

Table 3.20 Structural Elements of TBLK

Element Meaning Possible Seftings
Top (S) | Reference Coil: 000001 to 008177 (000001 to Q08177)
number of the .
leading register | Input relay: 100001 to 101009 (100001 to 101009)
in the source :
table input register: 300001 to 300512 (200001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (KO0001 to K04096)
Link coil: D16001 to D11008 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 o Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M106081 or M20001 to M20081
Middle Reference Holding register: 400001 to 409998 (W00001 to W09998)
{P) number of the)
pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Specify the constant. The maximum value of the constant differs
(2) source and with specified reference type.
destination
o Coil: #00001 to #00100
Input relay: #00001 to #00064
Input register,
holding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil,
MC relay or
MC control relay: #00001 to #00016
MC controt coil: ~ #00001 to #00010
M code relay: #00001 to #00006

Note

0,1,2,..).

(1) When a coil or relay is being specified, the lower 5 digits of the reference number must
betén +1 {(where n=

(2) The destination block starts from the register just after the pointer.

—3.74—

3.3 Data Transfer Instruction Details

M

3) The Source Table and Source Blocks

[s s] Pl_n Pointer
P+1] 1000 | 1st
Stm-1 3 | mth) Source block 1
(Size:2) P4n[3009 | mtn § Destination

$+2-1 § [zth | ?é?f:z)

' H P+I| 5000 | zth

$1 10) 1st

Sourcetable <4 Sm 30 | mth ,.(Ssc:lzigc::ez?lock n+1)
Sz 50 | zih |

-
-mw

Lt 108 1 1st

' Source block N
im 300 | mth (Size: 2)

Lz 500 | zth

The source table and source blocks are determined by the destination block size (Z) and
the reference number of the leading register in the source table (S), as shown below.

a) Source Table

(1) Reference number of the leading register =8

(2) Reference number of the last register (L, = § + [4&_%99_2—5‘11] X Z-1

The[] symbols are Gauss’ notation. For any real number V, the term [V] yields the
maximum integer that doesn’t exceed V. For example: [1.5] = 1.

b) Source Blocks

(1) The number of blocks (N) = [40—99992_—5*-'-1]

(2) The reference numbers of registers in block n+1 are calculated from the following
equations:
Reference number of the 15t register (S4) = S+nZ
Reference number of the mt register (S;,) = S+m—1+nZ
Reference number of the Z! register (Sz) = S+Z-1+nZ

4) Valid Pointer Values
If the number of source blocks is N, the valid pointer values (n) are: 0 < n < N-1.

— 3-75 —

Data Transfer Instructions
3.3.10 TABLE-TO-BLOCK MOVE (TBLK) cont.

3. Operation

1) Before Execution

’ Lyt P h Pointer
Source block 1 P+1{ . 1000 § 1st
$tm-1 J | mh p ST
srerd) - P+m} 3000 | mtn p Destination
S+I-1 5 1zth | ?é?::z)
: ; P+1[5000 | zn
81 10 | 1st)
Sourcetable | SMm 30 | mh » (Ssc::;c:ez;“mk (n+1}

Sz 80 | zh |

Registars in source block n+1 are selected
with the following rules.
(Z is the destination block size.):

L1 100 | 1st gefesnce number of the 15t register (S¢):
+
Refarence number of the m™ register {Sp,):
tm| 300 | rmtnh } ?s";;‘:’ezf"ww S+m-14+nZ "
Reference number of the Zt register (Sz):
Lz 500 | zm S+Z~-1+nZ

2) Operation with a Valid Pointer Value (0 < n < N-1):

if the pointer value is valid, the following data transfer will be executed when input 1 turns
ON. The transfer is completed in one scan.

P Pointer
S1=8+nZ [04000] 1st ———— P4+t [y 1st
Source block s S~
(n+1) Sm=S+m-1+nZ 001 mih Pa+m min - Dastnation block
{Size: Z) : (Size: Z)

P4+Z friis

8z=8+Z-1+nZ |5 gl Zth Zth

a) The block of registers S, through Sz is selected as the source block (source block
n+1) based on the reference number of the leading register in the source table (S) and
the destination block size (Z).

b) All of the data in source block n+1 is copied to the corresponding registers of the des-
tination block.

¢) The pointer value is incremented by 1 ifinput 2 is OFF; itis left unchanged ifinput 2 is
ON.

d) The status of the outputs is as follows:
Output 1: Turns ON.
Output 2: Remains OFF.

— 3-76 —

3.3 Data Transfer Instruction Details

M
3) Operation with an invalid Pointer Value (n < 0 or n = N):

if the pointer value is invalid, the data transfer won’t be executed even when input 1 turns
ON. Output 1 will remain OFF and output 2 will be turned ON.

4) When input 3 is tumed ON, the pointer value (n) will be reset to zero, regardless of the
status of inputs 1 and 2.

5) The foliowing table shows the operation of the TBLK instruction for aii possible input com-
binations. The pointer value is n and the number of source blocks is N.

Table 3.21 TBLK Operation

Inputs Condition of TBLK Operation Outputs
1 2 | 3 n 1 2
ON |OFF |OFF [0<n< N-1 |1} Allofthe data in source block n+1 is ON |OFF

copied to the corresponding registers of
the destination block.

2) The pointer value (n} is incremented by 1
after the transfer.

n<0,nz=N |1) The transfer isn't executed. OFF [ON

2) The pointer value (n) isn't changed.

ON |OFF |0<n< N-t [1) The all data in source block n+1 is copied {ON |OFF
to the corresponding registers of the
destination block.

2) The pointer value {n) isn’t changed.
n<0,n>N |1) The transfer isn't executed. OFF {ON

2) The pointer valus {n) isn't changed.
OFF |ON |None 1} After resetting the pointervalue (n)to 0, |(ON | OFF
the data in source block 1 is copied to the

corresponding registers of the destination
biock.

2) The pointer value (n) is incremented to 1
after the transfer.

ON {ON |None 1} After resetting the pointer value (n) to 0,

the data in source block 1 is copied to the

corresponding registers of the destination

block.

2) The pointer value {n) isn't changed. (n=0)
OFF [Any [ON |None 1} The transfer isn't executed. OFF | OFF

2) The pointer value {(n} is reset to 0.
OFF 1) The transfer isn't executed.

2} The pointer value (n) isn't changed.

— 377 —

Data Transfer Instructions
3.3.10 TABLE-TO-BLOCK MOVE (TBLK) cont.

<EXAMPLEp 4, Application Example

1) Ladder Programming

Id Lmon —

100001 0o010
400004 P)
TBLK 000102

— 400002

2) Transfer Operation

a) Before Execution

(400011 [KE S RS 400004 n Pointer
400013 W J1st | 4000061 2000 | 2nd | (Size:2)
400014 40 | 2nd urce biod
400015 B0 | 1st
Source table <4(}0016 60 | 2nd Source block 3
(Size:9988) 1400017 70] 1st
400018[80 |ong [SoUrceblocks
[] [] 4 []
A : : : Source block size: 2
409987 90 | 1st
‘_409993 100 | 2ng } Source block 4394

b) The following data transfer is executed when the pointer value (n) is 0 and input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

T Transfer v v
(400011 [1st } Source 400004 [35%5558] Pointer
400012 piiizo] 2nd block 1 \ 400005 h* Ag| 1st }Destinaﬁon block
400013 0| 1st | Source 400006 |E25720] 2nd J (Size: 2)
400014 40| 2nd [block2
400015 50] 1st Source
Squrce table 400016 60| 2nd biock 3
(Size: 9988) ¢ 400017 70| 1st Source
400018 go| 2nd block 4
' : ' ' Source block size: 2
409997 90| 1st Source
\409998 100| 2nd block 4994

(1) Allofthe datainsource block 1 (400011 and 400012) is copied to the correspond-
ing registers of the destination block.

—3-78 —

3.3 Data Transfer Instruction Details

m

(2) The pointer value is left unchanged.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF,

¢) The following data transfer is executed when the pointer value (n) is 4993 and input
relay 100001 changes from OFF to ON. The transfer is completed in one scan.

(400011 10] 15t | source 400004 [T 4g93] Pointer
400012 _20 2nd block 1 1st Destination block
400013 so| st | source] 2nd J (Size: 2)
400014 40| 2nd bleck 2
400015 g0} 18t Source
400016 so| 2 | block3

(Ssc;g;caggé%l? { 400017 70| 'St . Source
400018 go| 2nd | biock 4 Transfer
I I I l
] Source block size: 2

409997 80 1st Source

\409998 #2¥#4gp| 2nd block 4994

(1) Allof the data in source block 4994 (409997 and 409998) is copied to the corre-
sponding registers of the destination block.

(2) The pointer value is left unchanged.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF.

d) All of the data from any source block in the source table (1 to 4994) can be copied to
the destination block by adjusting the pointer value from 0 to 4993. :

e) ! the pointer value is invalid (n < -1 or n > 4994), the data transfer won’t be executed
even when input relay 100001 turns ON. In this case, the pointer value is leift un-
changed, coil 000101 is turned OFF, and coil 000102 is turned ON.

3.3.11 INDIRECT BLOCK WRITE (IBKW)

1. Function

1) Datais transferred between a source table and destination registers using a pointertable
thatis the same size as the source table. The destination registers are determined by the
pointer values in the pointer table, so the destination registers do not have to be consecu-
tive or in any particular order. '

2) The source table is known as the source block and the data table containing the pointers
is known as the pointer block.

—3-79 —

Data Transfer Instructions :
L]
3.3.11 INDIRECT BLOCK WRITE (IBKW) cont.
3) The content of each word in the source block can be copied to any destination hoiding
register by adjusting the content of the corresponding registers in the pointer block.

Example . _

This example shows the operation of the INDIRECT BLOCK WRITE instruction and the
functions of the source block and pointer block. The data in the source block is copied to
the 5 destination registers shown in the following diagram if IBKW is executed with the
shown pointer values. The data can be copied to other registers by changing the pointer

values.
Transter .
] 15t , 400101 ;;@ggzi&d Destination 1
1 2nd 400301 [55%800p0] Destination 2
Squrca block A1 3rd 400201 |5 Destination 3
(Size: 5) =1 4th 400501 fi5i4png] Destnation 4
Sth 400401 {i55o0n] Destination 5
® The data in the n'" register of the source block
is copied to destination n.
& 400000 is added to the content of the nt .
pointer to calculate the reference number of 400011 101 | 1st
destination n, a holding register. 400012 301 | 2nd
For example, 400000 is added fo the content Pointer block < 400013 201 | 5rd
of the 15t pointer (101) to calculate the {Size: 5)
ference number of destination 1 (400101 460014 501 1 4m
re)- 400015]__ 407 5
2. Structure
Executes the fransfer. Input1 —] Source ($) — Output1: ONwhen the transter
biock has been successful.

Destination (p)
pointer

| BKW

Block size (I) |~ Output3: ON when the transfer
has failed.

1) IBKW is the symbol for INDIRECT BLOCK WRITE.

2) IBKW requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.22 lists the register reference num-
bers and constants that can be specified.

— 3-80 —

3.3 Data Transfer Instruction Details
H

Exampie
input1 =] 400001 — Output1 400001: Reference number of the leading regis-
ter in the source block
400011 400011: Reference number of the leading regis-
I BKW ter in the pointer block
$00005 |— Output 3 #00005: Size of the source and pointer blocks (5)
Table 3.22 Structural Elements of IBKW
Element : Meaning Possible Settings
Top (S) | Reference number of the leading register | Holding register: 400001 to 409998
in the source block {W00001 to W09399)

Constant register: 700001 to 704096
- (KOGO0OD1 to K04096)

Link register: R10001 to R11024
R20001 to R21024

Middle Reference number of the leading register | Holding register: 400001 to 409999

(P) in the pointer block _ (W00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024
Bottom | Size of the source and pointer blocks Constant: #00001 to #00255
04} '

3) The Destination Registers

a) The destination registers are holding registers which are specified by the content of
the registers in the pointer block. Any holding register can be selected as the destina-
tion for a register in the source block by changing the content of the corresponding
register in the pointer block.

b) The content of the nth register of the pointer block (Nn) determines the destination
(Dn) for the n'" register of the source block. The following equation shows the relation-
ship between Dn and Nn: Dn = 400000 + Nn.

Transter
s [Eae0a] 1st ——— 100000+N1 5355600 Destination 1
RREanL : :
Source block ¢ g,y 530001 nth 400000+Nn |45 3p00] Destination n
(Size: 2) T T ‘
R S 3
S+Z-1 % | Zth 400000+Nz {5080 Destination Z
Determines the reference humber of destination 1. < ----- P N1 1st
Determines the reference numbar of destination n, ¢-~---- P+n-1 Nn | nth {:'S‘:iz“;_arzg’""*
Determines the reference number of destination Z, <------ P+i-1 Nz Zth

— 3-81 —

Data Transfer Instructions

3.3.11 INDIRECT BLOCK WRITE (IBKW) cont.

4} Valid Pointer Values

a) Pointervalues (Nn) mustmeetthe following three conditions. The contentof aregister
in the pointer block is a “valid pointer value” if it meets these three conditions.

Condition 1: 1 << Nn < 9999

Condition 2: The destination register specified by Nn isn't in the pointer block.

Condition 3: The destination register specified by Nn isn’t in the source block.

b) Condition 2is not met in the following example. Ini this case, the data transfer wouldn’t
be executed even when input 1 is turned ON. Output 1 would be turned OFF and out-

put 2 would be turned ON.

Example

inputt — 400041 = Output1

400001) 1000

400011 | Sourea block {400002 2000

| BKW
§00002 |— Output 3

3. Operation

1) Before Execution

Destination 1 is in the pointer block.

st E4Q001% 11] Destination 1
2nd 400021 12| Destination 2

Pointer block 4 “A20011EL 111 1st

400012 21| 2nd

S| 1000 | 1st 7 Destination 1
Source block - -
(Size:) S+n-1] 3000 | nth ? Destination n
S+Z-1] 5000 | Zth ? Dastination Z
Pl NI ist
Pta-1]_ Nn_[nth fs‘;iz”;f'z?"’c"
P+1-1 Nz Zth

2) All Pointers (N1 to NZ) Valid:

If all of the registers in the pointer block contain valid pointer values, the following data

— 3-82 —

3.3 Data Trensfer Instruction Details

M

transfer is executed when input relay 100001 changes from OFF to ON. The transfer is
completed in one scan.

Transfer
$ [i7:1000] 15t ——— 400000+N1 [5Z-1000] Destination 1
Source block S+n—1 ¥ nth ~———— 400000+Nn |/ 00) Destination n
(Size: Z) B
S+Z-1 |7 5000} Zh ——— 400000+Nz [Destination Z

P4n-1 Nn Pointer biock
M (Size: 2)

P+Z-1 Nz Zth

a) The holding registers shown in the diagram are selected as destination registers 1to
Z based on the contents of the pointer block (N1 to NZ).

b) The contents of the registers in the source block are copied to the selected holding
registers.

c) The status of the outputs is as follows:
Output 1: Turns ON.
Output 3: Remains OFF.

3) Any Pointer (N1 to NZ) Invalid:
Ifany of the registers in the pointer block contains an invalid pointer value, the data trans-
fer isn't executed, output 1 remains OFF, and output 1 is turned ON.

«EXAMPLEp - 4, Application Example

1) Ladder Programming

P 400001 |~)»—
100001 000191
400011
| BKW
00005 —

000102

— 3-83 —

Data Transfer Instructions
L. ________________________________-________________________________.____________)
3.3.11 INDIRECT BLOCK WRITE (IRKW) cont.

2) Transfer Operation

a) Before Execution

4000011 1009 | 1st 1 Destination 1
400002 2000 | 2nd
SSC_‘“"'_"" block <400003] 3000 | 3ra 1 Destination n
(Bies: 8) 40000440600 | 4
400005] 5800 | st 1 Destination Z

400011101] 1t
400012] 301 | 2nd

400013 201 | 3nd Pointer block
400014] 507 | am | 29
400015 401 | sth

b) The following data transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Transfer
400101 | i | Destination 1
400301 & 7 Destination 2
(SSC;:;‘_";_))NOCK ————— 400201 [iag00] Destination 3
) 400501 L-anan| Destination 4
400005 | HidEppg] St ——= 400401 54 5005] Destination 5
Determines the reference number of destination 1, €~ =--==-- 400011 101 § 1st
Determines the reference number of destination 2. < ------ 400012 301 | ond
Determines the reference number of destination 3, < ------ 406013] 201 | arg » Pointer biock
Determines the reference number of destination 4. <---~--- 400014 501 | 4th (Size: 5)
Determines the reference number of destination 5, €<----~-~- 400015 401 | sth

(1) The holding registers shown in the diagram are selected as destination registers
1 to 5 based on the contents of the pointer biock.

(2) The contents of the registers in the source block are copied to the selected hold-
ing registers.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF.

—3-84 —

3.3 Data Transfer Instruction Details

ﬁ

c) The following data transfer is executed when the contents of the pointer block are
changed as shown and input refay 100001 changes from OFF to ON. The transfer is
completed in one scan.

Transfer
400001 [i D| tst ———= 401001 |26 1000 § Destination 4
400002 |:; | 2nd 402001 |2 *“sppg| Destination 2
Source block 400003 |:5i5000] 3rd —— 403001 |o 50061 Destination 3
(Size: 5) ; .

'] Destination 4

[do00) 4th —— 404001 [4
T T y] Destination 5

] 5th 405001

Determines the reference number of destination 1. <-------- 400011 1001 | 1st
Determines the reference number of destination 2, <-=====-- 4000121 2001 | 2nd
Determines the referance number of destination 3, € ======~- 400013] 3001 | 3rd Fs‘c;i:ete;;) lock
Determines the reference number of destination 4, €= ~===~=: 400014{ 4001 | 4t
Betarmines the reference number of destination 5. <------ 400015] 5081 | 5th

(1) The holding registers shown in the diagram are selected as destination registers
1 to 5 based on the contents of the pointer block.

(2) The contents of the registers in the source block are copied to the selected hold-
ing registers. .

(3) The status of the outputs is as follows:
Coil 000101; .
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 000102: '
Remains OFF.

d} Sincethe 5th register in the pointer block contains an invalid pointer value, the transfer
won't be executed when input relay 100001 changes from OFF to ON. Coil 000101
remains OFF and coil 000102 turns ON only in the scan in which input 100001

changes from OFF to ON.
] 1st 409001 o| Destination 1
] 2nd 408002 o | Destination 2
Squrce block ol 3rd 409003 o0{ Destination 3
(Size: 5) 4000 | 4th 409004 o| Destination 4
o] 5th 77? o | Destination 5
Determines the reference number of destination 1. €-------- 400011 9003 | 1st
Determines the reference number of destination 2. <------- 400012| 9002 | 2nd .
Determines the reference number of destination 3. €====---- 400013] 8003 | ard rsollzneteg)b lock
Determines the reference number of destination 4, €¢-~--==~- 4000141 3004 | 4th
Detarmines the reference number of destination 5. <------- 4000151 10001 | 5th

— 3-85 —

Data Transfer Instructions
3.3.12 INDIRECT BLOCK READ (IBKR)

3.3.12 INDIRECT BLOCK READ (IBKR)

1. Function

1) Data is transferred between a source table and destination registers using a pointer table
that is the same size as the destination table. The source registers are determined by the
pointers vaiues in the pointer table, so the source registers do not have to be consecutive
or in any particular order.

2) The data table containing the pointers is known as the pointer block and the data table
containing the destination registers is known as the destination block.

3) The content of any holding register can be copied to a destination register by adjusting
the content of the corresponding register in the pointer block. The transfer is completed in
one scan.

Example

This example shows the operation of the INDIRECT BLOCK READ instruction and the
functions of the source block and pointer block.fThe data from source registers 1to 5 is
copied to the destination block as shown in the following diagram if IBKR is executed with
the pointer values shown. Data from any holding registers can be copied to the destina-
tion block by changing the pointer values.

Transfer
" 400101 |7 op0] Source t —— 400011 1 1st
400301 = Source 2 ——— 400012 BT an0 ' 2nd
400201 58000 | Source 3 40{)913 7 ik gaigg?g;ion block
400501 [Source 4 ———— 400014 [1 4t
400401 |]Source 5 400015 piiEgng] Sth

© The data in source n is copied to the n™ register of

400001 101 | 1st the destination block.
) 400002 301 }2nd
Fsci"zrg'efj ;"0‘* 400003| 281 f3rd e 400000 is added to the content of the nt" pointer to
) 400004 501 | ath calculate the reference number of source n,

400005 401 | 5th For example, 400000 is added to the content of the
15! pointer (101) to calculate the reference number

of source 1 (400101).

2. Structure
input1 —] SOUCa8 (P) L Ouput1: ON when the transter

Exacutes the transfer.

pointer

Destination ()

~ 3-86 —

has been successful.

biock
IBKR
Block size (1) |— Qutput 3: ON when the transfer
; has failed.

3.3 Data Transfer Instruction Details

M‘_
1) IBKR is the symbol for INDIRECT BLOCK READ.

2) IBKR requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 3.23 lists the register reference num-
bers and constants that can be specified.

Example
nput1 — 400801 [— Output1 400001: Reference number of the leading reg-
ister in the pointer block
400011 400011: Reference number of the leading reg-
| BKR ister in the destination block
| #00005: Size of the pointer and destination
$00005 Output 3 blocks {5)
Table 3.23 Structural Elements of IBKR
Element Meaning Possible Settings
Top (P) | Reference number of the leading register Holding register: 400001 to 409999
in the pointer block (W00001 to W09999)

Constant register: 700001 to 704096
{K0O0001 to K04096)

Link register: R10001 to R11024
R20001 to R21024

Middle Reference number of the leading register [Holding register: 400001 to 408999

(D) in the destination block (WO00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024
Bottom | Size of the pointer and destination blocks | Constant: #00001 to #00255
4]

3) The Source Registers

a) The source registers are holding registers which are specified by the content of the
registers in the pointer block. Any holding register can be selected as the source fora
particular register in the destination block by changing the content of the cerrespond-
ing register in the pointer block.

— 387 —

Data Transfer Instructions
3.3.12 INDIRECT BLOCK READ (IBKR) cont.

b) The content of the n'" register of the pointer block (Nn) determines the source (Sn) for
the n'" register of the destination block. The following equation shows the relationship
between Sn and Nn: Sn = 400000 + Nn.

— " Transfer
400000+N1 |55 | Source 1 —= D
400000+Nn §:553000 | Source n — D+n-1 Destination block
| ey {Size: Z)
400000+Nz £} | Source Z—D+2-1 |-
¢ Nt ist ---2 Determines the reference number of source 1.
Pointer block ¢ pyp-1 Na | nth ---3> Determines the reference number of source n.
{Size: Z)
P+Z-1 Kz Zth ——-> Detemmines the reference number of source Z.

4) Valid Pointer Values

a) Pointer values must meet the following three conditions. The content of a register in
the pointer block is a “valid pointer value” if it meets these three conditions.

Condition 1: .. 1 < Nn < 9999
Condition 2: .. The source register specified by Nn isn’t in the pointer block.
Condition 3: .. The source register specified by Nn isn't in the destination block.

b) Condition2is not met in the following example. In this case, the data transfer wouldn’t
be executed even when input 1 is turned ON. Output 1 would be turned OFF and oui-
put 3 would be tumed ON.

Example

Source 1 is in the pointer block.

Input1 —] 400001 |~ Output1 Destination block
400001 1] source 1 400011 0] 1st
400011 400021 | 2000|Source 2 400012 0] 2nd
I BKR

00002 — Output3

Pointer block {‘A ’ 0L 1] 1st
400002 21§ 2nd

— 3-88 —

3.3 Data Transfer Instraction Details
%

3. Operation

1) Before Execution of the Instruction

! Source | [T st
! Source n Dtn-1 300 | nth ?sggg?%ion block
1 Source 2 D+Z-1 .500 Zth
PL_ N1 | s
Pointer block < P4p-
(Size: rZ) Pin-1 Nn nth
Pei-1 Nz | o

2) All Pointers (N1 to NZ) Valid:
If all of the registers in the pointer block contain valid pointer values, the following data

transfer is executed when input relay 100001 changes from OFF to ON. The transfer is
completed in one scan,

. Transfer
Source 1 ——— D 554000

\
=k
000] Sourcen — = pan-1 b

4000004+N1 [i50

L

- Destination biock
0] nth ¢ (si76: Z)

400000+Nz |3 7%; Source Z — D+Z-1 {2i5000] zth

PLNT T .

Pointer block §P+n=1 [T v
(Size: Z)

P+2-1 Nz Zth

a) The holding registers shown in the diagram are selected as source registers 1to 2
based on the contents of the pointer block (N1 to NZ).

b} The contents of the selected source registers are copied to the corresponding regis-
ters in the destination block. ‘

c) The status of the outputs is as follows:
Cutput 1: Turns ON.
Output 3: Remains OFF,

3) Any Pointer (N1 to NZ) Invalid:
Ifany of the registers in the pointer block contains an invalid pointer vaiue, the data trans-

fer isn't executed, output 1 remains OFF, and output 1 is turned ON.

—3-89 —

Data Transfer Instructions
L
3.3.12 INDIRECT BLOCK READ (IBKR) cont.

<EXAMPLEp 4, Application Example

1) Ladder Programming

P 400001 <
100001 000101
400011
| BKR
$00005 — —

000102

2) Transfer Operation

a) Before Execution of the Instruction

! Source 1 400011 100 | 1s
400012 200 | 2nd

? Source n 400013 300 | 3rd Dqsﬁ{lah’on block
400014] 400 | amn | &2

1 Source Z 400015 500 | 5th

400001 101 1 1st
400002 301 | 2nd
Pointer block < 400003 201 | 3rd
(Size: 5) 400004 501 | 4th
400005 401 | sth

b) The followingdata transfer is executed when input relay 100001 changes from OFF to
ON. The transfer is completed in one scan.

Transfer

y] Source 1 400011 A

jo] Source2 ——— 400012 {

ol Source 3 —— 400013 553006 2

T (Size: 5)
Source 4 ——— 400014 =12 3000] 4th

ol Source 5 — 400015 [2¥5000] 5th

400101 |k
400301 [;
400201 |
400501 |5
400401 |

1st

2nd
3rd Destination block

400001701 J 18t
400002 301 | 2nd
Pointer block 4 400003[201 | 3rd
(Size: 5) 400004 501 | am
400005 401 | st

(1) The holding registers shown in the diagram are selected as source registers 1t0 5
based on the contents of the pointer block.

—3.90 —

3.3 Data Transfer Instruction Details

m

(2) The contents of the selected source registers are copiéd to the corresponding
registers in the destination block.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 600102:
Remains OFF.

¢) The following data transfer is executed when the contents of the pointer block are
- thanged as shown and input relay 100001 changes from OFF to ON. The transferis
completed in one scan.

Transfer

401001 |i71000] Source 1 —— 400011 255000 151

402001 |1442000] Source 2 ——— 400012 [i%25:2000] 2nd .
403001 00| Source 3 — 400013 [3000] 3ra Destination block
404001 5] Source 4 —— 400014 [Eivavoa] ath | 2D
405001 ['25000] Source 5 — 400015 |5 2°E000] 5th

4000011001] 1st

- |400002{ 7091 1 2nd
Pointer biock 4400003 f 3001 | ard
(Size:5) | 400004[4001] 4t
400005] 5001 | st

(1) Theholding registers shown in the diagram are selected as source registers 1i05
based on the contents of the pointer block.

{2) The contents of the selected source registers are copied to the corresponding
registers in the destination block.

(3) The status of the outputs is as follows:
Coil 000101:
Turns ON only in scan in which input 100001 changes from OFF to ON.
Coil 000102:
Remains OFF.

d) Since the 5™ register in the pointer block contains aninvalid pointer value, the transfer
won't be executed when input refay 100001 changes from OFF to ON. Coil 000101

- 391 —

Data Transfer Instructions
3.3.12 INDIRECT BLOCK READ (IBKR) cont.

remains OFF and coil 000102 turns ON only in the scan in which input 100001

changes from OFF {o ON.
409001 1000 | Source
409002 2000 | Source2
409003] 3000 | Source 3
409084 4000] Source 4
7771171 Source 5
4000017 8001 | 1st
400002] 9002 § 2nd
Pointer block < 400003] 9003 | 3rd
(Size:5) 400004 5004 | atn
400005] 10001 | 5th

— 392 —

400011
400012
400013

400014

400015

1000

2000

3000

4000

9000

1st
2nd
3rd
4th
5th

Destination block
(Size: 5)

3.4 Building Programs

M

3.4 Building Programs

This section describes precautions that should be taken when designing programs that
contain data transfer instructions.

3.4.1 Storage Locations on Networksooveveveeennen.. . 3-93
342 INPUIS o 3-94
343 OUIPUIS Lot 3-94
3.4.4 Duplicate CoillUSagEovvniinieie i 3-95
345 Operationof Disabled Coilsovvuneeneen e 3-96

3.4.1 Storage Locations on Networks

All data transfer instructions require three elements (top, middle, and bottom) located
vertically on the network, so they can be stored anywhere on a 5-row by 10-column matrix
(rows 1 through 5 and columns 1 through 10).

Note Data transfer instructions cannot, however, be placed to the right of coils (including output
coils, internal coils, fink coils, MC coils, and MC control coils).

Example

Column t

Row 1 —}

A e

100021 100022 100023 100024 100025 100026 100027 100028 100029

— 393 —

Data Transfer Instructions :
L

3.4.2 Inputs

3.4.2 Inputs

Inputs to data fransfer instruction can be connected to relay elements (except coils) and
outputs from timers, counters, math instructions, data transfer instructions, other instruc-

tions, etc.
Example
Column 1 2 3
Row 1 rl | 400001H 400011
001001
2 1#00001- | 400104
SUB
3 400002 konoos

3.4.3 Outputs

Outputs from data transfer instruction can be connected to any of the following: coils,
contacts, inputs to math instructions, inputs to data transfer instructions, etc.

Example
Column 1 2 3 4
Row 1 —1 |r400001
001001

2 400010400010 -
SRCH 001002

a feocoos 00000

SUB
4 400021}

—3-94 —

3.4 Building Programs

3.4.4 Duplicate Coil Usage

1) A coil table that includes coils that have already been used cannot be used as a destina-
tion,

Example: Incorrect Application

— J_—‘ — PJ—-- 400001 f——
NET#1 [100002 100003 000001 NET#2| 100001 000101

- 000001
100004 100005 000002 B L KM[™ Gannot be programmed.
#00001

—
100006 100007 000003

Coils 000001 to 000003 are used in network #1, 50 ¢oil 000001 cannot be used as the
reference for a destination, such as the one shown above in network #2.

2) The coils in coil tables used as destinations cannot be used again as coils. The coils on
the right in the following diagram cannot be used because they have already been used
as a destination.

Example: Incorrect Application

Cannot be programmed.

P[— 400001 ——)} --1 : E

NET#1| 100001 000101 NET#2| 100002 100003 000001 |
| 000001 f—-—-i;’k—-—:(i

BLKM 100004 100005 000002 !

#0001 — 1

100006 100007 }000003 |

- Coils 000001 to 000016 are used in network #1, so coils 000001 to 000003 cannot be
used as the references in network #2.

—3-95 —

Data Transfer Instructions
3.4.5 Operation of Disabled Coils

3.4.5 Operation of Disabled Coils

Do not execute data transfer instructions containing disabled coils (including output coils, in-
ternat coils, link coils, MC coils, and MC control ¢oils) as destinations. If disabled coils are
used as destinations, their status will be overwritten by the data transfer instruction, as shown
in the following example. The disabled coils, however, will not be enabled.

Example

— P 400001 |

00001
geooot
BLKM
#00001

1) Assume the following status for holding register 400001 and coils 000001 to 000016: -

400001 (1111 1111 1111 1111

Coils 000001 to 000016: All disabled OFF

2) When input relay 100001 changes from OFF to ON, all coils from 000001 to 000016 will
be disabled ON. '

— 396 —

Indexed Block Transfer Instructions

This chapter describes indexed block transfer instructions.

4.1 Indexed Block Transfer Instructions

4.2 Indexed Block Transfer Instruction Terminology

4.2.1 Data Tables and Table Size
42.2 . Source and Destination
423 Pointers .. i it e e

4.3 Details of Indexed Block Transfer Instructions
43.1 DESTINATION INDEXED BLOCK TRANSFER 1

(DIBT) ...t i i
43.2 DESTINATION INDEXED BLOCK TRANSFER 2
(DIBR) ... e e
433 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT) .
43.4 SOURCE INDEXED BLOCK TRANSFER 2 (SIBR) .
4.4 Building Programscccoevivnnnenens
44.1 Storage Locations on Networks
442 Inputs i i,
443 OQutputs e e ey

— 4] —

4-2

4-6

Indexed Block Transfer Instructions

4.1 Indexed Block Transfer Instructions

The indexed block transfer instructions transfer the content of a source block in ohe scan
in a similar manner to the BLOCK MOVE (BLKM) instruction (see 3.3.8 BLOCK MOVE
(BLKM)) except for the following:

1. The source block and the destination block can be specified by the pointer value.

2. Input relay blocks can be used as destination blocks.

» The four indexed block transfer instructions are described in the fo!lowing table.

Table 4.1 Indexed Block Transfer Instructions

Name Symbol Function . Page
DESTINATION DIBT The contents of the source block is copied to the deslination block (input 4-6
INDEXED BLOCK relay table) specified by the pointer value. The transfer is completed in one
TRANSFER 1 scan.

Example

400010 E Pointer (n = 10001)

e Block \
Source block 400001 11311, fransfer
400002 2nd \ 1st
<
. . : L. Destination block
Relation between Pointer and Destination 2nd \ Destination
Pointer Value Destination Block table
000 RS 100007 101000321 e
10002 100017 to 100048
n 100001 + 16 (n — 10001} to \ : ! y
100001 + 16 (n - 10001) + 31
DESTINATION DIBR The contents of the source block (holding register table) is copied to the 4-15
INDEXED BLOCK destination block specified by the pointer value (holding register table). The
TRANSFER 2 transfer is completed in one scan.
Example
400010 [___n_|Pointer (n=11)
. Block - N
400001 |5 1st transfer 400011 i st
Source biock< 400002 1 2nd 400012 |% 0] 2nd
400003 }ii'3000] 3rd Destination| 400013 |%7:3000] 3rd
block 400014
. . . 400015
Relation between Pointer and Destination
400016 Destination table
Pointer Value Destination Block 400017
A RS R 2 40001 10 400013 400018
12 400012 to 400014 400019
n 400001 + (n-1) to ! J
400001 + (n-1)+ 2

— 42—

4.1 Indexed Block Transfer Instructions
L _ TP

Name Symbol Function Page
SOURCE INDEXED | SIBT The contents of the source block specified by the pointer value is copied to | 4-22
BLOCK TRANSFER 1 the destination block (holding register table) The transfer is completed in

one scan.
Example
400010{___n] Painter {n = 10001)
Block ransfer Destination biock
(T 400011 {1111:%:.00005:1111,20000] 1st
1st- /' 400012 {0000 11313 %0000 114115] 2nd
Source table 2nd | Source biock Relation between Pointer and Source
Pointer Value Source Block
0001 55 2100001 10 100082 257
10002 100017 to 100048
! : ! n 100001 + 16 (N - 10001} to
\ ' ! ! 100001 + 16 {n ~ 10001) + 31
—_—
SOURCE INDEXED | SIBR The contents of the source biock (holding register table) specified by the 4-38
BLOCK TRANSFER 2 pointer value is copied to the destination block (holding register tabls). The
transfer is completed in one scan.
Exampie .
400010 [____n] Pointer (n = 11)
f PC Py
400011 1st Block fransfer | 400001 |35 000/ 1st
400012 [44::2000] 2nd 52000 Destination block
400013 [:"30001 3rd | Source block P
Source table | 400014
400015 Relation between Point d S
me elation between Pointer and Source
400017 7000 . Pointer Value - Source Block
400018 8000 RN 400011 10400018 T
400019 9000 12 400012 to 400014
L . n 400001 + {(n-1}to
! 400001 + (n~1) + 2

— 43—

Indexed Block Transfer Instructions
4.2.1 Data Tables and Table Size

4.2 Indexed Block Transfer Instruction Terminology
This éection explains the terms required to understand the operation of the indexed .
block transfer instructions,

421 DataTablesandTableSize oo iiiiiiiann.,, Ceaaen ' 4-4
422 . Source and Destinalioncouiiviiii ittt e, 4-4
L B o {1 4-4

4.2.1 Data Tables and Table Size

The following terms have the same meaning as for data transfer instructions. Refer to 3.2
Data Transfer Instruction Terminology for definitions of these terms.

¢ Data table

e Register table
o Coil table

+ Relay table

« Table size

4.2.2 Source and Destination

1) These terms also have the same meaning as for data transfer instructions. The origin of
the data is called the source, and the data is transferred to a destination. '

2) As shown in the following example, the source and destination data tables can differ in
size forindexed block transfer instructions. Data is transferred, however, between biocks
of the tables that are the same size. In such cases, the source data table is called the
source block, and the destination data table is called the destination block,

4.2.3 Pointers

As shown below, a pointer in indexed block transfer instructions is used to specify data blocks
in a source or destination tables.

Example
Data transfer using DESTINATION INDEXED BLOCK TRANSFER INSTRUCTION 2

1) Ladder Programming

; P : 49000 {)} Tums ON with successful transfer.
100001 000101
400010 —{)} Tums ON with transfer failure.
000102
DIBR
£00003

W

4.2 Indexed Block Transfer Instruction Terminology

2) Transfer Contents

a) Status Before Execution

400010 _n__] pointer

400001} 1000 §1st 400011 100
f’s"’i‘z‘;‘_’%b’mk 400002 2000 {2nd 400012 200
3 400003 3000] ara et BTN |
estination table
400014 400 | (Size: 8,989)
The following rules apply to the destination block. 400015 500
(Z is the source block size.) 400018 600
Reference number D1 for the leading helding reg- - 400017F 700
ister: D1 = 400001 + (n—1) 400018 290
Referance number DE for the last holding register: 400019 800
DE=D1+Z-1=D1+2
:
s P

b) The following data transfer is executed when the pointer value (n) is 11 and input relay
100001 turns from OFF to ON. The transfer is completed in one scan.

400010 Pointer

Transter

400001 741000} ——— 400011 [1st .
(opurce ook J 400002 | 53606] 2nd ——— 400012 0| 2ng - pesinaton block
- [400003 |3 3006 3rd 400013 |:4:3060] 8rd

(1) A holding register table (400011 to 400013) is selected as the destination block
based on the pointer value (11) and the source block size (3).

{(2) The contents of the source block is copied to the selected destination block.

c} The following data transfer is executed when the pointer value (n) is 14 and input retay
100001 turns from OFF to ON. The transfer is completed in one scan.

400010 Pointer
Transfer

1st — 400014 [4000
| 2nd ————= 400015 JuiF
400003 ki 5a00a] 3rd — 300016 |<% 3000

400001 |4 1000
Source block 400002
(Size: 3)

Destination block
{Size: 3)

(1) The holding register table (400014 to 400018) is chosen as the destination block
based on the pointer value (14) and the size of the source block size (3).

(2) The contents of the source biock is copied to the selected destination block.

—4-5 —

Indexed Block Transfer Instructions
4.3.1 DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT)

4.3 Details of Indexed Block Transfer Instructions

4.3.1
4.3.2
4.3.3
434

This section describes the function, structures and operation of each indexed block
transfer instruction and provides simple examples of their application.

DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT) 4-6

DESTINATION INDEXED BLOCK TRANSFER2 (DIBR) 4-15
SOURCE INDEXED BLOCK TRANSFER 1 (SIBT) 4-22
SOURCE INDEXED BLOCK TRANSFER 2(SIBR) 4-38

4.3.1 DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT)

1. Function

1) Datais transferred using indexed blocks between source and destination data tables that
differ in size. A pointer is used to determine the destination of the data.

2) The source data table is called a source block. Coil tables, relay tables, and register
tables can be used as source blocks. Only input relay tables can be used as the destina-
tion tables.

3) The contents of the source block are copied to the block in the destination table specified
by the pointer (called the destination block). The transfer is completed in one scan.

Example
The illustration shows the source block, destination table, and pointer.

400001
400002

400010[_n_] Pointer
Source block (Size: 2) Destination table (Size: 64)
1111 0000 1111 0000 OFF OFF
0000 1111 0000 1111 -1 - -~
100001 100016
OFF OFF
o | e
100817 100032
OFF OFF
100033 100048

— 46—

4.3 Details of Indexed Block Transfer Instructions

a) When executing the transfer instruction with the pointer value at 10001, the 32 bits of
the source block are transferred to the 32 input relays in the destination block (100001
to 100032).

400010 Pointer

Dastination block (Size: 2)

Transfer

Source block (Size: 2)

400001 f 5] 1st —
\

1st

400002 | 2nd

2nd

b) When executing the transfer instruction with the pointer value at 10002, the 32 bits of
the source block are transferred to the 32 input relays in the destination block (100017
to 100048).

400010 Pointer

Destination block (Size: 2)

Transfer

Source block (Size: 2)
400001
400002 X

2nd

 1st —
\

2. Structure

ON: DIBT Executed Input 1 — Elztékm {S) [~ Output1: Tums ON with successful transfer.

bestination
Pointer (P)

DIBT

= Output2: Tums ON with transfer failure.

Block size (Z)

1) DIBT is the symbol for DESTINATION INDEXED BLOCK TRANSFER INSTRUCTION 1.

2) DIBT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 4.2 for details on specifying
constants or the reference numbers of coils, relays, or registers for these elements.

—_47 —

Indexed Block Transfer Instructions
4.3.1 DESTINATION INDEXED BLOCK TRANSFER I (DIBT} cont.

Note

Example

input1 — 400001 [~ Output1
400010 |— Output2
DIBT
$00002

400001: Reference number of the leading

register in source block
Reference number of pointer

Size of scurce block and destination
blocks {2)

400010:
#00002:

Table 4.2 DIBT Structural élements

and destination
blocks

Coil:
Input relay:

Input register,

holding register or

constant register:
Link coil:

Link register:

Element Meaning Possible settings
Top (S) | Reference Coil: 000001 to 008177 {O00001 to O08177)
number of the
leading register Input relay: 100001 to 101009 (100001 to i01009)
in the source ‘
1 block Input register: 300001 to 300512 (Z00001 to 200512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704086 (K00001 to K04096)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MCcontrolcoil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Reference Holding register: 400001 to 409999 (W00001 to W0998%)
(P} number of the . .
pointer Link register: R10001 to R11024 or R20001 to R21024
Bottom | Size of the Specify the constant. The maximum value of constant differs
(2) source block with specified reference type.

#00001 to #00100
#00001 to #00064

#00001 to #00100
#00001 to #00064
#00001 to #00100

MC coil, MC relay or

MC control relay:
MC control coil:

M code relay:

#00001 to #00016
#00001 to #00010
#00001 to #00006

When a coil or relay is specified, m must equal 16 n + 1 where m is the lower 5 digits of the

reference number (and n=0, 1, 2, etc.).

— 48 —

4.3 Details of Indexed Block Transfer Instructions

3) Destination Block

a) The destination block is an input relay table determined by the pointer value and the
size of the source block. The following rules apply to input relay tables, where the
pointer value is “n” and the size of the source block is “Z".

(1) Reference number for the first input relay D1: D1 = 100001 + 16 (n — 10001)

(2) Reference number for the last input relay DE: DE = D1 + 16Z -1

b) The following table shows these rules,

Pointer Value Input Relay Table Used as Destination Block
Leading Reference No. (D1) Last Reference No. {DE})
10001 . 100001 * | 100001 + 162 ~1
10002 100017 100017 + 16Z2-1
n 100001 + 16 (n — 10001) 100001 + 18 (n— 10001) + 16Z — 1
10064 101009 101024

4) Effective Range of the Pointer Value

a) The pointer value (n) must satisfy both of the following conditions for the pointerto be

defined as being in the effective range.

Condition1 10001 < n < 10064

Condition2 The input relay specified by n must actually exist, in other words,
must satisfy the following two equations.
100001 < 100001 + 16 (n — 10001) < 101009
100001 < 100001 + 16 (n - 10001) + 16Z — 1 < 101024

b) Neither of the following examples satisfies the above conditions. Accordingly, the
data will notbetransferred ifinput 1 of the DIBT is ON. Output 1 will be OFF and output

2 will be ON.

Example 1: Incorrect Application Example 2: Incorrect Application

Input1 — 400001 — Output1

400010 = Cutput2
CIBT
200005

400016 [1000] Pointer

Does not satisfy condition 1.

—4.9 —

Input1 == 40000) |— Output1

400010 — Ouput2
DIBT
#00005

40001610064 Pointer

Does not satisfy condition 2,

Indexed Block Transfer Instructions
4.3.1 DESTINATION INDEXED BLOCK TRANSFER I (DIBT) cont.

3. Operation

1) Status Before Execution

PE Pointer

Source block (Size: Z) Destination table {Size: 64)
S{1111 0000 1117 0000 1st _ DFL OFF
Stm-1(1311 1111 0000 0000] mth 100001 100016
‘ OFf OFF
$+7-1{0000 1111 0000 1i11] z - F -------
100017 100032
_ OFF OFF
The following rules apply to the destination block. | =—] = =~=*<---
(Ziesthe sizagof the 2233::9 block). T|!|{|°3|3_ Tlliﬂolﬂ_
Reference number for the leading input relay D1: OFF OFF
D1 = 100001 + 16 (n — 10001) —I I__ _______ _1 I"
Ref ber for the last input relay DE:
Plsferance number for the last inpust ralay 100049 100064

2) Ifthe pointer value (n) is inthe effective range, the following data will be transferred when
input 1 tums ON. The transfer is completed in one scan. .

p E Pointer

Destination table (Size: Z}

1st

Source block (Size: Z)

mth

S+m—1

S+Z-1 [0

2th

a) The input relay table (D1 to DE) will be selected as the destination block in accor-
dance with the rules, and based on the poirter value (n) and the size of the source
block (Z).

b} The contents of the source block is copied to the selected destination block.

—4-10 —

4.3 Details of Indexed Block Transfer Instructions

¢) The relationship shown in the following illustration exists between the source block
bits and the input relays in the destination block.

d) The pointer value and the contents of the source block are left unchanged.
¢) Output 1 turns ON. Output 2 remains OFF.
f) Correspondence between Bits and Input Relays

The following illustration shows the correspondence between the bits of the source
block and the input relays of the destination blocks.

Source block (Holding register table)
e

~)
(MSB) (LSB)
Ist 2nd 15th 16th

15t

S+m—1 mth

S+Z-1 Zth

1st 2nd 1 StI'TL - |16th

1st

mth

Zth

—
Destination block (Input relay table)

3) Whenthe pointervalue (n) is notinthe effective range, no destination block exists. There-
fore, if input 1 is ON, the following processing is performed.

a} The transfer is not executed,

b} Output 1 remains OFF. Output 2 is ON.

—4-11 —

Indexed Block Transfer Instructions
4.3.1 DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT) cont.

«EXAMPLEp- 4. Application Example

1) Ladder Programming

;Pi 400001 p————{)= ON when transferis successful
000100 f00101
400010 p——-— }— ON when transfer fails
000102
DIBT
#00002

2) Transfer Contents

a) Before Transfer

400010 [_n_] Pointer

Source block (Size: 2)

Destination table (Size: 64)

40000111111 0600 1111 0000] 1st OFF OFF
460002{0000 1117 4000 1¥11]2nd @ | = merewme
100001 100016
OFF OFF
o b e o |
100017 100032
'(I:Zhg ftcﬁlou{ing r;:lﬂa"s apply tobtlhe Igestinaﬁon block. OFF OFF
isthesizoofthe sourceblock),. @ === | |j= eccec=-.
Reference number for the leading input relay D1: Tl!ou.'!s- T[!uotl;s_
D1 = 100001 + 16 {n -~ 10001} OFF OFF
Refersnce number forthe lastinput relay DE: ™ |] e eeecoe..
E= Z=1=D
D D1+186 1 1+31 -110019_ ‘1-100!-4_

b) The following data transfer is executed when the pointer value (n} is 10001 and coii
000100 changes from OFF to ON. The transfer is completed in one scan.

400010 Pointer

Destination block (Size: 2}

Transfer

Source block (Size: 2)
400001 3
400002 6

1st

2nd

—4-12 —

4.3 Details of Indexed Block Transfer Instructions

(1) The input relay table (100001 to 100032) is selected as the destination block
based on the pointer value (10001) and the size of the source block (2).

(2) The 32bits ofthe source block are transferred to the 32 bits of the input relay in the
selected destination block.

(3) The following illustration shows the relationship that exists between the source
block bits and the input relays in the destination block in this instance.

Source block
—

~— T
{Most significant bit) (Least significant bit)

1st 2nd 15th 16th

1st
2nd

400001
400002

Transfer

1st

2nd

—
Destination block

(4) The pointer value and the contents of the source block remain unchanged.

(5) Coil 000101 turns ON only in scans where coil 000100 changes from OFF to ON.
Coil 000102 remains OFF. ‘

¢} The following data transfer is executed when coil 000100 changes from OFF to ON
and the pointer value (n) is 10002. The transfer is completed in one scan.

400010 Pointer

Destination block {Size: 2)

Transfer

1st

Source block (Size: 2)
400001 [3311°708 o
400002 |DO0E

/\

2nd

(1) The input relay table (100017 to 100048) is selected as the destination block
based on the pointer value (10002) and the size of the source block (2).

—4-13 —

Indexed Block Transfer Instructions
L ___ . ___________________________________]
4.3.1 DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT) cont. :

(2) The 32 bits of the source block are transferred to the 32 bit input relay in the

selgcted destination block.

(3) The following illustration shows the relationship that exists between the source
block bits and the input relays in the destination block in this instance.

(4) Corespondence between Bits and Input Relays

Source block
U

~

Most significant bi) " (Least significant bit)
1st 2nd A 15th 16th

1st
2nd

400001
400002

Transfer

1st

2nd

—v—— “
Destination block

(5) The pointer value and the contents of the source block remain unchanged.

(6) Coil 000101 turns ON only in scans where coil 000100 changes from OFF to ON.
Coil 000102 remains OFF.

d) As the illustration shows, no destination block exists when the pointer value (n) is
10064, The transfer of data will not be executed if coil 000100 changes from OFF to
ON. Coil 000101 remains OFF. Coil 000102 turns ON only in scans where coil 000100

changes from OFF to ON.
400010 Pointer
Dastination block (Size: 2)
ON OFF
Source block (Size: 2) e I e - |
40000711111 G000 1111 0080} 1st 101009 101024

4000020000 1111 0008 1111} 2nd

o e A

—4-14—

4.3 Details of Indexed Block Transfer Instructions

e) As the illustration shows, no destination block exists when the pointer value is 100.
Transfer will not be executed even when coil 000100 changes from OFF to ON. Coil
000101 remains OFF. Coil 000102 turns ON only in scans where coil 000100 changes

from OFF to ON.
400010100 | Pointer
Destination block (Size: 2)

Sourcs block (Size: 2) - = -eee---- — st
400001[1111 0000 1111 0000) 1st ? ?
4000020000 1111 0000 1111} 2nd

e I
? ?

4.3.2 DESTINATION INDEXED BLOCK TRANSFER 2 (DIBR)

1. Function

1) Data is transferred using indexed blocks between source and destination data tables of
different sizes. The pointer is on the destination side and determines the destination of
the data.

2) The source data table is called a source block. Coil tables, relay tables, and register
tables can be used as the source biock. Only holding register tables can be used as the
destination table. '

3) The contents of the source block is copied to the block in the destination table (calied a
destination block} specified by the pointer. The transfer is executed in one scan.

Example
The illustration shows the source block, destination table, and pointer.

400000 _n_] Pointer

400001[1000 400011 100
ﬁﬁﬁfifb°k 400002{ 2000 400012] 200
: 400003 3000 400013 300
400014] 400 Destination taby
400015 500 |y osunation lable
400016 goq | (52289
400017 700
400018 800
.

— 415 —

Indexed Block Transfer Instructions

4.3.2 DESTINATION INDEXED BLOCK TRANSFER 2 (DIBR) cont.

a) The contents of the source block is transferred to a destination block (400011 to
400013} when the transfer instruction is executed with a pointer value of 11.

400010 Pointer
Transfer

400001

— " 40001

Source block

(Size: 3) 400002

400003 |

Destination block
{Size: 3}

e 400012
400013

b) The contents of the source block is transferred to a destination block (400014 to
400016) when the transfer instruction is executed with a pointer value of 14.

Sourcs block | 000!

ource pio

(Size: 3) 400002
400003

2. Structure

ON: DIBR executsd Input1 = plock

Transfer
st —— 400014 1st o
2nd ——— : 400015 2] 2nd pDestination block
‘ : - (Size: 3)
8rd ———— 400016 |1 5060
Source (S) = Output1: ON with successful transfer

Destination
Pointer (P} }— Output2 ON with transfer failure

DIBR

Block size (l)

1) DIBRisthe symbol for DESTINATION INDEXED BLOCK TRANSFER INSTRUCTION 2.

2} DIBR requires three elemenis, one top element, one middle element, and one botlom
element, located vertically on the network. Table 4.3 lists the constants and coil, relay,
and register reference numbers that can be specified.

Example

Input 1 — 400001

4000190
DIBR
#00003

— Cutput 1 400001; Reference number of the leading reg-
istar in the source block
— Output2 400010: Reference number of the pointer
#00003; Size of the source and destination
blocks (3)

—4-16 —

4.3 Details of Indexed Block Transfer Instructions

Table 4.3 DIBR Structural Elements

Element Meaning Possible settings

Top (S) | Reference Coil: 000001 to 008177 (O0C001 to ©08177)
number of the
ieading register | Input relay: 100001 to 1010089 (100001 to 1010089)
in the source .
block Input register: 300001 to 300512 (Z00001 to Z00512)

Holding register. 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (K00001 to K04096)

Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241

MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC confrol relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middie Refersnce Holding register: 400001 to 409999 (W00001 to W09999)
{P) number of the X

pointer Link register: R10001 to R11024 or R20001 to R21024
Bottom | Size of the Specify the constant. The maximum value differs with
(2) source and specified reference type.

destination ’

blocks Coil: #00001 to #00100

Input relay: #00001 to #00064

Input register,

holding register or

constant register; #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100

MC coil, MC relay or
MC control relay: #00001 to #00016

MC control coil: #00001 to #00010
M cods relay: #00001 to #00006

Note When setting the reference numbers for coils and relays, m=16n + 1, where mis the lower 5
digits of the reference number (and n =0, 1, 2, etc.).

3) Destination Block
a) The destination block is a holding register table determined by the pointer value and
the size of the source block. The following rules apply to holding register tables, where
n is the pointer value and Z is the size of the source block.

(1) Reference number for the first holding register, D1: D1 = 400001 + (n— 1)

(2) Reference number for the last holding register, DE: DE =D1 +Z — 1

—4-17 —

Indexed Block Transfer Instructions
4.3.2 DESTINATION INDEXED BLOCK TRANSFER 2 (DIBR) cont.

b) The following table shows these rules.

[

Pointer Value Holding Register Table Used as Destination Block
Leading Reference No. (D1) Last Reference No. (DE)
1 400001 400001 +Z-1
2 400002 400002+ Z—1
n 400001 + (n—1) 400001+ (n—1)+Z—-1
9999 409999 409999

4) Effective Range of the Pointer Value

"a) The pointer value (n) must satisfy the following 3 conditions for the pointer to be
defined as being in the effective range.

Condition 1:

Condition 2:

Condition 3:

1<sn<9999

The holding register table specified by n must actually exist, in
other words, must satisfy the following two equations.
400001 < 400001 + (n — 1) < 409999

400001 400001 +{(n—1) + Z - 1 £ 409899

The pointer must not be included in the destination block.

b} None the following examples satisfies the above conditions. Accordingly, the data will
notbe transferredifinput 1 of the DIBR is ON. Output 1 will be OFF and output 2 wilt be

ON.

Example 1: Incorrect Application

Example 2: Incorrect Application

Input1 — 400001 |— Output1 Input1 — 400001 [— OCutputt
400010 [~ ouputz2 400010 — output2
DIBR DIBR
§00003 §00003

400010 20000] Pointer

Doss not satisfy condition 1.

400010 9999 | Pointer

Does not satisfy condition 2.

—4-18 —

Example 3: Incorrect Application

input1—{ 400001 [— Output1
400010
DIBR
#00003

= Qutput2

40001010] Pointer

Does not satisfy condition 3.

4.3 Details of Indexed Block Transfer Instructions

3. Operation

1) Status Before Execution

Pm Pointer

$] 1000] 1st 100
' 200
S+a-11 3008 | mth (Sef;:;‘?;;"“k 300
) M 400 | 1st
S+2-1] 5000 [zth 560
Destination block Destination table
(Size: Z) On gg:: Mh " (Holding registor table)
DE{ 800 [zt
The following rules apply to the destination block. 800
{Z is the size of the source block). 1000
Reference number for the leading holding register, .
D1; .
D1 = 400001 + (n—1) _ '
L]
Reference number for the last holding registst, DE: : J

DE=D1+Z-1

2) Ifthe pointer value nis in the effective range, the following data will be transferred when
input 1 tums ON. The transfer is completed in ohe scan. :

P E Pointer

Transfer

1st

S D1

Destination block
Ssqurt?e block J & m_1 Dm il mth {Holding register table)
(Size: Z) (Size: 2}
S+Z-1 — DE | Zth

a) The holding register table (D1 to DE) will be selected as the destination block in accor-
dance with the rules, and based on the pointer value (n) and the size of the source
block (Z).

b} The contents of the source block is transferred to the selected holding register table.
The contents of the mt (m = 1 to Z) word in the source table is copied to the mth (m =1
to Z) word in the destination block.

c) The pointer value and the contents of the source block remain unchanged.

d) Output 1 turns ON. Output 2 remains OFF.

3) Whenthe pointervalue (n) is not in the effective range, no destination block exists. There-
fore, if input 1 is ON, the following occurs:

a) The transfer is not executed.

b) Output 1 remains OFF. Output 2 turns ON.

—4-19 —

Indexed Block Transfer Instructions

4.3.2 DESTINATION INDEXED BLOCK TRANSFER 2 (DIBR) cont.

4EXAMPLEp

- 4. Application Example

1) Ladder Programming

14
1640001

400001
400010

DIBR
#00003

2) Transfer Contents

a) Status Before Execution

430001
Source block ¢ 400002
(Size: 3) 400003

The following rules apply to destination blocks.

- 1000

2000

3000

{Zis the size of the source biock).
Refarence number for the leading holding register, D1:

D1 = 400001 + (n - 1)

1st
2nd
3rd

000104

—

00102

Refarance numbar for the last holding register, DE:

DE=D1+Z-1=D1+2

poe————e{ }= ON when transfer is successful

}— ON when transfer fails

400010 E] Pointer

+ 400011
400012
400013
400014
400015
400016
400017
400018
400018

200

300

400

500

600

100

800

$00

-

. Destination table
(Size: 9,989)

b) If the pointer value {n) is 11, the following data will be transferred when input relay
100001 changes from OFF to ON. The transfer is completed in one scan.

400001
Source biock
(Size: 3)

Transfer

400010 Pointer
400013
400012

400013

Destination block
o (Size: 3)

(1) A holding register table (400011 to 400013} is selected as the destination block,
based on the pointer value (11) and the size of the source block (3).

(2) The contents of the source block is transferred to the selected destination block.

(3) The pointer and the contents of the source block remain unchanged.

—4-20 —

4.3 Details of Indexed Block Transfer Instructions

(4) Coil 000101 turns ON only in scans where input relay 100001 changes from OFF
to ON. Coil 000102 remains OFF.,

¢) Thefollowing data transfer is executed when the pointer value n is 14 and input relay
100001 is turned from OFF to ON. The transfer is completed in one scan,

400010 Pointer

40001
40001
400016 §:

Transfar

Destination block
(Size: 3}

400001
Source block < 400002

(Size: 3) 400003

i

(1) A holding register table {400014 to 400016) is selected as the destination block
based on the pointer value (14) and the size of the source block (3).

(2) The contents of the source block is transferred to the selected destination block.
(3) The pointer value and the contents of the source block remain unchanged.

(4) Coil 000101 turns ON only in scans where input relay 100001 changes from OFF
to ON. Coil 000102 remains OFF.

d) As the illustration shows, no destination block exists when the pointer value (n) is
9999. Accordingly, transfer is not executed if input relay 100001 is tumed from OFF to
ON. Coil 000101 remains OFF. Coil 000102 tums ON only in scans where input relay
100001 changes from OFF to ON. :

400010] 9999 | Pointer

400001{ 1000 | 1«1 409999 1st
So_urc.:e block 4400002 2000 | 2nd ”? ond b Destination block
(822:3) 4000033000] sre ? wa | (525

e) As the illustration shows, the pointer (400010) is included in the destination block
when the pointer value is 10. Accordingly, transfer is not executed even when input
relay 100001 is turned from OFF to ON. Coil 000101 remains OFF. Coil 000102 tums
ON only in scans where input relay 100001 changes from OFF 1o ON.

{:oeaw Pointer

4000017080] 1t 0% .
Oy X 1400002 2000] ong 400011 ang | Destination block
' 400003 3000 | 3¢ 400012 g | 52D

The pointer is included in the destination block.

—4-21 —

Indexed Block Transfer Instructions
L
4.3.3 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT)

4.3.3 SOURCE INDEXED BLOCK TRANSIEER 1 (SIBT)

1. Function

1) Data is transferred using indexed blocks between source and destination data tables of
different sizes. A pointer is used to determine the destination of the data in the destination
table.

2) Coil tables, input relay tables, and input register tables can be used as the source table.
. Only holding register tables can be used as the destination table {called destination
blocks). '

3) The contents of the source biock specified by the pointer (called the source block) are
copied to the block in the destination table. The transfer is completed in one scan.

Example -
The illustration shows the source table, destination block, and pointer.

400010 _n_] Pointer

Sourcs block (Size: 64) Destination block (Size: 2)

oK FF 4000110000 0006 0000 6000
-------- - |- 400012{0000 0008 0000 0000
100001 100016
OFF oK
-------- o b
100017 100032

a) When executing the transfer instruction with the pointer value at 10001, the 32 input
relays of the source block (100001 to 100032) are transferred to the 32 bits of the des-

tination block.

400010 Painter

Soul

5

By

Bl

44 Transfer
moe] 1st
400011

400012

\/

2nd

— 422 —

Destination block (Size: 2}

41115000031 1111:1 0000

0000 511115 0000 11137

1st
2nd

4.3 Details of Indexed Block Transfer Instructions

b) When executing the transfer instruction with the pointer vatue at 10002, the 32 input
relays of the source block (100017 to 100048} are transferred to the 32 bits of the des-
tination block.

400010 Pointer
Source block (Size: 2)

AE gy

s

Transfer

=] 18t \ Destination block (Size: 2)

400011 [0000:+1113450000211114 1st
400012 [1111510000 1411:.0000] 2nd

2nd — o

2. Structure

Source m

ON: SIBT sxecuted Input1 == pointer = Output 1: ON with successful transfer

Destfination
block (B

SIBT

— Output2: ON with transfer fallure

Biock size (I)

1) SIBT is the symbol for SOURCE INDEXED BLOCK TRANSFER INSTRUCTION 1.

2) SIBT requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Table 4.4 lists the constants and register refer-
ence numbers that can be specified.

Example

Input 1 —§ 400010 — Output? 400010: Reference number of pointer
400011: Reference number in the destination

400011 — ouput2 block
SIBT #00002: Size of the source and destination blocks
#00002 (2

— 423 —

Indexed Block Transfer Instructions
L.

4.3.3 SOURCE INDEXED BLOCK TRANSFER I (SIBT) cont.

Table 4.4 SIBT Structural Elements

Element Meaning Possible settings
Top (P) |Reference Holding register: 400001 to 409999 {W00001 to W09999)
number of the :
pointer Constant register: 700001 o 704096 {K00001 to K04096)
Link register: R10001 to R11024 or R20001 to R21024
Middle Leading Holding register: 400001 to 409999 (W00001 to W09999)
D) reference
number in the | Link register: R10001 to R11024 or R20001 to R21024
destination
block
Bottom | Size of the Constant: #00001 to #00100
Z) source and
destination
blocks

3) Source Block

a) The source block is one of the following data tables as determined by the pointer val-

ue.

Pointer Value Source Block
1t0512 Coil table
10001 to 10064 Input relay table
30001 to 30512 Input register table

b) Source Block is a Coil Table

(1) The following rules apply to coil tables, where the pointer value is (n) and the size

of the destination block is Z.

Reference number of the leading coil, $1; S1=000001 + 16 (n - 1)
Reference number of the last coil, SE: SE = 81 + 16Z - 1

(2) The following table outlines these rules.

Pointer Value Coil Tables Used as Source Block
Leading Reference No. (S1) Last Reference No. (SE)
1 000001 000001 + 16Z -1
2 000017 000017 + 162 -1
n 000001 + 16 (n —1) 000001 + 16 (n—1) + 162 -1
512 008177 008192

—4-24 —

4.3 Details of Indexed Block Transfer Instructions

(3} The pointer value (n) must satisfy the following 3 conditions to be in the effective
range. '
Condition1: 1<n<512
Condition 2: The coil table specified by n actually must exist,

i.e., must satisfy the following two equations:
1<1+16(n-1)<8177
1<1+16{n-1)+16Z-1<8192

Condition 3: The pointer must not be included in the destination block.

Example 1: Incorrect Application Example 2: Incorrect Application Example 3: Incorrect Application

input1 =1 400010 |— Output1 tnput1 =~ 480818 |— oOutputi tnput1 =4 400012 = Output1

400011 [~ output2 400011 [~ Output2 400011 — output2
SIBT SIBT SIBT
#60002 ‘ $00002 #00002

400918 1080] Pointer 400010 17] Pointer

Doss not satisfy condition 1. Does not satisfy condition 2. Does not satisfy condition 3.

¢) Source Block is an Input Relay Table

(1) The following rules apply to input relays, where the pointer value is n and the size
of the destination block is Z.
Reference number of the leading input relay, S1: S1 = 100001 + 16 (n — 10001)
Reference number of the last input relay, SE: SE = S1 + 162 -1

. (2) The following table outlines these rules.

Pointer Value Input Relay Table Used as Source Block:
Leading Reference No. (S1) Last Reference No. (SE)
10001 100001 ' 100001 + 16Z -1
10002 100017 100017 + 16Z -1
n . 100001 + 16 (n - 10001) 100001 + 16 (n - 10001) + 162 -1
10064 101009 101024

—4-25 —

Indexed Block Transfer Instructions
4.3.3 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT) cont.

(3) The pointer value (n) must satisfy the following 3 conditions to be in the effective

range.
Condition{ 10001 < n < 10064
Condition2 The input relay tabie specified by n actually exists, i.e.,
satisfies the following 2 equations.
100001 < 100001 + 16 {n ~ 10001) < 101009
100001 < 100001 + 16 (n —=10001) + 16Z -1 101024
Condition3 The pointer is not included in the destination block. -
Exampie 1 Example 2 Example 3

input1 =4 400019 }= Output1 Input1—{ 480010 = Output1 Input1=—| 400012 F~ Output1

400011 ~ Ouput2 400011 = oOutput2 406011 — output2
SIBT SIBT SIBT
£00002 $00002 $00002
400010 [1000] Pointer 400010 [10064] Pointer
Does not satisfy condition 1. Does not satisfy condition 2. Does not satisfy condition 3.

d) Source Block Is an Input Register Table

(1) The following rules apply to input register tables, where the pointer value is n and
the size of the destination block is Z.
Reference number of the leading input register, S1: S1 = 300001 + (n - 30001)
Reference number of the last input register, SE: SE=81+2Z -1

(2) The rules are outlined on the following tabie.

Pointer Value Input Register Table Used as Source Block
Leading Reference No. (S1) Last Reference No. (SE)
30001 300001 300001 + Z -1
30002 300002 300002+ Z -1
n 300001 + (n — 30001) 300001 + {n -30001)+2Z -1
30512 300512 300512

—4-26 —

4.3 Details of Indexed Block Transfer Instructions

(3) The pointer value (n) must satisfy the following 3 conditions to be in the effective

range.
Condition1 30001 <n £ 30512
Condition2 The input register table specified by n actually exists,
i.e., satisfies the following 2 equations.
300001 < 300001 + (n - 30001) < 300512
300001 < 300001 + {n —30001) + Z ~ 1 £ 300512
Condition3 The pointer is not included in the destination block.
Example 1 Example 2 Example 3
Input1 —t 400010 |— Output1 Input1—f 460010 |— Output1 Input1 — 400012 |— Output1
40011 =~ Output2 400011 — output2 400011 |~ ouput2
SIBT SIBT SIBT
$00002 §00002 $00002
400010 1000] Pointer 40001030812 Pointer

Does not satisty condition 1.

Doeas not satisfy condition 2. Does not satisfy condition 3.

3. Operation

1) Source Block is a Coil Table

a) Status Before Execution

P E Pointer

Destination biock (Helding register table)
Source table (Size: 512}

{Size: Z)

ON OFF D[0000 0000 D000 0000] 1st
T e ~
000001 200016 D+m-1]0000 0000 6000 0000] mth

OFF ON
—~ }= e — - D+2-1[0000 0000 0000 0000] zth
000017 000032

ON OFF
—{ = emeeeee -~ The following rules apply to the source block.
000033 000048 (Z is the size of the destination block).

OFF oN Reference number of the leading coll, 51
—{ J= memee-c. — - $1=000001 +16 (n-1)

Refarence number of the last coil, SE:

0001:49 , 00?064 SE=gr1l 1621 e las S

— 427 —

Indexed Block Transfer Instructions
L O

4.3.3 SOURCE INDEXED

BLOCK TRANSFER 1 (SIBT) cont.

b) The following data transfer is executed when the pointer value n is in the effective

range and input 1 is tumed ON. The transfer is completed in one scan.

P :l Pointer

Source block (Size: Z)

Transfer
| mth

———— D+m-1

Destination block (Holding register table)

(Size: Z)

' b [o00 T

Sreamg

&

0000

Dl

i

D+Z-1 i

700007 1111 1111,

1] 1st

mth

Zth

(1) Acoiltable (S11toSE) is selected as the source block, in accordance with the rules
and based on the pointer value (n) and the size of the destination block (Z).

(2) The contents of the selected coil table is copied 1o the destination block.

—4-28 —

4.3 Details of Indexed Block Transfer Instructions

(3) The following chart shows the relationship that exists between the cail of the
source block and the destination block bits.

Source block {Coil table)
——

1st

Transfer

D} 1st
D+m-t mth
D+Z-1 Zth

—_——
Destination block {Holding register table)

{4) The pointer value and the content of the source block remain unchanged,
(5) Output 1 turns ON. Output 2 remains OFF,

¢) No source block exists when the pointer value (n) is outside the effective range.
Therefore, even if input 1 is turned ON the following occurs.

(1) The data transfer is not executed.

(2) Output 1 remains OFF. Qutput 2 turns ON.

— 429 —

Indexed Block Transfer Instructions
4.3.3 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT) cont.

2) Source Block is an Input Relay Table

a) Status Before Execution

P E] Pointer

Source table (Size: 64)

I_

s

ON OFF
100001 100015
OFF oN
100017 100032
] OFF

3 T 10048

1000!—

TN Emen
Smwasew

Destination block

(Holding register table) (Size: Z)
0600 0000 0000 00007 1st

Dip-

—-—

0000 0000 0000 0000} mth

Zth

D+z-~1]0000 9000 0000 0000

The following rules apply to source blocks.
(< is the size of the destination biock).

Reference number of the leading input relay, S1:
51 =100001 + 16 (n - 10001)

Reference number of the last input relay, SE:
SE=51+16Z-1

b) The following data transfer is executed when the pointer value (n) is in the effective
range and input 1 is tumed ON. The transfer is executed in one scan.

P E Pointar

|

i

i

"

Source block (SIZB Z)

i

FENE] ey peTe

1st

Destination block
(Holdlng raglster table) (Slze Z)

D |oooo:

OOOO o ist

s %sé%’iiw
11.11

Transfer

mth

10000, 1111, @ooon
N
D+Z-1 Ioooa 1000011141107

D+m~1

Zth

(1) Aninputrelaytable (S1 to SE) is selected as the source block in accordance with
the rules and based on the pointer value (n} and the size of the destination block

@).

(2) The contents of the selected input relay tabie is transferred to the destination

block.

—4-30 —

4.3 Details of Indexed Block Transfer Instructions

(3) The relationship between the input relay of the source block and the destination
block bits is shown in the figure associated with (6) below.

(4) The pointer value and the content of the source block remain uhchanged.
{5) Output 1 turns ON. Qutput 2 remains OFF.

(6) Correspondence between Input Relays and Bits
The correspondence between the input relay of the source block and the destina-
tion block bits is shown in the following figure.

Source block (Input relay table)

Transfer

2] st

25| mth

L 3 S Zth
{Least significant @

e
Destination block (Holding register tabls)

c¢) Nosource block exists when the pointer value n is notin the effective range and there-
fore, even if input 1 is turned ON, the following occurs.

(1) The data transfer is not executed.

(2) Output 1 remains OFF. Output 2 tums ON.

— 4-31 —

Indexed Block Transfer Instructions

4.3.3 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT) cont.

3) Source Blocks is an Input Register Table

Source block

(input register tabie) § Sm

(Size: Z)

a) Status Before Execution

P E Pointar

300001
300002
300003
300004
300005
300006
800007
300008
300008

100(

)
2000
)
)

. Source table
(Size: 512)

R
Dl 100 |1st
Destination block 280
(Holding register table) 4 D+m~1 300 | mth
(Size: Z) . 200
D+Z-1 300 }zth

The following equations apply to the source block.
{Z is the size of the destination block).

Referance number of the leading input register, $1:
§1 = 300001 + {n —30001)

Reference number of the last input register, SE:
SE=S1+Z-1

b) The fcllowing data transfer is executed when the pointer value (n) is in the effective
range and input 1 is turned ON. The transfer is completed in one scan.

P E Pointer

s1 73000

| mth

SE [

i Zth

Transfer

1 1st .

4000] 1st

; Destination block
| mth {Holding register table)
{Size: Z)

D+m-1 {:

D+2-1 [¥55 80001 Zth

(1) Aninput register table (S1 to SE) is selected as the source block in accordance
with the rules and based on the pointer value {n) and the size of the destination
block (Z).

(2) The contents of the selected input register table are copied to the destination
block. The m™ word (m = 1 to Z) in the source block is copied to the mt word (m =
1 to Z) in the destination block.

{3) The pointer value and the content of the source block are unchanged.

{4) Output 1 turns ON. Output 2 remains OFF.

¢) No source block exists when the pointer value (n} is not in the effective range, and
therefore even if input 1 is turned ON, the following occurs.

(1) The data transfer is not executed.

(2) Output 1 remains OFF. Output 2 turns ON.

—4-32 —

4.3 Details of Indexed Block Transfer Instructions

4. Application Examples

<4EXAMPLEp Example 1

1) Ladder Programming

; Pl- 400010 }— ON with successful transfer
000160 ood101
400011 p————oA }— ON with transfer failure
000102
SIBT
$06002

2) Transfer Contents

a) Status Before Execution

400010E Pointer

Source table (Size: 64) Destination block (Size: 2)
[}] OFF 4000111111 2000 1111 0000] 1st
— b e 490012 [0000 1111 0090 1117] 2nd
100061 100016
OFF ON
TI!WI? T!NI 2 The following rules apply to the source block.
oN OFF (Z is the size of the destination block).
_' - —— Reference number of the leading input relay, S1:
|000!3_ . TJM 8 $1=100001 + 16 {n — 10001)
Reference number of the last input relay, SE:
OFll‘_ —!OHI— . SE=851+16Z~1 =51 + 31
T!OMQ 100064

b) The following data transfer is executed when the pointer value (n) is 10001 and coil
000100 is turned from OFF to ON. The transfer is completed in one scan.

400010 | 10001 | Pointer

Source block (Size: 2)

Transfer
st \ Destination block (Size: 2}
400011 |1111°7:00007:111120000] 1st
400012 [00003 1111370000} 1] 2nd

<] 2nd

Indexed Block Transfer Instructions
L .
4.3.3 SOURCE INDEXED BLOCK TRANSFER 1 (SIBT} cont.

{1) Aninputrelay table (100001 to 100032) is selected as the source block based on
‘the pointer value (10001) and the size of the destination block (2).

{2) The 32inputrelays of the selected source block are transferred to the 32 destina-
tion block bits.

{3} The relationship between the input relay of the source block and the destination
block bits is shown in the following figure.

Source block
S

Transfer
400011 [fi
400012 iy
S i J—
Dastination block

(4) The pointer value and the content of the source block remain unchanged.

(5) Coil 000101: Tums ON only in scans where ¢oil 000100 turns from CFF to ON.
Coil 000102: Remains OFF.

¢) The following data transfer is executed when the pointer value (n) is 10002 and coil
000100 is tumed from OFF to ON. The transfer is completed in one scan.

400010 Pointer

Source block (Slze 2)

Transfer

400012 [1111£::0000.%:1111£0000 | 2nd

1st \ Deshnatgon block (Size: 2)
400011 [00002:11115-0000. 1111 1st

2nd

(1) Aninputrelay table (100017 to 100048) is selected as the source block based on
the pointer value (10002) and the size of the destination block (2).

(2) The 32inputrelays of the selected source block are transferred to the 32 destina-
tion block bits.

—4-34—

4.3 Details of Indexed Block Transfer Instructions

(3) The relationship between the source block input relays and the destination block
bits is shown in the figure associated with (4} below.

(4) Correspondence between Input Relays and Bits

Source block

Transfer

16th

400011 [¥2

1st

2ndg

sE T pRaEl] 1st

400012 &

e

d) As shown in the figure below, no source block exists when the pointer value (n) is
10064. Accordingly, transfer is not executed even if coil 000100 is turned from OFF to
ON. Coil 000101 remains OFF. Coil 000102 turns ON only in scans where coil 000100

Destination block

turns from OFF to ON.

400010] 18064 Pointer

Source block (Size: 2)

ON
101009

OFF

reneeee |

101024

A b e A b
? ?

1st

2nd

Destinafion block (Size: 2)

400011

1111 0000 1111 8000

400012

0900 t111 0000 1111

. T ————
ﬁ,;]r;{ittﬂ,, s 2nd

1st
2nd

e) Asshown in the figure below, no destination block exists when the pointer value (n) is
5000. Accordingly, the transfer is not executed even if coil 000100 is turned from OFF

— 435 —

Indexed Block Transfer Instructions _
e S]

4.3.3 SOURCE INDEXED BLOCK TRANSFER I (SIBT) cont.

to ON. Coil 000101 remains QFF. Coil 000102 turns CN only in scans where coil
000100 turns from OFF to ON.

400010} 5000 |Pointer

Source block (Size: 2)

Destination block (Size: 22

- F - — st 400001[1111 0000 1111 0000] 1st
? 2 480002 [0000 1111 0000 1711] 2nd

o b e S AN E

4EXAMPLEp Example 2

1) Ladder Programming

i i 400010 p————{)} ON with successful transfer
100001 ¢o0101
400011 pe—emse—{ = ON with ransfer failure
000102
SIBT
£00003

2) Transter Contents

a) Status Before Execution

400016 0] Pointer

300001[1000 - 400011100 | 1st
300002 2000 argy " D1oc44000 12200 2nd
300008] 3000 ‘ 400013 800 | 3

300004 4000 | Source table

300005} 5000 |§ (Size:512)

3000061 6000 The following equations apply to the source block
a wi u PPly source .

s00007(1000 (2 is tha size of the destination bltock).

300008 8000 Reference number of the leading input register, S1:

3000039000 $1=300001 + {n - 30001)

Reference number of the tast input register, SE:
SE=81+Z-1=81+2

ImammN

—4-36 —

4.3 Details of Indexed Block Transfer Instructions

b) The following data transfer is executed when the pointer value (n) is 30001 and input
relay 100001 is turned from OFF to ON. The transfer is compieted in one scan.

400010 Pointer
— Transfer TR
300001 |i5000] 1st 400011 [0 1st o
Source block 4 300002 | 2000] 201d ——— 400012 [pppo] 2nd (eeanzton blodk
(Size: 3) 300003 [%2:3p00] ard 400013 [#t48p00 | 3rd '

(1) Aninputregister table (300001 to 300003) is selected as the source block based
on the pointer value (30001) and the size of the destination biock (3).

(2) Thecontents ofthe selected source block are transferred to the destination block.
(3) The pointer and the contents of the source block remain unchanged.

(4) Coil 000101 turns ON only in scans where input relay 100001 turns from OFF to
ON. Coil 000102 remains OFF.

¢) The following data transfer is executed when the pointer value (n) is 30004 and ihput
relay 100001 is turned from OFF to ON. The transfer is completed in one scan.

400010 Pointer
—— Transfer —
300004 [°#570003 1st — 400011 [¥5551000] 1st
Source blocky 300005 [7#:2000] 2nd ——— 400012/ | 2nd | Destination block
300006 {= %3000 3rd ——~ 400013 [243000] ang

(1) Aninputregister table (300004 to 300006) is selected as the source block based
on the pointer value (30004) and the size of the destination block {3).

{2) The contents of the selected source biock are transferred to the destination block.

(3) The pointer and the contents of the source block are unchanged.

(4) Coil 000101 turns ON only in scans where input relay 100001 turns from OFF to
ON. Coil 000102 remains OFF.

d) As the figure below shows, no destination block exists when the pointer vatue (n) is
30512. Accordingly, the transfer will not be executed even if input relay 100001 is
tumed from OFF to ON. Coil 000101 remains OFF. Coil 000102 turns ON only in ,
scans where coil 000100 turns from OFF to ON.

400010 Pointer
3005121 1000 | st 400011 1st
Source block ? 2000 | znd 400012 2nd Destination block
! 3000 | 3rd 400013 3rd

— 437 -

Indexed Block Transfer Instructions

4.3.4 SOURCE INDEXED BLOCK TRANSFER 2 (SIBR)

4.3.4

SOURCE INDEXED BLOCK TRANSFER 2 (SIBR)

1. Function

1) Source indexed block transfer 2 executes the transfer of data betwesn source and des-
tination data tables of different size. A pointer is used to determine the origin of the datain
the source table.

2} Source tables and destination data tables (called destination blocks) must be holding
register tables. <

3) The contents of the block in the source table specified by the pointer {called the source
block) are copied to the destination block. The transfer is completed in one scan.

Example
The figure below shows source tables, destination blocks and pointers.

400010 _n__] Pointer

(4000111000 400001100 | 1=t -
400012 2000 400002 _ 200 §2nd Besington block
4000133000 400008300] 3rd :
Souceavie | 4090155010
ource [-I
(Size:9,989) | 400016 [5000
400017) 7000
4000188000

a) When a transfer instruction with a pointer value of 11 is executed, the content of the.
source block (400011 to 400013) is transferred to the destination block.

400010 Pointer

Destination block (Size: 3)

. Transfer
400011 |:1000] 1st 400001 55 5600] 1st
Source block 4 400012 [#:2000] 20d ————— 400002 ;73000 2nd - Destination block
(Size: 3) e - (Size: 3)
400013 Pr” 3rd — = 400003 [3000 8rd

b) When a transfer instruction with a pointer value of 14 Is executed, the content of the
source block (400014 to 4000186) is transferred to the destination block.

400010 Pointer
Transfer Destination bloc}i \(Slze 3)
400014 [1st ——————— 400001 [£574000 | 1st
Source block 400015 [30 | 2nd #5¥spp0| 2nd p-Destination block
(Size: 3) - T 5 repery e {Size: 3)
400016 | 3rd 400003 |=:##-6000] 3rd

— 4-38 —

4.3 Details of Indexed Block Transfer Instructions

2.' Structure

. Source . .
ON: SIBR executed Input 1 = pointer (P} - Output1: ON with successtul transfer

Destination . ,
block (D) b= OCutput2: ON with transfer failure

SiBR

Block size m

1) SIBR is the symbol for SOURCE INDEXED BLOCK TRANSFER INSTRUCTION 2.

2) SIBR requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 4.5lists the constants and register refer-
ence numbers that can be specified.

Example

Input1 — 400010 Output 1 400010: Pointer reference number
400001: Leading refersnce number in the destination

400001 =~ Output2 block
SIBR #00003: Size of the source and destination biocks {3)
$00003

Table 4.5 SIBR Structural Elements

Element Meaning Possible settings

Top (P) |} Pointer reference number Holding register: 400001 to 409999
{W00001 to W09999)

Constant register: 700001 to 704096
(KO0OO1 to K04096)

Link register: R10001 to R11024
) R20001 to R21024
Middle Leading reference number in the Holding register: 400001 to 409999
(D) destination block (WO00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024

Bottom Size of the source and destination blocks Constant: #00001 to #00100
& :

3) Source Blocks

a) Source blocks are holding register tables determined by the pointer value and the size
of the destination block. The following rules apply to holding register tables, where the
pointer value is n and the size of the destination block is Z.

(1) Reference number for the leading holding register, $1: S1 = 400001 + (n - 1)

—4-39 —

Indexed Block Transfer Instructions
4.3.4 SOURCE INDEXED BLOCK TRANSFER 2 (SIBR) cont.

(2) Reference number for the last holding register, SE: SE = 81 + Z -1

b) The following table shows these rules.

Polinter Value Holding Register Table Used as Source Block
‘ ' Leading Reference No. (§1) - Last Reference No. (SE)
1 400001 400001 + Z -1
2 400002 400002 + Z -1
n 400001 + (n - 1) : 400001 4+ (In—-1)+Z -1
9999 409999 409999

4) Effective Range of the Pointer Value

a) The pointer value (n) must satisfy the following 3 conditions to be in the effective

range.
Condition1 1<n<9999
Condition2 The holding register table specified by n actually exists, in other
words, satisfies the following two equations.
400001 < 400001 + (n - 1) £ 409999
400001 < 400001 + (n—-1)+ Z - 1 < 409999
Condition3 The pointer is not included in the destination block.

b) None the following examples satisfies the above conditions. Accordingly, the data will
not be transferred even if input 1 of the SIBR is ON. Output 1 will be OFF and output 2
will be ON.

Example 1 ' Example 2 Example 3

input1 — 400010 [— Output1 Input? =4 400010 }— Ouiputt input1 == 400001 }— Output1

400001 |— output2 440001 [— Output2 400001 — output2
SIiBR S!1BR SIBR
200003 200003 #00003

400010 [20009] Pointer 408010 [9999] Pointer 40000110 | Pointer

Does not satisfy condition 1 Does not satisfy conditicn 2 Does not satisfy condition 3

— 440 —

4.3 Details of Indexed Block Transfer Instructions

3. Operation

1) Status Before Execution

P E Pointer Dl 100 | st
r 1900 Destination biock Dig-{ 300 | mth
2000 {Holding register block)
3000 H1-1 500 | zth
St} 4000 } 151
5000 The following equations apply 1o the source biock
Source table - e '
(Holding register table)‘ Sm| 6000 | mih p Source block (Z is the size of the destination block).
1000 Referance number for the leading holding ragister, S1:
SE|_ 8000 | zin $1=400001 + (n—1)
8000 Referance number for the last holding register, SE:
. SE=S51+Z-1
i
[]
[]
»
- 1

2) Ifthe pointer value (n} is in the effective range, the following data will be transferred when
input 1 is turned ON. The transfer is completed in one scan. :

P [___n]Pointer

Transfer
St [#iidoon] 1st D D03 | 1st
Source block R Destination block
{Holding register table) < Sm 400 | mth D+m-1 |:452:8000 | mth {Holding register table)
(Size: Z) 2 ff{'fgg f;g@‘ré (Size: Z)
SE [sopo] zth D+Z-1 |Z2800G] Zth

a) Aholding register table {S1 to SE) will be selected as the source block in accordance
with the rufes, and based on the pointer value (n) and the size of the source biock (Z).

b) The content of the selected holding register table is transferred to the destination
block. The contents of the m¥ (m = 1 to Z) word in the source block are copied to the
mt (m = 1 to Z) word in the destination block.

¢) The pointer value and the content of the source block remain unchanged.
d) Output 1 turns ON. Qutput 2 remains OFF.

3) When the pointer value (n) is not in the effective range, no source block exists. Therefore,
even if input 1 is ON, the following occurs:

a) The transfer is not executed.
b) Output 1 remains OFF. Qutput 2 turns ON.

— 441 —

Indexed Block Transfer Instructions

4.3.4 SOURCE INDEXED BLOCK TRANSFER 2 (SIBR) cont.

<4EXAMPLEp 4, Application Example

1) Ladder Programming

P}
100001

400010
400081

SIBR
#00008

j')—' ON with successful transfer
000101

2) Transfer Contents

a) Status Before Execution

{)= .ON with transfer failure
000102

400010 E Pointer

(400011
" 1400012
400013
400014
Source table <400015
(Size: 9,989) 400016
400017
400018
400019

1000

2000

3000

4000

7008

400001 10 Dasﬁnatio;l block
apoooz[200 }r S50
450083 300

The following equations apply to source biocks.
(Z is the size of the destination block).

Reference number for the leading holding register, S1:
$1 =400001 + (n -1}

Reference number for the last holding register, SE:
SE=S1+Z-1=581+2

b) If the pointer value {n) is 11, the following data will be transferred when input relay
100001 turns from OFF to ON. The transfer is completed in one scan.

{Size: 3)

9| 2nd

400011 Fis51000°
Source block 400012 [

400013 [5583000

3rd

1st -

Transfer

ard (Size: 3)

10001 1st
el 2nd Destination block

(1) A holding register tabie (400011 to 400013) is selected as the source block,
based on the pointer value (11) and the size of the destination block (3).

(2) The contents of the selected source block is transferred to the destination block.

{3) The pointer and the content of the destination block remain unchanged.

(4) Coil 000101 turns ON only in scans where input relay 100001 turns from OFF to
ON. Coil 000102 remains OFF.

—4-42 —

4.3 Details of Indexed Block Transfer Instructions

M

c) Thefollowingdata transferis executed when the pointer value (n}is 14 and input relay
100001 is turned from OFF to ON. The transfer is completad in one scan.

400010 Pointer
— Transfer
400014 | %4000 1st 400001 |=i2000 1st o
Squrc_:e block 400015] 2nd — 400002 [77 5000 2nd Dgsupatlon block
{Size: 3) - . (Size: 3)
400016 |4 | 3rd — 400003 {75 's000| 3rd

(1) Aholdingregister table (400014 to 400016) is selected as the source block based
on the pointer value (14) and the size of the destination block {3).

(2) The contents of the selected source block is transferred to the destination block.
(3) The pointer value and the content of the source block remain unchanged.

(4) Coil 000101 turns ON only in scans where input relay 100001 turns from OFF to
ON. Coil 000102 remains OFF.

d) As the figure shows, no source block exists when the pointer value (n) is 9999.
Accordingly, transfer is not executed even if input relay 100001 is turned from OFF to
ON. Coil 000101 remains OFF. Coil 000102 turns ON only in scans where input relay
100001 turns from OFF to ON.

4000197 9399 | Pointer
4099891 1000 | 15t 460001 1st
Source block ? 2nd 400002 2nd » Destination block
7 3rd 400003 3rd

— 443 —

Indexed Block Transfer Instructions

4.4.1 Storage Locations on Networks

4.4 Building Programs

This section describes precautions that should be taken when designing programs that
contain data transfer instructions.

441 Storage Locationson Networksoiiiiiiiiiiiiinin e, 4-44
I - | 1 11 P 4-45
443 OUIDUIS .. .ot ittt e e eaas 4-45

4.4.1 Storage Locations on Networks

All indexed data transfer instructions require three elements (top, middie, and bottom)
located vertically on the network, so they can be stored anywhere on a 5-row by 10-col-
umn matrix (rows 1 through 5 and columns 1 through 10).

Note indexed data transfer instructions cannot, however, be placed to the right of coils {including
output coils, internal coils, link coils, MC coils, and MC control coils).

Example

100021 100022 100023 100024 100025 1DOC2E 1000X7 100028 100028

5t~ — |—pooons

100041 100042

& 600051
DIBR
oo

4.4 Building Pregrams

m

4.4.2 Inputs

Inputs to indexed data transfer can be connected to relay elements {except coils) and
outputs from timers, counters, math instructions, data transfer instructions, other instruc-
tions, etc.

Example

'F|P|—-4um4|

001001

2 Lecocar]!lecorso
SUB | IMUL

3 400150F 400148

4

4.4.3 Outputs

Outputs from indexed data transfer can be connected to any of the following: coils, con-
tacts, inputs to instructions, inputs to data transfer instructions, etc.

Example

1 2 8 4 B 8

1 1 P F—400141Heco00ziriw o0 1285 4ca145H 4001

001001

2 PO00OD1H- (400150| {400145)|{400181 (401001
SUB{ | MUL ||| ADD {{| SIBR

3 400150 HOO144 [| HOD145

Note The input relays used in the destination for INDEXED BLOCK TRANSFER 1 (DIBT) are
turned ON/OFF in accordance with the results of solving DIBT. That status is maintained until
the completion of the scan cycle. The status at the beginning of the next scan cycle depends
on whether the relays have been allocated to I/O and whether they are in enabled or disabled
mode. The following table outlines the differences.

— 445 —

Indexed Block Transfer Instructions

L
4.4.3 Owputs cont.

Table 6.6 Status at Beginning of Input Relay Scan Cycle

/O Allocation | Enable/Disable Input Relay Status at Beginning of Scan Cycle
No 1/0 Enabled Status determined by solving DIBT remains.
allocation Disabled ON ’
Disabled OFF
O allocation Enabled In accordance with the input signal
Disabled ON Tums ON.
Disabled OFF Turns OFF.

Note Do not use the positive or negative transitional contacts for the destination input relay for
DESTINATION INDEXED BLOCK TRANSFER 1 (DIBT). The original operation, where the
status is turn for only one scan depending on the ON/OFF status of the corresponding relay,

will not be performed.

— 4-46 —

Matrix Instructions

This chapter covers the instructions that perform various operations on
matrixes.

5.1 MatrixInstructionso0evevvneens. 52

5.2 Basic Information on Matrix Instructions ... 5-6

521 DataTablesand Table Size 5-6
522 BitNumbers.........oviiviiiiinrrennnnnnennn. 5-6
523 Source Tables and Destination Tables 57
524 Poimters i e 5-9

5.3 MatrixInstructionso0vvvvevn... 511

53.1 LOGICALAND(AND)ccoviune... -1
532 LOGICALOR(OR)oovviiiviiiinineennn.. 5-16
533 LOGICAL EXCLUSIVEOR(XOR) 5-20
334 LOGICAL COMPLEMENT(COMP).............. 5-24
535 LOGICALCOMPARE (CMPR) 5-29
53.6 LOGICALBITMODIFY(MBIT) 5-38
537 LOGICALSENSE(SENS)covivvininnnn. 5-44
538 LOGICALBITROTATE (BROT) 5-51
53.9 LOGICAL MULTI-BIT ROTATE (MROT) 5-58
5310 LOGICALBITCOUNT(BCNT) 5-65

5.4 BuildingPrograms............cco00ven... 5-69

54.1 Storage Locations on Networks 5-69
542 Iopuls oo e 5-70
543 Outputs e e 5-70
544 Duplicate Coil Usageovvenvnnnnnrnn.. 5-71
545 Operatonof Disabled Coils 5-72

—351—

Matrix Instructions

5.1 Matrix Inétructions

« The ten matrix instructions are outlined in the following table.

Table 5.1 Matrix Instructions

This section introduces the matrix instructions. Matrix instructions perform AND, OR,
and other bit operations on data stored in data memory (including holding registers, input
relays, coils, etc.). Matrix instructions can be used for complex, advanced data
processing operations that are difficult to perform with the basic instructions, math
instructions, or other instructions.

table {ST) and the destination table (DT) and the result is
stored in the destination table.

Example
400001 400092
M LM L
{1111 3111 0000 0000]1111 1111 0000 0000]sT
IOFI taken between corresponding bits.
[1317 F111 1177 1111]0000 0000 0000 0000]07
M LM L
l 400011 400012
Result output to corresponding bits.
LT F00 1191 1191111 1111 0000 _0000]DT
M LM L
400011 400012

Name Symbol Function Page
LOGICAL AND AND- An AND is performed between corresponding bits of the 51
source table (ST) and the destination table (DT) and the result
is stored in the destination table.
Example
L 400001 ; . 400002
‘M] L
f1111 @111 0000 0000f111t 1111 0000. 0000|ST
I AND taken between corresponding bits.
M LM L
1111 §1H 1111 11110000 0000 0000 0000|DT
l T400011 7400012
Result output 1o correspanding bits.
[1111 %11? 0000 00000000 0000 0000 0000]DT
-- M L M L
“400011 400012
LOGICAL OR OR An OR is performed between corresponding bits of the source | 5-16

—352—

5.1 Matrix Instructions
m

Abbreviations ST Source table
DT: Destination table
P. Pointer
M: Most significant bit
L: Least significant bit

Name Symbol Function Page
LOGICAL XOR An exclusive OR is perform between corresponding bits of the | 5-20
EXCLUSIVE OR source table (ST) and the destination table ({DT) and the resuit

ts stored in the destination table.
Example 400001 L400002
W LM L

(it gﬂi 0000 0900]1111 1111 0000 0000]ST

I XOR takan between corresponding bits,

[T7T @111 1111 17110000 0000 0000 0000]0T
] L L

l 400011 400012
Result output to corresponding bits.
[0000 Fo00 7117 TI1]7111 1711 0000 0080]0T
M LM : L,
400011 400012
LOGICAL COMP | The status of the bits in the source table (ST) are inverted and | 5-24
COMPLEMENT stored in the destination table (DT).
Example
480001 400002
] LM L

{1111 111 0000 000C]1111 77711 0000 G000]ST

lThe inverse of the source bit status is stored.
M LM L
]0000 @00 1111 111110000 0000 11711 111107

N

00017 200012

LOGICAL COMPARE |CMPR | The status of individual bits are compared between the source | 5-29
table (ST) and the destination table (DT) and the bit numbers
of the bits with different status is output using a pointer (P).

Example

400001 400002
M LM L
[0000 0000 0000 0900F000 0000 0060 0000]5T

400010 p Bit 17 does not match, so the bit

number (17} is stored in the
pointer,

[0000 0000 0000 00005000 0000 0000 6080]DT
M LM L
400017 400012

]

Abbreviations Bit numbers are used to identify the position of a bit and are defined as
shown in the following diagram.

—33—

Matrix Instructions

LOGICAL BIT
MODIFY

(O]

M

400001
®

®

40
(EI M)
[f111 0000 1111 0000]0000

0
@
1
LM

Name

Symbol
MBIT

Function

the destination table (DT) to either 1 or 0

Page

LOGICAL SENSE

SENS

A pointer (P_) is used to force the status of an arbitrary bit in

Example: If the pointer is set to 5 and inputs 1 and 2 to the

400001[_ s]P
®

[0600 000 0000 00000000 0000 3000 0000]0T
N LM
300011

L

LOGICAL BIT MODIFY instruction are both ON, bit
#5 will be force-setto 1.

5-38

LOGICAL BIT
ROTATE

BROT

w001z
A pointer (P} is used to detect the status of an arbitrary bit in
the destination table (DT)

SENSE instruction is ON, output 2 will tum ON to
indicate that the status of bit #5 is 1

400001 5P
®

[0900 000 0000 0000]0000 0000 0000 0000}DT
o LM

400011

L,
7400012

— oaa
Example: If the pointer is set to 5 and input 1 to the LOGICAL

The bit pattern in the source table {ST) is shifted one bit to the
left or to the right and stored in the destination table (DT)
Example: Shift to the Left

5-51
<——-Left

400001
W

400002
LN

A
(1010 1010 1010 1010]1010 1010 1010 1010]8T

L 0 UL UL

D
20101 0101 01071 0101]0101 0101 0101 01087
'lM

LM

400011

L,
400012

— 54 —

3.1 Matrix Instructions

Name Symbol Function : Page
LOGICAL MULTI-BIT |MROT | The bit pattern in the destination table {ST) is shifted a 5-58
ROTATE specified number of bits (1 to 15) to the left or to the right. '

Exampie: Pattarn shifted four bits to the left.

400001 4Jp

400011, 400012,
M LM L
Lot 10001 0010 0071 010070101 0110 0117 1000]0T

Wl 7777 =

ﬁ§§31001o 0011 0100 019110110 0111 1oa“§§§ggnr

TTTEEM 400012"

LOGICAL BIT COUNT | BCNT | The number of bits that are 1 or 0 in the source table (ST)are |5-65
counted.

Example: Counting the number of 1 bits
400001, 400002,
M L'M L
11600 0000 0000 3000[1000 0000 0000 100087

400011 [:l Destination Four bits are 1.

— 5.5 —

Marrix Instructions

5.2.1 Data Tables and Table Size - ————
5.2 Basic Information on Matrix Instructions

This section describes basic information required to use the malrix instructions.

521 DataTablesandTableSizeo i, 5-6
B 2. 2 BitNUMDEIS ot ittt vt et tir e e nne e e ettt teata e tiaaanaarirnnnn 56
5.2.3 Source Tables and DestinationTablescociiiviiviinnnnn 5-7
LI B o T 1Y 5-9

5.2.1 Data Tables and Table Size
The following terms have the same meaning for matrix instructions as they do with data trans-
fer instructions. Refer to 3.2 Data Transfer Instruction Terminology for definitions of these
terms.
» Data table
» Register table
« Coil table

» Relay table

» Table size

5.2.2 Bit Numbers

1. Data Processing Units

Matrix instructions process data by the smallest unit of a data table, i.e., by individual bits,
coils, or relays.

2. Bit Numbers

1) Because matrix instruction process data by the smallest unit of a data table (i.e., by indi-
vidual bits, coils, or relays) individual bits, coils, and relays are identified by bit numbers
that indicate the position of the bit, coil, or relay within the table.

2) Bit numbers are allocated consecutively from the leading bit in the first register of the
table starting from 1, i.e,, 1, 2, 3, etc.

Example 1
MSB) LSB
® ® ® ® MSB: Most significant bit
40000111111 1111 0000 OOOO0]| LSB:Leastsignificant bit
@ @] @ @ ® 10 @: Bit number
4060002/1111 0000 1111 0000 :

3.2 Basic Information on Matrix Instructions

M

Example 2
@ @ @ to@: Bit number
~ = | | e —
000017 000018 000032
@ (E] @
i oall B A aul ~
000033 p00034 000048

5.2.3 Source Tables and Destination Tables

Source table and destination table are defined as below.
1) Source Table

a} One of the data tables that undergoes a matrix operation is called a source table. If the
table size of the source table is 1, then the source table is simply called the source.

b) Except when used asa pointer, the data in the source table does not change even
when an operation is executed.

¢} The following instructions use the source table as a pointer.
(1) LOGICAL BIT MODIFY (MBIT)
(2) LOGICAL SENSE (SENS)
(3) LOGICAL MULTI-BIT ROTATE (MHOﬁ
2) Destinatin-:n Table

a) The other data table thatis used in matrix operations is called a destination table. If the

table size of the destination table is 1, then the destination table is simply called the
destination.

b) The result from instruction execution is stored in the destination table, except for the
following instructions,

(1) LOGICAL COMPARE (CMPR)
(2) LOGICAL SENSE (SENS)

3) Anexample of the source and destination tables for the LOGICAL AND (AND) instruction
is given next.

—57 —

Matrix Instructions
5.2.3 Source Tables and Destinafion Tables cont.

Example

1) Ladder Programming

P 400001 |-
100001
400011
AND
#00002

2) Operation

" a) Before Execution

@ to@ : Bit number

Source table (Size:2) . ‘
400001, (1st) 400002 (2nd)

T ® ©® _ _©® 00 __©® 6 & &
[1111111100000000“111111100000000_|

1111 $1t11T 1111]0000 0000 0000 00O0O]
Q ® ® B © ® @ @
. 400012 (2nd)

Destination table (Size: 2)

b) Wheninputrelay changes from OFF to ON, the following operation will be performed.
The operation is completed in one scan.

Source table {Size: 2}
480001, (1st) 400002 (2nd)

D ® ©® ® ®0__® _® 6 ©
{11171 #111 0000 0000[1 111 171t 0000 C00O0]

I AND taken between corresponding bits.

D11t 8711 1711 17110000 0000 0000 0000
@ ® ® ® B0 ® ® @
400011 (1st) 400012 (2nd)

Destination table (Size: 2)

Result output to corresponding bits.

1771 @111 0000 0000]0000 0000 0000 0000]

O _ 0 ©® ® 60 ® _ ® ©
4000117 (1st) - 400012 (2nd)
: Destination table (Size: 2)

—58 —

5.2 Basic Information on Matrix Instructions
m

(1) An AND is performed between corresponding bits of the source table and the
destination table and the result is stored in the corresponding bits of the destina-
tion table.

(2) The data in the source table is not changed.

5.2.4 Pointers

1) Pointers are used for the following purposes in matrix instructions.
a) Storing Bit ﬁumbers
In the following in.structions, the pointer is used to store a bit number. |
(1) LOGICAL COMPARE (CMPR)
(é) LOGICAL BIT MODIFY (MBIT)
(3) LOGICAL SENSE (SENS)
b) Storing the Number of Bits to Shift

In the LOGICAL MULTI-BIT ROTATE instruction (MROT), the pointer is used to store
the number of bits to shift the destination table.

¢) Storing the Number of Bits

Inthe LOGICAL BIT COUNT (BCNT) instruction, the pointer is used to store the num-
ber of bits that are 1 or 0.

2) The following example shows the use of the pointer in the LOGICAL BIT MODIEY (MBIT)
instruction.

Example

1) Ladder Programming

— P — 00001
100001
400011

MBIT

—]] #00002

100002

—59

Matrix Instructions

5.2.4 Pointers cont.

2) Operation

a) Before Execution

400001 Pointer ® 1@ : Bit number

[0000 0000 0000 0000J0000 1000 0000 0000}

Q _® O] B 0 o [} @ @
400011 (1sn) 400012 (2nd)

Destination table (Size: 2}

b) Ifthe pointervalue (n) is § and input relay 100001 changes from OFF to ON with the bit
status shown above, the following operation will be performed. The operation is com-
pleted in one scan. ‘

{0000 #4000 0000 0000[0000 1000 0000 0000]

O] ® 9 @ o @ -] 8
408011 (1sp) : 400012 (2nd)

Dastination tabte (Size: 2)

(1) The status of bit #5 in the destination table will be force-set to 1.

{2) The pointer value will be have as follows according to the status of input relay

100002:
If 100002 is ON, the pointer value will change o 6.
If 100002 is OFF, the pointer value will remain at 5.

(3) The status of any bit in the destination table can be force-set to 1 by changing the
pointer value (n) to a value between 1 and 32.

—5-10—

5.3 Matrix Instructions

m

5.3 Matrix Instructions

This section describes the functions, strucfures, and operation of the matrix instructions
and provides simple examples of their application.

5.3.1 LOGICALAND (AND) .\ootiteeeiee e e oo 5-11
532 LOGICALOR(OR)ooviuiiiinnneanannnnnns. P 5-16
533 LOGICALEXCLUSIVE OR (XOR)vemrseeeeeaaaan 5-20
5.3.4 LOGICAL COMPLEMENT (COMP)ccuuuirannanannnnenn.s, 5-24
5.3.5 LOGICALCOMPARE (CMPR)oeeiiaes e 5-29
5.3.6 LOGICALBITMODIFY (MBIT) ...u' e 5-38
8.3.7 LOGICALSENSE (SENS) .. ivutieeteriee e 5-44
5.3.8 LOGICALBIT ROTATE (BROT) .. u'vvteeeee e 5-51
5.3.9 LOGICAL MULTI-BIT ROTATE (MROT) .. e eereeeeeeeeeeannn, 5-58
5.3.10 LOGICALBIT COUNT (BCNT) ..ottt ee e, 5-65

5.3.1 LOGICAL AND (AND)

1. Function

A logical AND operation is performed between a source table and a destination table of
the same size and the result is stored in the destination table. The operation is completed
in one scan.

Example

Source table (Size: 2)
400001 400002,
O] & ch ® @ @ B
[T1 118111 0000 0000[11117 1111 0000 oooo]

I AND taken between corresponding bits.

|1111W1 1111 1111]0000 0000 0000 ooo[

® ®0 @
400011 4000127
Destination table (Size: 2)
Result cutput to corresponding bits.
(111 @g 11 0000 0000]0000 0000 0000 |
O] ® ® _ _©0 @ @

400011 4000127
Destination fable (Size: 2)

— 511 —

Matrix Instructions
[

5.3.1 LOGICAL AND (AND) cont.

2. Structure

ON: Logical AND executed

Source
Inputt 1 tabig

Destination
table

AND

Table size

(S) |— Output 1: Echoes state of input 1.

(D)

(@)

1) AND is the symbol of LOGICAL AND.

2)‘AND requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Table 5.2 lists the register reference numbers
and constants that can be specified.

Example

Input{ -~

400001 |— Output1

400011
AND
#00002

— 512 —

400001: Leading reference number of the
source table

400011: Leading reference number of the
destination table

#00002: Size of the source and destination
tables (2)

5.3 Matrix Instructions

%

Table 5.2 Structural Elements of AND

Element Meaning Possible settings
Top (S) |Leading Constant: #00000 to #65535
efe
mber of the | Gl 000001 to 008177 (000001 to 008177)
source table | nput refay: 100001 to 101009 (100001 to 101009)
Input register: 300001 to 300512 (Z00001 to Z0D512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (K00001 to KG4096)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P1 0241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Leading Coil: 000001 to 008161 (000001 to O08161)
(D) reference
number of the | Holding register: 400001 to 409999 (W00001 to W09999)
destination
table Link coil: D10001 to D11002 or D20001 to D21009
Link register: R10001 to R11024 or R20001 1o R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC-control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of the Specify the constant. The maximum value differs with
2 source gnd specified reference type.
nation | ot #00001 to #00100
Input relay: #0000 to #00064
Constant,
input register,
hoiding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil, MC relay or
MC control relay: #00001 to #00016
MC control coil: ~ #00001 to #00010
M code relay: #00001 to #00006

Note When specifying reference numbers for coils or relays, the following equation must be satis-

fied ("m” represents the lower 5 digits of the reference number):
m=16n+ 1, wheren=0, 1, 2, etc.

—- 513 —

Matrix Instructions

5.3.1 LOGICAL AND (AND) cont.

3. Operation

1) Before Execution '

Source table (Size: Z)
) S . (1st) N S+m-1 {mth)
® OEEEOOOROOEROBEEE®)
[-m--- 00] === 1111111100000000]~--- 11 --meee 00]

S$H-1 (@2t

[1 1 ==cea- 00]-----]0000111100001111[----- [1 1 =acann 00]

RO . @, LOe0eeOehOOEOEME@E, . ;
D (1st) Dim-1 " (mtn) - D+I-1 = (Zth)

Destination table (Size: Z)

2) The following operation will be performed when input 1 is ON. The operation wili be com-
pleted in one scan.

Source table {Size: Z)

: S, (st S+m=1 (mth) $+1-1 (2th)
® (OO0 0000000 0C0) ’ |
11 mmeees 0 0] === 111 11100000000]==={1 1 -mrm 00]

I AND taken between corrasponding bits.

(11 =mee 00]-~~[000BI 11100001 117]==-=[1 1 coemem: 00]
(00000 0NC0R000) R)

D (s Dim-1 (mith) D+I-1 ~ @th)
Destination table {Size: Z)

l Result output to corresponding bits.

F1 1 emeaee 00]==-=[000111100000000]===- [1 1 =meea- 00]
(O] ©, B00CeOCORODEOEREE, N
D 7 (ist) Dtn-1 (mth)
Destination table {Size: Z)

D+Z-1 ~ (Zth)

a) A logica!l AND is performed between corresponding bits of the source table and the
destination table and the result is stored in the corresponding bits of the destination
table.

by The following truth table is used for the AND operation.

AND Truth Table
Before Execution Result
Source Bit Destination Bit Destination Bit
1 0 0
1 1 1
0 1 0
0 0 0

¢) The data in the source table does not change.

—5.14 —

5.3 Matrix Instructions

d) Output 1 remains ON as long as input 1 is ON.

<EXAMPLEp- 4. Application Example
1) Ladder Programming

P 400001 (—)~
100001 000101
400011
AND
200002

2) Operation
a) Befare Execution

Source table (Size: 2)
400001, (1sh : 400002, (2nd)
Ly ~—~— 4 T ——eeeemes,
@ ® ® _® @ @ &
[1111 1111 0000 000CO0f1111 1111 0000 0000|

8

11111 1111 1111 1111J0000 0000 0000 0000]
RO} ® [E X @ @ @
4000117 (1s1) 400012 (2n0)

Destination tabte (Size: 2) '

b} The following operation will be performed when input relay 100001 changes from
OFF to ON. The operation will be completed in one scan.

Source table (Size: 2)
400001, (1s9) 400002, (2nd)
[O) ® ® O @ @ @ @
[1 1171387177 00060 000013711 11171 0000 0660]

)

IAND taken between corresponding bits.

L1111 BT 1111 1171]0000 0000 0000 0000]
®

Q@ 8 ® 8o ® @ _©
400011 (1sp 400012 (2nd)

Destination table (Size: 2)

Result output to corresponding bits.

[[T11Fi11 6000 0006]0000 0600 0000 0060]

0
(O] ® © ®__ 00 ® ® @
4000117 (1sp) _ 400012 (2no)

Destination table (Size: 2)

(1) Alogical AND is performed between corresponding bits of the source table and
the destination table and the result is stored in the corresponding bits of the des-
tination table.

— 515 —

Matrix Instructions
5.3.2 LOGICAL OR (OR)

(2} The data in the source table is not changed.

{3} Coil 000101 will be ON only in the scan in which input relay 100001 changed from
OFF 1o ON. '

5.3.2 LOGICAL OR (OR)

1. Function

Alogical OR operation is performed between a sburce table and a destination table of the
same size and the result is stored in the destination table. The operation is completed in

one scan.

Example

Source table (Size: 2)

— 400001,) 400002,
® ® B _®® i)}) e @
I1111§11100000000]1111111100000

o
o
©

IOR taken between comesponding bits.

11T &1171 1711 1111]0000 0000 0000 0000]
O _ 6 ©® B ®,) ® ©
400011 400012

Destination table (Size: 2)

Result output to corresponding bits.

[T1TT 111 1111 13111]1111 1111 0000 0000
Q ® ® ®0 & ®@ @

|®|

400011 4000127

besﬁnaﬁon table (Size: 2)

2. Structure

Source ($)

ON: Logical OR executed Input1 = 1ahle — Output 1: Echoes state of input 1.

Destination
table (D)

OR

Tabie size (Z)

1) OR is the symbol of LOGICAL OR.
2) OR requires three elements, one top element, one middle element, and one bottom ele-

ment, located vertically on the network. Table 5.3 lists the register reference numbers
and constants that can be specified.

— 5-16 —

5.3 Matrix Instructions

m—

Example
Inputt —3 400001 — OQutput1 400001: Leading reference number of the
source tabie
400011 400011 Leading refsrence number of the des-
OR tination table
#00002: Size of the source and destination
$00002 1ables (2)
Table 5.3 Structural Elements of OR
Element Meaning Possible settings -
Top (8) |Leading Constant: #00000 to #65535
reference Coil: 000001 to 008177 (000001 to 008177
number of the | “O 0 (0)
source table thput retay: 100001 to 101009 (100001 to 101009)
Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09998)
Constant register: 700001 to 704096 {K00001 to K04096)
Link coil: D10001 to D11009 or D20001 to D2100g
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coll: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Leading Coil: 000001 to 008161 {O00001 to O08161)
©) reference Hokding register: 400001 to 409999 (W00001 to W09999
number of the olaing register: 0 (0)
?%sltination Link coil; D10001 to D11009 or D20001 to D21009
o .
& Link register: R10001 to R11024 or R20001 to R21024
MC caoil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of the Specify the constant. The maximum value differs with
2 source and specified reference type.
destination .
tables Coil: #00001 to #00100
input relay: #00001 to #00064
Constant, input register,
holding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil, MC relay or
MC controf relay: #00001 to #00016
MC control coil: ~ #00001 to #00010
M code relay: #00001 to #00006

Note When specifying reference numbers for coils or relays, the following equation must be satis-
fied (“m” represents the lower 5 digits of the reference number):
m=16n+1,wheren=0, 1, 2, efc.

— 517 —

Matrix Instructions

5.3.2 LOGICAL OR (OR) cont.

3. Operation

1) Before Execution

Source table (Size: Z)

S . (st) S+m-1 (mt) . $+1-1 (zth)
) PR AL T NS LU) O —— .

@ [CO0I00G0000 00000
[- 00]===~[1T111111100000000]==re [T 1 soceer’ 00]

{11 -mmn- 00]---~ (0000111100001 11 1]eeen]]1e=e-=00]
Q@ ®, LCREEOEOEODEOBNEE, .

D " (1st) Dtm-1 * (mth) . D+Z-1 ~ (Zth)
Destination table (Size: Z)

2) The following operation will be performed when input 1 is ON. The operation will be com-
" pleted in one scan.

- Source table (Size: Z}

5 ,0sh $im-1_ (mth) S+1-1 , (Zth)
@ ® OECOOOAROOCROEOE® - - - S
(11 ==nnnn QO f=-=-[111111111100000000]==-- [1 1 ememnn 00]

IOR taken batween corresponding bits.

[1 1 aaen- 00f====-1000B1 1110000111 1]==== (11 =acana 00]
® BeC@EOOOMODEROH®E®, - ,

D " (1sh) Dim-1 (mth) D+I-1 ~ (2th)

: Destination table (Size: Z)
lResuit output to corresponding bits.

[T =-n- 0 0] === 411110000111 1]---- (1< 00]
_ B = CO000E0DE0RER®, |)

D (1sp) Dtm-1 (mth) _ D+1-1 ~ (Zth)

Destination table (Size: Z)

a) A logical OR is performed between comresponding bits of the source table and the
destination table and the result is stored in the corresponding bits of the destination
table.

b) The following truth table is used for the OR operation.

OR Truth Table
Before Execution Result
Source Bit Destination Bit Destination Bit
1 0 1
1 1 1
1] 1 1
0 0 0

— 518 —

5.3 Matrix Instructions

c) The data in the source table does not change.

d) Output 1 remains ON as long as input 1 is ON.

<EXAMPLEp 4, Application Example

1) Ladder Programming

P~ 400001 —()
100001 000101
400011
OR
#00002

2) Operation
a) Before Execution

Source table (Size: 2)

400001, (18 400002, (end) .
® (EICX) @ @)
i

|L111111100000000|1111 111500000051

—

1111 11711]_111 11 1|0000 0000 0000 OOO_J
O ® 80T @ _® @
400011 (1st) 400012 (2nd)

Destination table (Size: 2)

b} The following operatlon will be performed when input relay 100001 changes from
OFF to ON. The operation will be completed in one scan.
Source table (Size: 2)

4oaoo1¢sn 400002 (2ng)
® B @@ @ ®

| §§Tl1 0000 0000|1111 1111 0000 OOOOI

IOR taken batwesn corresponding bits.

‘|1111§a‘&111 1111 1111]0000 0000 0000 ooo_]

Q ® ® ®_ @
400011 (1s) 400012 (2nd)

Destination table (Size: 2)

Result output to corresponding bits.

Q1T 1T 1911 11911117 1111 0000 0000]

KON C) 8_®8 & B o
400011 (1st) 400012 (2nd)

Destination table (Size: 2)

— 519 —

Matrix Instructions
5.3.3 LOGICAL EXCLUSIVE OR (XOR)

(1) Alogical ORis performedbetween corresponding bits of the source table and the
destination table and the result is stored in the corresponding bits of the destina-

tion table.

(2) The data in the source table is not changed.

(3) Coil 000101 will be ON only in the scan in which input relay 100001 changed from

OFF to ON.

5.3.3 LOGICAL EXCLUSIVE OR (XOR)

1. Function

ALOGICAL EXCLUSIVE OR operation is performed between a source table and a des-
tination table of the same size and the result is stored in the destination table. The opera-

tion is completed in one scan.

Example

Source table (Size: 2)
400001, 400002, .
® B _©0 @ ® 3 @
(LT HTi11 0000 0000]1111 1111 6000 0000]

|

I XOR taken between comesponding bits.

111 1111 1111]0000 0000 _QOOO (_JOOQ
®© _©® ® 00 . © ©
400011 4000127

Destination table (Size: 2)

I
QD

Result cutput to comasponding bits.

ﬁ)OOOTﬁgOOO 1111 1111[1111 1111)0r000 (_)000_]
3 __© T 90 5 __® ©
400011 400012
Destination table (Size: 2)
2. Structure
ON: Logical XOR executed Input1 —f g%'gce (8) |~ Output 1: Echoes state of input 1
Destination
table (D)
XO0OR
Table size (Z)

1) XOR is the symbo! of LOGICAL EXCLUSIVE OR.

— 5-20 —

5.3 Matrix Instructions

M

2) XOR requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Table 5.4 lists the register reference numbers
and constants that can be specified.

Example
Input1 — 400001 |— Output1. 400001: Leading reference number of the
source table
400011 400011: Leading reference number of the
XOR destination table .
#00002: Size of the source and destination
#00002 tables (2)
Table 5.4 Structural Eiements of XOR
Element Meaning Possible settings
Top (8) |Leading Constant: #00000 to #65535
reference -
number of the | COII: 000001 to 008177 (000001 to 008177)
source table input relay: 100001 to 101009 (100001 to 101009)
Input register: 300001 to 300512 (Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W08999)
Constant register: 700001 to 704096 (K00001 to K04096)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MG coit: Y10001 to Y10241 or Y20001 to Y20241
MC contral coll: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Leading Coil: 000001 to 008161 (000001 to O08161)
(D) reference . .
number ofthe | H0Iding register: 400001 to 409999 (W00001 to W09999)
detjtination Link coil: D10001 to D11009 or D20001 to D21009
ta
¢ Link register: R10001 to R11024 or R20001 1o R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of the Specify the constant. The maximum vaiue of the constant
{2) source and differs with specified reference type.
destination .
tables Coil: #00001 to #00100
input relay: #00001 to #00064
Constant, input register,
holding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil, MC relay or
MC control relay: #00001 to #00016
MC controf coit: ~ #00001 to #00010
M code relay: #00001 to #00006

— 521 —

Matrix Instructions ;
e

5.3.3 LOGICAL EXCLUSIVE OR (XOR) cont.

Note When specifying reference numbers for coils or relays, the following equation must be satis-
fied ("m” represents the lower 5 digits of the reference number):
m=16n+ 1, wheren=0, 1, 2, etc.

3. Operation

1) Before Execution

Source table (Size: Z)

S, (1s) S+m-] (mth) , $+1-1 | (zth)
® @® [QGIEEC00RBINC0GEI0CE])
(11 =emees 00 |-~ [17111 1100000000]==e[T 1 comem 00}

[T === G0]--=~ 0000111100001 11 1]===[T 1= 00]
Q @®, DEOEECOODEOEEE®, |)

D (st Dtm-1 (mth) ’ HI-1 7 @h)
Destination table (Size: Z)

2} The following operation will be performed when input 1 is ON. The operation will be com-
pleted in one scan.

Source table (Size: Z) '
(1st) Stm-1 _, (mth) $+7-1 _ (Zth)
O) ® CeOCNRROEOEReD)
11 =emens 00]---- [T 11 11100000000]-=-~ [1 - 00]

IXOR taken betwean corresponding bits.

[11 ==m=m- 00]=nne |000ﬁ111100001111| ----- [1 1 =ameen 00|
RO @, E00COOROOEDERE®, - ,
D “(1sp) Dtm=1 (mth) DtZ-1 7 (Zth)

Destination table (Size: £}

vl'F!esult output to corresponding bits.

[00------ 00|~ [1115000000001111]====[00cecer. 00]
O y @®, L000000ROCOEOBEEME, A ,
D (st Dm-1 7 (mih) D+2-1 7 (2ih)
Destination table (Size: Z)

a) ALOGICAL EXCLUSIVE OR is performed between corresponding bits of the source
table and the destination table and the result is stored in the corresponding bits of the
destination table.

b) The following truth table is used for the XOR operation.

— 522 —

5.3 Matrix Instructions
m

XOR Truth Table
Before Execution Result
Source Bit Destination Bit Destination Bit
1 0 1
1 1 0
0 1 1
0 0] 0

¢) The data in the source table does not change.

d) Output 1 remains ON as long as input 1 is ON.

«EXAMPLEp 4, Application Example

1) Ladder Programming

P 400008 — >
100001 000101
400011
XOR
#00002

2) Operation

a) Before Execution

Source table (Size: 2)

, 400001 (1s) 400002 (2nd)
® ® ® ®® & -] _@ @
(1111 11711 0000 O0O0O0J1117 1171 000 0 0000]

4

|_1111111111111111]0000 00000000 OOOQ—J
NO) ® B ®O ® K
400011 (1st) 4000127 (2nd)

Destination table (Size: 2}

— 523 —

Matrix Instructions
5.3.4 LOGICAL COMPLEMENT (COMP)

b) The following operation will be performed when input relay 100001 changes from
OFF to ON. The operation will be completed in one scan.

Source table {Size:) -
400001 {ist) 400002, (2nd)

(0} B _®0 @ @ ® @
|1111ﬁ111 0000 0000[1111 1111 0000 0000]

IXOFK taken between corrasponding bits.

[T 1 111 17111 TT11[0000 0000 0000 0000]

D 6 _® 8 88 Y I)
400011 (1st) 480012 (2nq)

Destination table {Size: 2)

Result output to corresponding bits.

10000 3000 1111 11 11]1 111 1111 0000 0000]

D6 ©®_ B 00 5@ ®
4000117 (1st) 4000127 (2nd)

Destination tabie (Size: 2)

{1) A LOGICAL EXCLUSIVE OR is performed between corresponding bits of the
source table and the destination table and the result is stored in the correspond-
ing bits of the destination table.

(2) The data in the source table is not changed.

(3) Coil 000101 wilt be ON only in the scan in which input relay 100001 changed from
OFF to ON.

5.3.4 LOGICAL COMPLEMENT (COMP)

1. Function

The inverse of the status of each bit of the source table is stored in a destination table of
the same size. The operation is completed in one scan.

Example

Source table (Size: 2)
400001, 400002,

D ___©® @ 80 @ _® & ©&
[T111 #1711 0000 0000[11171 1111 0000 0000]

‘[The inverse of the source bit status is stored.

[6000 6000 1111 1111]0000 0000 1111 11131]
& _6 _ _©® ® 00 & ® @
400011 200012"

Destination table (Size: 2)

— 524 —

3.3 Matrix Instrictions

M

2. Structure

Source
ON: Logical COMP executed input 1 — tabls (S} [— Output 1: Echoes state of input 1

Destination
table (D)

COMP

Table size {Z)

1) COMP is the symbol of LOGICAL COMPLEMENT.

2) COMP requires three elements, one top element, one middie element, and one bottom
element, located vertically on the network. Table 5.5lists the register reference numbers
and constants that can be specified.

Example
Input1 — 400001 — Output1 400001: Leading refersnce number of the
source tabla
400011 400011: Leading reference number of the
COMP destination table
#00002 #00002: Size of the source and destination
tables (2)

— 525 —

Matrix Instructions
c..........______ . -]

5.3.4 LOGICAL COMPLEMENT (COMP;) cont.

Table 5.5 Structural Elements of COMP

Element Meaning Possible settings
Top (S) |Leading Coil: 000001 to 008177 (000001 to O08177)
reference
number of the | Input relay: 100001 to 101009 (100001 to 101009)
source table .
Input register: 300001 to 300512 (ZO00O01 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704086 (KO0001 to K04096)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R1 0001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 o M20081
Middle Leading Coil: 000001 to 008161 {O00001 to O08161)
(D) reference :
number ofthe | Holding register: 400001 to 409999 (W00001 to W09999)
destination . .
table Link coil: D10001 to D11009 or D20001 to D21008 -
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of the Specify the constant. The maximum vaiue of the constant
(Z) source and differs with specified reference type.
destination | coit #0000 to #00100
Input relay: #00001 o #00064
Input register,
holding register or
constant register: #00001 fo #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil, MC relay or
MC control relay: #00001 to #00016
MC controi coil: #00001 to #00010
M code relay: #00001 to #00006

Note When specifying reference numbers for coils or relays, the following equation must be satis-

fied (*m” represents the lower 5 digits of the reference number):
m=16n+1,wheren=0, 1, 2, etc.

— 5-26 —

. 5.3 Matrix Instructions
M

3. Operation
1) Before Execution
Source table (Size: Z)
$4m-1 . (mih) $+1-1 , @)

S, (1sf)
0} 00E[0000000 0000 ’
----- [11------"00]

[11 =ecaan 00]==-- |1111111100000000|

[11 ==enae 00| ----- 0000111100001 111 semmi [} ameaand 00]

QD ®, RO.O.00.06[0[000 0L 000} . J
Dm-1 7 (mth) Di1-1 7 (2th)

Destination table (Size: 2)

2} The following operation will be performed when input 1 is ON. The operation will be com-
pleted in one scan. _

Source table (Size: Z)
StI-1 (zth)

S.ds) Sl ewy
CEEDROIEIPRE.
[T 00]

@
11 11100000000]==-w

corresponding bit.

[0 0 =un-- 11]enea [ooo@oooo1111111ﬂ
@®, LOEEDEMODROBREE® o
D (1st) Dim-1 (mth) D+I-1 7 (Zth)
Destination table (Size: Z)}

llnverse of the status is stored in

a) The inverse of the status of each bit of the source table is stored in the destination
table. '

b) The following table shows the operation of COMP.

Table 5.6 Operation of COMP

Before Execution Resuit
Source Bit Destination Bit Destination Bit
1 Any 0
0 Any 1

c) The data in the source table does not change.

d) Output 1 remains ON as long as input 1 is ON.

— 527 —

Matrix Instructions
[

5.3.4 LOGICAL COMPLEMENT (COMP) cont.

<«EXAMPLEp 4, Application Example

1) Ladder Programming

P 400001 —)
100001 000101
400011
COMP
#00002

2) Operation
a) Before Execution

Source table (Size: 2)
400001, {1st) - 400002, (end)

® @

[ONNG) B _©®® @ @
(1177 1111 0000 0000[17111 1

1711 0000 0000]

(1111 0000 1111 000CO[00O00 1111 0000 1111]

1
T_® B 8.0 5 ©® _©
400011 (s 400012 (2nd)

Destination fable (Size: 2)

b) The following operation will be performed when input retay 100001 changes from

OFF to ON. The operation will be completed in one scan.

Source table (Size: 2)
400001, (1st) 400002 (2nd)

D

@

® B _®0 @)

®@__@

1118111 0000 0000J1111 1111 0000 0000]

Inverse of the status is stored in corresponding bit.

(—

[0000 FOOO 1111 1111]0000 0000 1111 1111]
RO) ® 9 ®_ ® -] ® @
4000117 (1st) 400012 (2nd)

Dastination table {Size: 2)

(1) Theinverse of the status of each bit of the source table is stored in the destination

table.

(2) The data in the source table is not changed.

(3) Coil 000101 willbe ON only in the scan in which input relay 100001 changed from

OFF to ON.

- 5.28 —

5.3 Matrix Instructions
.

5.3.5 LOGICAL COMPARE (CMPR)

1. Function

The bit patterns of a source table and a destination table of the same size are compared
one bit at a time.

Example

Source table (Size: 2)
400001, _ 400002,

[© ® B _®® @) ® @
(OO00 0000 0000 DOCORHOOO 0000 0000 0000]

400010 Correspo;lding bits are compared and the bit
number of unmatched bits is output to the pointer.
Pointer]
[0000 0000 0000 000OER000 0060 0000 0000]
[CHENG) ® 0.9 8 © ©
400011° 400012

Destination table (Size: 2)

2. Structure

- ' Source
ON: CMPR exscuted Input?] 1anle S — Output 1: Echoes state of input 1.

Destination
ON: Pointer value reset Input2 — pointer P) — Output 2: ON when unmatched bit is found
to 0 regardiess of

status of input 1. CMPR

= Output 3: Indicates' status of unmatched

Table size {1) source bit.

® ON: Source bitis 1.
OFF: Source bitis 0.

1) CMPR is the symbol of LOGICAL COMPARE.

2) CMPR requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 5.7 lists the register reference numbers
and constants that can be specified. The next register after the destination pointer is the
leading register of the destination table.

Example
tnput1 — 400001 —~ Output1 400001: Leading reference number of the
source table
- . 400010: Reference number of the pointer
Input2 400010 Output 2 The next register is tha leading
CMPR register of the destination table
§00002 — Output3 #00002: Size of the source and destination
tables (2)

- 5-29 —

Matrix Instructions

L e E——
5.3.5 LOGICAL COMPARE (CMPR) cont.

Table 5.7 Structural Elements of CMPR

Element Meaning Possible settings

Top (S) [Leading Coil: 000001 to 008177 (000001 to O08177)
reference
number of the | INPut relay: 100001 to 101009 (100001 to 101009) -

sourcetable |nputregister: 300001 to 300512 {Z00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to WI(09999)
Constant register: 700001 to 704096 (KO0001 to KO4096)

Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coik: Y10001 to Y10241 or Y20001 to Y20241

MC controt coil: d1 0061 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MG control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081

Middle Reference Holding register: 400001 to 409998 (W00001 to W09988)
{P) number of
pointer Link register: R10001 to R11023 or R20001 to R21023
Bottom | Size of the Specify the constant. The maximum value of the constant
(Z) source and differs with specified reference type.
tc:ieg';gr;atlon Coil: #00001 to #00100
Input relay: #00001 to #00064

Input register,
holding register or
constant register: #00001 to #00100

Link coil: #00001 to #00064
Link register: #00001 to #00100

MC coit, MC relay or
MC conirol relay: #00001 to #00016

MC control coil: #00001 to #00010

M code relay: #00001 to #00006

Note (1) When specifying reference numbers for coils or relays, the following equation must be
satisfied ("m” represents the lower 5 digits of the reference number):
m=16n+1,wheren=0,1, 2, etc.

{2) The next register after the pointer is the leading register of the destination table.

—530—

: 5.3 Matrix Instructions

3. Operation

1) Before Execution

The following description assumes that the register contents are as shown below, i.e.,
there are unmatched bits at the positions labeled e, jhandm.

Source table (Size: Z)

§ (1s) Stm-1 . (mth) $471-1 (zZth)
l'-—_k“"* ,--——-—-————L...—_____‘ r nY
@®) GEEOEOOOOOROEEEE
[0 0 =c=-an 00]=--~ [000 0000 G000 0 0] ==mm (00 -----= 00]

T
P Last bit number: 16Z
E Pointer ¢

[00 === 0 0]~~~ 0000000 OH0COBEC O 0] ====[00 --eeeri 00]
Q @, LECEOREODEONEEER, — ,
P+1 " {1st) Pm ~ (mth) P+l ~ (zth)
Destination table (Size: Z)

2) It input 2 is OFF, the following processing will take place.

When input 1 changes from OFF to ON, bit comparison starts from the bit position one
higher (n+1) than the current pointer value (n).

a) Inthefirstscanthatinput 1 changes from OFF to ON, the pointer value {n) will be 0 and
the following processing will take place. This processing will be completed in one
scan.

(1) The bit patterns of the source table and destination table are compared one bit at
a time. The pointer value is 0, so comparison starts at bit #1.

(2) Anunmatched bit is found at the position labeled e, so the bit number of this posi-
tion is stored in the pointer and bit comparison ends.

(3) The data in the source and destination tables does not change.

(4) Outputs 1 and 2 will turn ON. Output 3 will also turn ON to indicate that the status
of the unmatched source bit is 1.

b) Inthe second scan thatinput 1 changes from OFF to ON, the following processing will
take place. This processing will be completed in one scan.

(1) The bitpatterns of the source table and destination table are compared one bit at
atime. The pointer value is at the bit number of the position labeled e, so compari-
son starts at the bit tabeled f.

—3-31 —

Maitrix Instructions

" T i ——
5.3.5 LOGICAL COMPARE (CMFPR) cont.

(2) Anunmatched bit is found at the position labeled |, so the bit number of this posi-
tion is stored in the pointer and bit comparison ends.

(3) The data in the source and destination tables does not change.

(4) Outputs 1 and 2 will turn ON. Output 3 will turn OFF to indicate that the status of
the unmatched source bitis 0.

¢) Inthe third scan that input 1 changes from OFF to ON, the following processing will
take place. This processing will be completed in one scan.

(1) The bit patterns of the source table and destination table are compared one bit at
a time. The pointer value is at the bit number of the position labeled j, so compari-
son starts at the bit labeled k.

(2) Anunmatched bitis found at the position labeled m, so the bit number of this posi-
tion is stored in the pointer and bit comparison ends.

(3) The data in the source and destination tables does not change.

{4) Outputs 1 and 2 will turn ON, Qutput 3 will turn OFF regardless of the 1 status of
the unmatched source for the following reason.

Note Output 3 will not tum ON when the status of the sburoe bitis 1 and the status of the
destination bit is 0 if unmatched bits have already been found for which the status
of the source bit was 0 and the status of the destination bit was 1.

d) In the fourth scan that input 1 changes from GFF to ON, the following processing will
take place. This processing will be completed in one scan.

(1) The bit patterns of the source table and destination table are compared cne bit at
atime. The pointer value is at the bit number of the position labeled m, so compar-
ison starts at the bit labeled n.

(2) Comparison continues to the last bit in the tables (16Z) and no more unmatched
bits are found, so the pointer is reset to 0 and comparison ends.

{3) The data in the source and destination tables does not change.
{4) Output 1 will turn ON, and outputs 2 and 3 will turn OFF.
e) Hinput1turns ON again, the above processing from step a) to step d) will be repeated.
3) ifinput 2 is ON, the following processing will take place.

Wheninput 1 changes from OFF to ON, bit comparison will always begin from bit#1. Pro-
cessing will be as follows:

— 5-32 —

5.3 Matrix Instructions -

H—
a) The pointer value (n) is set to 0.

b) The bit pattern of the source table and destination table are compared one bit at a
time. The pointer value is 0, so comparison starts at bit #1.

¢) Anunmatched bitis found atthe position labeled e, so the bit number of this positionis
stored in the pointer and bit comparison ends. :

d) The data in the source and destination tables does not change.

e) Outputs 1 and 2 will turn ON. Output 3 wiltalso turn ON to indicate that the status ofthe
unmatched source bit is 1.

4) An overview of the operation of CMPR is given in the following table. n is the pointer val-
ue, Z is the size of the source and destination tables.

— 3533 —

Matrix Instructions .
AR — L]
5.3.5 LOGICAL COMPARE (CMPR) cont.

Table 5.8 Operation of CMPR

Inputs Condition of Operation Outputs
1 2 n ; 1 2 3
ON | OFF |0=ns16Z-1 1) Bit patterns in source’and ON |ON Status
destination table compared one bit when of un-
at a time. ‘ un- matched
matched | source
2) Bit comparison starts at n+1. bit found g:“
3) if unmatched bit is found, bit :g‘frge
number is stored in pointer and bit bit is 1.

compariscn ends for current scan.

4) If no unmatched bits are found
before 16Z, pointer is reset to 0 and
bit comparison ends for current
scan.

5) All unmatched bits can be found
one at a time. '

n<0, n216Z {1) Bit patterns in source and .
destination table compared one bit
at a time.

2) Bit comparison always starts from
bit #1.

3) If unmatched bit is found, bit
number is stored in pointer and bit
ON | None comparison ends for current scan.

4) If no unmatched bits are found
before 16Z, pointer is reset to 0 and
bit comparison ends for current
scan.

5) Only the first unmatched bit can be
found even if more exist.

OFF | OFF | 0<n<16Z-1 Bits are not compared. OFF | OFF OFF
n<0,n=16Z |1) Pointeris resetto 0

ON |None

2) Bits are not compared.

Note Qutput 3 will not tum ON when the status of the source bitis 1 and the status of the destination
bit is 0 if unmatched bits have already been found for which the status of the source bitwas 0
and the status of the destination bit was 1.

- 5.34 —

5.3 Matrix Instructions

4. Application Examples

4EXAMPLE p Example 1

1) Ladder Programming

P 400001 —
100001 000101
o 400010 f—{

CMPR 000102

#00002 ~—{)
000103

2) Operation

a) Before Execution

Source table (Size: 2)

400001 (159 400002 _(2nd)
[©) ® @ ® -3
[0000 0000 0000 000055000 0000 0000 000F
400010
Pointer

[0000 0000 0000 0GOOHOO0O 0000 0000 ooo@

NONENG) ® ®® @ ® @
400011 (1s9) - 400012 (2nd)

Destination table (Size: 2)

_—l

b) The pointer value (n) is initiafly 0. When input relay 100001 changes from OFF to ON

the following processing will take place. This processing will be completed in one
scan.,

{1) The bit patterns of the source table and destination table are compared one bit at
a time. The pointer value is 0, so comparison starts at bit #1.

(2) Anunmatched bitis found atthe bit#17, so 17 is stored in the pomter and bit com-
parison ends.

(8) The data in the source and destination tables does not change.
(4) Coils 000101, 000102, and 000103 all turn ON.

¢) When input relay 100001 changes from OFF to ON again, the following processing
wili take place. This processing will be completed in one scan.

—5-35—

Matrix Instructions
L]

5.3.5 LOGICAL COMPARE (CMPR) cont.

(1) The bit patterns of the source table and destination table are compared one bit at
a time. The pointer value is 17, so comparison starts at bit #18.

(2) Anunmatched bitis found at bit #32, so 32 is stored in the pointer and bit compari-
son ends.

{3) The data in the source and destination tables does not change.
(4) Coils 000101, 000102, and 000103 all turn ON.

d} When input relay 100001 changes from OFF to ON again, the following processing
will take place. This processing will be completed in one scan.

(1) The bit patterns of the source table and destination table are compared one bit at
atime. The pointer value is 32, so the pointeris reset to 0 and comparison starts at
bit #1.

(2) Anunmatched bitis foundatbii#17, so 17 is stored in the pointer and bit compari-
soh ends.

(3) The data in the source and destination tables does not change.
(4) Coils 000101, 000102, and 000103 all turn ON.

e} Wheninput relay 100001 continues to change from OFF to ON, the above processing
is repeated.

A4EXAMPLEp Example 2

1) Ladder Programming

P 400001 —
100001 000101

400010 —— >
CMPR 000102

go0002 ——)
000103

— 5-36 —

5.3 Matrix Instructions

M

2) Operation
a) Before Execution

Source table {Size: 2)
400001, (1st) 400002, (2nd)

@ ® ©® (EIICN0)]) ® @
[0000 0000 0000 0COOFEO00 0000 0000 00O0%]

4000190

E Pointer

[0000 00060 0000 00COJHOC0 0000 0000 000
O & ©® B8 ®©o B ® I
400011 (180 400012 (2nd)

Destination table (Size: 2)

b) When inputrelay 100001 changes from OFF to ON, the following processing will take
place, This processing will be completed in one scan.

(1) The pointer value is reset to 0. .

(2) The bit patterns of the source table and destination table are compared one bit at’
a time. The pointer value is 0, so comparison starts at bit #1.

(3) Anunmatched bitis found atthe bit#17, so 17 is stored in the pointer and bit com-
‘parison ends.

{(4) The data in the source and destination tables does not change.

(5) Coils 000101, 000102, and 000103 all turn ON.

¢) Asshowninthe example, input 2 is always ON, so the pointer value is always reset to
0 and comparison will always start from bit #1. Therefore, bit #17 will always be found
as the unmatched bit, unless the contents of the registers change.

—5-37 —

Matrix Instructions

5.3.6 LOGICAL BIT MODIFY (MBIT)

5.3.6 LOGICAL BIT MODIFY (MBIT)

1. Function

A pointer (P) is used to force the status of an arbitrary bit in the destination table (DT) to
either 1 or 0. The operation is completed in one scan.

Example

1) If the pointer value is 5 and inputs 1 and 2 are both ON when LOGICAL BIT MODIFY is
executed, then bit #5 of the destination table will be set to 1.

400001
Pointer

J_6 ©. B 6o ® 6 _®
400011 400012

Destination table (Size: 2)

(0000 %000 0000 0000J1 111 1111 1111 11171]
@,

2) Ifthe pointer value is 21 and only input 1 is ON when LOGICAL BIT MODIFY is executed,
then bit #21 of the destination table will be setto 0.

400001
Pointer

[0000 0000 0000 000O[T1 771 BI11 1111 1111]
@

T _© © ® 00 &6 ®
400011 460012

Destination table (Size: 2)

2. Structure

ON: Bit modified. lnput1 — Pointer (P) |— Output 1: Echoes state of input 1
] Destination ,
ON: Bitsetto 1 Input2 = mnla (D) |~ Output2: ON: Bitsetto 1
OFF: Bitsetto 0 : OFF: Bitsetto 0
MBIT
ON: Ifpointeris a holding input3 == — Output 3: ON if pointer value > 162
register, 1 is added to . 2 {regardiess of status of input 1}
pointer after execution. Table size

1) MBIT is the symbo! of LOGICAL BIT MODIFY.

2) MBIT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 5.9lists the register reference numbers
and constants that can be specified.

— 5-38 —

5.3 Matrix Instructions

Example
Input1 —] 400001 Output 1 400001: Reference number of pointer
) 400011: Leading refgrence number of
Input2 —| 400011 — Qutpur2 the destination table
MBI T #00002: Size of destination table (2)
tnput3 — #00002 |[— oOutputa
Table 5.9 Structural Elements of MBIT
Element Meaning Possible settings
Top (P) | Reference Constant: #00001 to #09600
number of]
pointer fnput register: 300001 to 300512 (200001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Link register: R10001 fo R11024 or R20001 to R21024
Middle Leading Coil: 000001 to 008161 (000001 to C08161)
D) reference
number of the | Holding register: 400001 to 409999 (W00001 to W09999)
destination .
e Link coil D1000t to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coit: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of Specify the constant. The maximum vaiue of the constant
(V4] destination differs with reference type specified in middle element.
table Coil: #00001 to #00512
Holding register: #00001 to #00600
Link coil: #00001 to #00064
Link register: #00001 to #00800
MC coil: #00001 to #00016
MC control coll: ~ #00001 to #00010

Note When specifying reference numbers for coils or relays, the following equation must be satis-
fied ("m” represents the lower 5 digits of the reference number):
m=16n+ 1, wheren=0, 1, 2, stc.

— 5-39 —

Matrix Instructions

_]
5.3.6 LOGICAL BIT MODIFY (MBIT) cont.
3. Operation
1) Before Execution
P ;
IE Pointer . Last bit number: 162
v
[0 0 =essan Q0 Of=nne [11711000011110000]==== {00 =san- =00}
KON) LeEEECOOORKOEEE®, R
D " (1st) Dim-1 = (mth) D+1-1 7 (2th)

Destination table (Size: Z)

2} If input 2 is ON, the following processing will take place.

The following operation is performed when input 1 is ON. This operation is completed in
one scan.

a) If the pointer value (n) is e, the the bit labeled e in the destination table is setto 1.

[00-=--- 00]----[T 1 11H00011110000]-~= [00-—--- 00]
Q@ ® OOCCIEEODEDEDEE, .

b (1s) Dim-1 ~ (mth) T @h)

b) The pointer value (e) is incremented if the following two conditions are met.
» The pointer is a holding or link register.
¢ Input 3 is ON.
¢) Outputs 1 and 2 turn ON and output 3 remains OFF.
3) i input 2 is OFF, the following processing will take place.

The following operation is performed when input 1 is ON. This operation is completed in
one scan.

a) If the pointer value (n) is i, the the bit labeled i in the destination table is set to 0.

[0 =sne-- 00]----[1 111000081 110000]=== [00-==-= 00]
KON) 20eO0EOCOROBRRE®, .
D (1st) Din=1 " (mth) D+Z-1 " (2th)

b) The pointer value (i} is incremented if the fdllowing two conditions are met.
¢ The pointer is a holding register.

e Input 3 is ON.

— 540 —

5.3 Matrix Instructions

m

c) Output 1 turns ON and outputs 2 and 3 remain OFF.

4) If the pointer value (n) is less then 0 or greater than 162 {highest bit number), the the fol-
lowing operation is performed regardless of the status of input 1.

a) The instruction is not executed.
b) The pointer value and the data in the destination table do not change.
¢) Outputs 1 and 3 turn ON and output 2 remains OFF.

5) An overview of the operation of MBIT is shown in the following table. Pointer value is n
and the size of the destination table is Z. '

Table 5.10 Operation of MBIT

Inputs Condition Operation Outputs
1 [2] 3 ofn 1 | 2 [3
ON |ON |OFF [1<n<16Z [1) Bit#n in destination table setto 1. ON |ON |(OFF

2) Vaiue of n does not change.

ON 1) Bit #n in destination table set to 1. See
note.
2) Pointer incremented to n+1 ifitisa -
register.
OFF | OFF 1) Bit #n in destination table set to 0. OFF | OFF

2} Value of n does not change.

ON 1) Bit #n in destination table set to 0. See

note.
2) Pointer incremented to n+1 ifitis a
register.

Any |Any [n=0 1) Nothing is done. OFF

n<0, ON

n> 16Z 2) Pointer value and data in destination

OFF |Any |Any [1<n<i6Z table do not change. OFF OFF

ns<o, _ ON

n>16Z
Note Output 3 turns ON if the pointer is incremented to 16Z+1.

«EXAMPLEp 4, Application Example
1) Ladder Programming

—] P p—{ 400001 }—)

| | 400011 —~
100002 MBI T| 000102

f— #00002 ——

Matrix Instructions

5.3.6 LOGICAL BIT MODIFY (MBIT) cont.

2) Operation

a) Before Execution

400001

[_n"]rointer

|0000 0000 0000 0000]0000 1000 0000 0000

J ©® ©® ©® ®Bo & & ® ®
400011 (1s) _ 400012 (2nd)

Destination tabie (Size: 2)

b) f input relay 100002 is ON, the following processing will take place.

i

{f the pointer value is 5 when input 1 changes from OFF to ON, the following operation
is performed. This operation will be completed in onhe scan.

[coo00 ?ﬁooo 0600 0000[0000 1000 0000 0000]
RO) ©® ® .@ @ 2] ® @
400011 (1st) 400012 (2nd)

Destination table (Size: 2)

(1) Bit #5 of the destination table is set to 1.

(2) The pointervalue willbe as follows depending on the status of input relay 100003:
100003 ON: Pointer incremented to 6.
100003 OFF: Pointer remains at 5.

(3) Coils 000101 and 000102 tum ON and coil 000103 remains OFF.

(4) The pointer value (n) can be varied between 1 and 32 to the desired bit in the des-
tination table to 1.

c) Ifinput relay 100002 is OFF, the following processing will take place.

If the pointer value is 21 when input 1 changes from OFF to ON, the following opera-
tion is performed. This operation wili be completed in one scan.

{0000 1000 0000 0000!0000 F000 0000 0000]

@ ® ® ® ®o @ ® @ 9
400011 (1st) 400012 (2nd)

Destination tabie (Size: 2)

{1) Bit#21 of the destination table is set to 0.

—542 —

5.3 Matrix Instructions

M

(2) The pointer value will be as follows depending on the status of input relay 100003:
100003 ON: Pointer incremented to 22.
100003 OFF: Pointer remains at 21.

(3) Coil 000101 turns ON and coils 000102 and 000103 remain OFF.

(4) The pointer value (n) can be varied between 1 and 32 to set the desired bit in the
destination table to 0.

d) If the pointer value is for a bit number that does not exist (i.e., less than 1 or greater
than 32), the following processing will take place regardless of the status of input reiay
100001. :

(1) The instruction is not executed.

(2) The pointer value and the data in the destination table do not change.

(3) The status of the output coils are as follows:
Coil 000101: Same status as input relay 100001
Coil 000102: OFF
Coil 000103: ON {regardless of the status of input relays 100001 and 1 00002)

— 543 —

Matrix Instructions

5.3.7 LOGICAL SENSE (SENS)

5.3.7 LOGICAL SENSE (SENS)

. Function

A pointer (P) is used to read the status of an arbitrary bit in the destination table (DT). The
operation is completed in one scan.

Example

1) If the pointer value is 5 and input 1 is ON when LOGICAL SENSE is axecuted, the status
of bit#5 in the destination table will be read and output 2 will turn ON to indicate that the bit
status is 1. :

400001

Pointer
[0000 %000 00006 COO0OJ1111 0111 13111 1111]
Q9 ® [©) B o @ ® ® @,

4000117 400012
Destination tabls (Size: 2}

2) Ifthe pointer value is 21 andinput 1 is ON when LOGICAL SENSE is executed, the status
of bit #21 in the destination table will be read and output 2 will tum OFF to indicate that the
bit status is 0.

400001
Pointer

(0000 1000 0000 0000[1111 @111 1111

1
3 ___©® 808 __©® 6 ®
400011 4000127

Destination table (Size: 2)

111]
@

2. Structure

ON: Bit status read input1i — Pointer {P) [— Output 1: Echoes state of input 1
3 . , Destination i .

ON: If pointer is a holding Input2 = tapia (D) [~ Output2: ON: Bitstatusis 1.
register, 1 is added to OFF: Bit status is 0.
pointer after execution. SENS

ON: If pointer is a holding Input3 = — Output 3: ON when pointer is less
register, the pointer val- . 7 than 1 or greatsr than 16Z
ueis set to 1 (regardiess Table size @ {regardiess of the status of
of the status of input 1), input 1)

1) SENS is the symbol of LOGICAL SENSE.

— 544 —

5.3 Matrix Instructions
%

2) SENS requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 5.11 lists the register reference num-
bers and constants that can be specified.

Example

Inputt =1 400001 — Output1 400001: Reference number of pointer
400011: Leading reference number of
nput2 — 400011 }— Output2 the destination table
SENS #00002: Size of destination table (2)
Input 3 $00002 {— outputa
Table 5.11 Structural Elements of SENS
Element Meaning Possible settings
Top (P) |Reference Constant: #00001 to #09600
ggmﬁ’ of Input register: 300001 to 300512 (00001 to Z00512)
Holding register: 400001 to 409999 (W00001 to W08399)
: Link register: R10001 to R11024 or R10001 to R11024
Middle Leading Coil: 000001 to 008161 (000001 to 008161)
(®) Lﬂ;’ggfﬁ, the | Input relay: 100001 to 101009 (100001 to 101009)
destination Input register: 300001 to 300512 (Z00001 to Z00512)
table Holding register: 400001 to 409999 (W00001 to W09999)
Link coil: D10001 to D11009 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC controf coil: Q10001 to Q10145 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 to P20241
M code relay: M10001 to M10081 or M20001 to M20081
Bottom | Size of Specify the constant. The maximum value of the constant
(Z) destination differs with the reference type specified in middle element.
table Coll: #00001 to #00512
Input relay: #00001 to #00064
input register,
holding register: #00001 to #00600
Link coil: #00001 to #00064
Link register: #00001 to #00600
MC coil, MC relay or
MC control relay: #00001 to #00016
MC control coil: ~ #00001 to #00010
M code relay: #00001 to #00006

Note When specifying reference numbers for coils or relays, the following equation must be satis-
fied (“m” represents the lower 5 digits of the reference number):
m=16n+1,wheren=0, 1, 2, etc.

— 545 —

.Matrix Instructions
5.3.7 LOGICAL SENSE (SENS) cont.

3. Operation

1) Before Execution

P

E Pointer Last bit number: 162

[00<----00]---~[000 0BT 1 1BEOOO1 11 1] [00mrmer: 00]

RO) ®, L0NOROOEOOOEE,)
D (1sy Dtn-1 ~ (mth) D+Z-1 ()

Destination table (Size: Z)

2) The following processing will take place if the pbinter value (n} is between 1 and 16Z.

The following operation is performed when input 1 is ON. This operation is completed in
one scan.

a) If the pointer value {n) is e:

{1) The status of the bit at the position labeled e is read and the status is output to
output 2. Here, the bit is 1, so output 2 turns ON.

(2} The pointer value (e} is incremented if the following two conditions are met.
The peinter is a holding or link register.
input 2 is ON.

(3) Here, the pointer value does not change. The data in the destination table is unal-
tered.

{4) Output 1 turns ON and output 3 remains OFF.
b) If the pointer value (n) is i

(1) The status of the bit at the position labeled i is read and the status is output to
output 2. Here, the bit is 0, so output 2 tums OFF.

(2) The pointer value (i) is incremented if the following two conditions are met.
The pointer is a holding register.
Input 2 is ON.

(3) Here, the pointer value does not change. The data in the destination table is unal-
tered.

(4) Output 1 turns ON and output 3 remains OFF.

c) The pointer value {n) can be changed between 1 and 18Z (the highest bit number) to
read the status of the desired bit in the destination table.

— 5-46 —

5.3 Matrix Instructions

m

d) If the pointer is a holding register and its value is 16Z (fast bit number) when inputs 1
and 2 are ON, the pointer will be set to 1 after execution of the instruction {not to
162+1).

e) Ifthe pointer value is less than 1 or greater than 16Z, the following operation will be
performed regardless of the status of input 1.

(1)} The instruction is not executed.
(2) The pointer value and the data in the destination table do not change.

(3) The status of the outputs are as follows:

Output 1: ON
_ Output 2: OFF
Output 3: OFFifn=0,ONifn<0ornz16Z + 1

3) Ifthe pointer is a link register or a holding register and input 3 is ON, the pointer valte will
be setto 1 regardless of the status of input 1.

4} An overview of the operation of SENS is shown in the following table. nis the pointer val-
ue and Z is the size of the destination tabie. '

— 5-47 —

Matrix Instructions

5.3.7 LOGICAL SENSE (SENS) cant.

Table 5.12 6peration of SENS

Inputs

Condition
ofn

Operation

Outputs

ON |OFF

ON

OFF

1<sn<16Z

1)

2)

3)

Status of bit #n in destination table
read and output to output 2.

Value of n not changed.

Data in destination table not
changed.

1}

2)

3)

Status of bit #n in destination table
read and output to output 2.

If pointer is a holding or link register,
n is incremented to n+1. Otherwise n
is not changed.

Data in destination table not
changed.

n<o,
n> 16Z+1

1

2)

Instruction is not executed.

Pointer value and data in destination
table not changed.

OFF

ON

ON

None

2)

3)

Pointer set to 1 and the status of bit
#1 in destination table read and
output 1o ocutput 2.

Va]ue of n not changed.

Data in destination table not
changed.

1}

2)

3)

Pointer set to 1 and the status of bit
#1 in destination table read and

" output to output 2.

If pointer is a holding or link register,
n is incremented to 2. Otherwise n is
not changed.

Data in destination table not
changed.

ON

See
note.

OFF

OFF

ON

n=0

See
note.

OFF

Note ON if status of the bit which has been read is 1.

r—5-48 —

5.3 Matrix Instructions

m_

Inputs Condition Operation Outputs

1] 2 | 3 ofn 1 | 2] 3
OFF |Any |OFF |1<n<16Z {1) Instruction is not executed. OFF | OFF | OFF
n 5>°1 6241 |2) Pointer value and data in destination ON
2102+ table not changed.
ON [1<n<16Z |1) Instruction is not executed. OFF
<
: 5(1)62 1 2) If Pointer isa holding or Iir_1k register, i?N
nis set to 1. Otherwise n is not n<o
changed. or
nz
3) Data in destination table not 162
changed. +1

<EXAMPLEp 4, Application Example

1) Ladder Programming

P 400001 —)~
100001 000101

— J— 00011 —
100002 [SENS| 00102

— | #0002 F——({
100003 000103

2) Operation

a) Before Execution

400001

E Pointer

[COCOFEITT 0000 11 11]1111 000 1111 0000]
® ® o @ ® @,
400811 (1s) 400012" (2na)

Destination table (Size: 2)

(S

b} If the pointer value (n) is 5 when input relay 100001 changes from OFF to ON, the
tollowing processing will take place. The processing will be completed in one scan.

(1} The status of bit#5 is read and the status is output to coil 000102. Here, the bitis
1, so coil 000102 turns ON.

(2) The pointer value is as follows depending on the status of input relay 100002:
100002 ON: Pointer incremented to 6.
100002 OFF: Pointer remains at 5.

— 549 —

Matrix Instructions

5.3.7 LOGICAL SENSE (SENS) cont.

c)

d)

e)

{3) Coil 000101 turns ON and coil 000103 remains OFF.

if the pointer value (n) is 21 when input relay 100001 changes from OFF to ON, the
following processing will take place. The processing will be completed in one scan.

(1) The status of bit#21 is read and the status is output to ¢oil 000102. Here, the bitis
0, so coil 000102 turns OFF. '

(2) The pointer value is as follows depending on the status of input rélay 100002:
100002 ON: Pointer incremented to 22.
100002 OFF: Pointer remains at 21.

(3) Coil 000101 tums ON and coil 000103 remains OFF.

The pointer value (n) can be changed between 1 and 32 to read the status of any de-
sired bit in the destination table.

If the pointer value is for a bit number that does not exist (i.e., less than 1 or greater
than 32}, the following processing will take place regardless of the status of input relay
100001,

(1) The instruction is not executed.
(2) The pointer value and the data in the destination table do not change.

(3) The status of the output coils are as follows:
Coil 000101: ON
Coil 000102: OFF
Coil 000103: ON

If input relay 100003 turns ON, the pointer vaiue (n) will be set io 1 regardless of the
status of input relay 100001.

— 5-50 —

5.3 Matrix Instructions

m]

5.3.8 LOGICAL BIT ROTATE (BROT)

1. Function

The bit pattern in the source table Is shifted one bit to the left or to the right and storedina
destination table of the same size. The operation is completed in one scan.

Example

If inputs 1, 2, and 3 are all ON, LOGICAL BIT ROTATE will output the bit pattern of the
source table shifted one bit to the left and store the shifted bit pattern in the destination
table. The bit that was shifted out of the left end will be input to the LSB which became
empty when the shift was executed.

M: Most significant bit
Source table (Size: 2) L: Least significant bit

400001, 400002,
M LM L
11010 1010 1010 101031010 1010 1010 1010}

K[oT07 o701 0101 0701]0701 0101 0107 910)
M LM L,

4000117 400012
Destination table (Stze; 2)

2. Structure

ON: Instruction executed Input 1 = gcglln;ce (S) |— Output 1: Echoes state of input 1
Destination
ON: Bits shifted left Input2 = wbie {D} |— Output2: ON when averfiow bitis 1
OFF: Bits shifted right QFF when overflow bit is 0
BROT
ON: Overflow bitplaced Input3 —
in open bit :
OFF: Zero (0) placed in Table size (1)
open bit

1) BROT is the symbol of LOGICAL. BiT ROTATE.

2) BROT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 5.13 lists the register reference num-
bers and constants that can be specified.

— 5-51 —

Matrix Instructions
L

5.3.8 LOGICAL BIT ROTATE (BROT) cont.

Example
Input1 — 400001 }— Output1 400001: Leading reference number of the
source table
] | . 400011: Leading reference number of the
Input 2 B4 ?qn{g 1T Output 2 destination fable
#00002: Size of source and destination
input3 = #00002 tables (2)
Table 5.13 Structural Elements of BROT
Element Meaning Possible settings
Top (S) |Leading Coil: 000001 to 008177 (O00001 to O08177)
reference finput relay: 100001 to 101009 (100001 to 101009)
number of the :)
source table Input register: 300001 to 300512 (Z00C01 to Z00512)
Holding register: 400001 to 409999 (W00001 to W09999)
Constant register: 700001 to 704096 (KC0001 to KO4096)
Link coil: D10001 to D11008 or D20001 to D21009
Link register: R10001 to R11024 or R20001 to R21024
MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC control coil: Q10001 to Q10148 or Q20001 to Q20145
MC relay: X10001 to X10241 or X20001 to X20241
MC control relay: P10001 to P10241 or P20001 1o P20241
M code relay: M10001 to M10081 or M20001 to M20081
Middle Leading Coil: 000001 to 008161 (O00001 to O08161)
) reference Holding register: 400001 to 409999 (W00001 to W0S299)
number of the
destination Link coil: D10001 to D11009 or D20001 to D21009
table Link register: R10001 to R11024 or R20001 to R21024
J MC coil: Y10001 to Y10241 or Y20001 to Y20241
MC controf coil: Q10001 to Q10145 or Q20001 to Q20145
Bottom | Size of source | Specify the constant. The maximum value of the constant
(4] and destination | differs with the reference type.
tables Coil: #00001 to #00100
input relay: #00001 to #00064
input register,
holding register or
constant register: #00001 to #00100
Link coil: #00001 to #00064
Link register: #00001 to #00100
MC coil, MC relay or
MC control relay: #00001 to #00016
MC control coil: #00001 to #00010
M code relay: #00001 to #00006

— 552 —

5.3 Matrix Instructions

m

Note When specifying reference numbers for coits or relays, the following equation must be satis-
fied (“m” represents the lower 5 digits of the reference number):
m=16n+1, wheren=0, 1, 2, etc.

3. Operation

T) Before Execution

M: Most significant bit

Source table (Size: Z) L: Least significant bit

S (1sp S$tm-1 (mth) S+2-1 (@) .
M L M L M L
10001 0010 0011 0100] wwmn= 10101 0110 0111 1000} ==uwe 11001 1010 1017 1100 |
— Left Righte=——y
|0000 0000 0000 UOW[----- [0000 0000 0000 9000[----- [0000 0000 0000 BDOUI
M L, M L, M L
D T(tay Dim-1" (mth) MZ-1" Zth)

Destination {able (Size: Z)

2) It input 2 is ON, the following processing will take place.

a) When input 1 tumns ON, the bit pattern in the source table is shifted one bit to the left
and stored in the destination table.

b) The bit shifted out of the destination table (called the carry) and the bit that became
empty when data was shifted out are treated as follows:

(1) finput 3 is ON, the carry is placed in the empty bit.

(2) If input 3is OFF, the 6arry is thrown away and 0 is placed in the empty bit.

Sourcs table (Size: Z)

L) ~ $n-1 (mth) , s+z-i (Zth)
M M L r
(0007 0010 0071 0100] ----- (0161 0170 0111 1000] ===~ Lam 1010 1011 1j
B[0070 0700 0170 1000] ~=-=- {1010 1100 1771 0000] ==~=- |_on 0107 0111 ”LJ
N L M L,
D sy Dm-1" (mn) D+1-1" (zth
Destination table (Size: Z)
Carry - §1 Empty

¢) The source data does not change.

— 5-53 —

Matrix Instructions

5.3.8 LOGICAL BIT ROTATE (BROT) cont.

d) The status of the outputs is treated as follows:
(1) The status of output 1 is the same as that of input 1.
(2) If the carry is 1, output 2 turns ON; if the carry is 0, output 2 turns OFF.

3) If input 2 is OFF, the following processing will take place.

a) Wheninput 1 tumns ON, the bit pattern in the source table is shifted one bit to the right
and stored in the destination table.

b) The bit shifted out of the destination table (called the carry) and the bit that became
empty when data was shifted out are treated as follows:

(1) lfinput 3 ié ON, the carry is placed in the empty bit.
(2) i input 3 is OFF, the carry is thrown away and 0 is placed in the empty bit.

Source table (Size: Z)

5 (s S+m-1 (mth) St1-1 (Zth)
M L M L M L
{0001 0010 0011 0100] =====J0101 0110 0111 1000] ==--~ (1001 1010 1011 1100]
@000 1001 0007 1010 =====[0010 1011 0011 1000]====- {0100 1101 0101 1110@
M } L ¥ L M L
D sy D+m-1" (mth) D+1-1" (zth)

Destination table (Size: Z)
g . Empty Carry

c) The source data does not change.
d) The status of the cutputs are as follows:
(1) The status of output 1 is the same as that of input 1.
(2) Ifthe carry is 1, output 2 turns ON; if the carry is 0, output 2 tumns OFF.

4) Anoverview of the operation of BROT is shown in the following table. “Z” is the size of the
source and destination tables.

— 5-54 —

5.3 Matrix Instructions

M

Table 5.14 Operation of BROT

inputs Operation Outputs
1 2 3 1 2
ON |ON |OFF |1) Bitpattem in source table is shifted one bitto leftand |ON | ON
stored in destination table, when
carry=1
2) Carry s discarded and 0 placed in empty bit. OFF
when
carry=0

3) Data in source table does not change.

ON | 1) Bit pattern in source table is shifted one bit to left and
stored in destination table.

2) Carry is placed in empty bit.

3) Data in source table does not change.

OFF {OFF | 1) Bit pattern in source table is shifted one bit to right and
stored in destination table.

2) Carryis discarded and 0 placed in empty bit.

3) Data in source table does not change.

ON | 1) Bil pattern in source table is shifted one bit to right and
storad in destination table.

2) Carry is placed in empty bit.

3} Data in source table does not change.
OFF | Any |Any [1) Nothingis done. OFF | OFF

2) Data in source and destination tables does not
change.

4. Application Examples

4EXAMPLEp Example 1

1) Ladder Programming

P 400000 ——)}

100001 008101
400011 ——)~
BROT 000102
#00002

— 5-55 —

Matrix Instructions
L

5.3.8 LOGICAL BIT ROTATE (BROT) cont.

4EXAMPLEp

2) Operation
a) Before Execution

M: Most significant bit

Source table (Size: 2) L: Least significant bit
400001, (1s) 400002 e2ng)
LM L
{1010 1010 1610 1010{1010 1010 1010 1010}
Left ‘
(8000 0000 0000 0000]0000 0000 0000 0000]
¥ LN L
400011 (1s1) 400012 (2nd)

Destination table (Size: 2)

b) When input relay 100001 changes from OFF to ON, the bit pattern in the source table
is shifted one bit to the left and stored in the destination table.

¢) The bit shifted out of the destination table (éalled the carry) is placed in the bit that
became empty when data was shifted out.

Source table (Size: 2)
400001, (1sp) 400002, (2nd)
M L'M L
{1010 1010 1010 101011010 1010 1010 1010)

3 0 0 00 Y UL L

3}]0101 0101 0107 0101}0161 0101 0101 Dj
N LM L
4000117 (1sy) 400012 (2nd)

Destination table (Size: 2}

d) The data in the source table does not change.
e) The status of the output coils are as follows:
(1) 000101: ON

(2) 000102: ON (because carry is 1)

Example 2
1) Ladder Programming

P — 400001 —
100001 000101
~ 400011 —
BROT| 000102

— #00002

— 5-56 —

' 5.3 Matrix Instructions
m
2) Operation

a) Before Execution

M: Most significant bit
Source table (Size: 2) L: Least significant bit
400001, (1s) 400002, (2ng)
L'M L
|1010 1010 1010 10101010 1010 1010 1010]

© Right
—3

(2000 0000 0000 000070000 0800 6000 8007
] LN L
00011 e 00012 (2nd)

Destination table (Size: 2)

~

b) When input relay 100001 changes from OFF to ON, the bit pattern in the source table
is shifted one bit to the right and stored in the destination table.

¢) The bit shifted out of the destination table (called the carry) is discarded and 0 is
placed in the bit that became empty when data was shifted out.

Source table (Size: 2)
_ 400001, (1sy) 400002 (2nd)
M LM L
1010 1010 1010 10101019 1010 1010 1010]

WAL A A A UL WL L

§§g1 0101 0707 101[0707 0101 0101 0101}§ Discarded
LM L
400011 (1sy 400017 (2nq)

Destination table (Size: 2)

|_

d) The data in the source table does not change.
e) The status of the output coils are as follows:
(1) 000101: ON

(2) 000102: OFF (because carry is 0)

—5-57 —

Matrix Instructions

E—
5.3.9 LOGICAL MULTI-BIT ROTATE (MROT)

5.3.9 LOGICAL MULTI-BIT ROTATE (MROT)

1. Function

The bits in the destination tabie are shifted to the left or to the right by the number of bits -
specified in the pointer {1 to 15).. The operation is completed in one scan.

Example

If the pointer value is 4 and inputs 1, 2, and 3 are all ON, LOGICAL MULTI-BIT ROTATE
will shift the bit pattern in the destination table four bits to the left, as shown in the following
diagram. The bits that were shifted out of the left end will be input to the bits which be-
came empty when the shift was executed.

400001 o .
M: Most significant bit
Pointer L: Least s?gniﬁcant bit
Destination table (Size: 2)
400011, (1st) 400012, (2nd)
M LM L

(6061 0010 0011 6100J0101 6110 0111 1000]

SEREI0010 0011 0100 01010110 6111 1000 HQE|

—~— M LM L,

400011 (1sy 4000127 (2nd)
Pestination table (Size: 2)

2. Structure

ON: MROT executed Input 1 —{ Pointer (P) == Quiput 1; ON when shift is successful
. . Destination o
ON: Bits shifted left tnput2 = @ple (D} I~ Output2: ON when shift fails

OFF: Bits shifted right
MROT
ON: Overflowbitplaced Input3 =
in open bit :
OFF: Zero (0) placed in
open bit

Table size (Z)

1) MROT is the symbol of LOGICAL MULTI-BIT ROTATE.

2) MROT requires three elements, one top element, one middle element, and one bottorn
element, located vertically on the network. Table 5. 15 lists the register reference num-
bers and constants that can be specified.

— 5-58 —

5.3 Matrix Instructions

M

Example
Input1 — 400001 — Output1 400001: Reference number of the pointer
400011: Leading reference number of the
Input2 — 400011 — Output2 destination table
MROT #00002: Size of the destination table (2)
Input3 —| 00002

Table 5.15 Structural Elements of MROT

Element Meaning Possible settings
Top {P) |Reference Holding register: 400001 to 409999 (W00001 to W09999)
f th
:z;:;?' OMhe | Gonstant register: 700001 to 704096 (K000O1 1o K04096)
Link register: R10001 to R11024 or R20001 to R21024
Middle Leading Holding register: 400001 to 409999 (W00001 to W09999)
D) reference .)
number of the | Link register: R10001 to R11024 or R20001 to R21024
destination
table
Bottom | Size of Constant: #00001 to #00100
(2) destination
table

3. Operation

1) Before Execution

P M: Most significant bit
II’ Pointsr L: Least significant bit
— | oft Right=——>

Destination table (Size: Z)
D (s Din-1 (mth) MI-1 (zth)
W L M L) L
{0001 0010 00717 0100] meme=(3101 0110 0117 1000] ===~~ [1001 1010 1011 1100

2) Ifinput 2 is ON, the following processing will take place.

a) Wheninput 1tumns ON, the bit pattern in the destination table is shifted n bits to the left.
“n” is the pointer value and must be between 1 and 15.

b) The bits shifted out of the destination table (called the carries) and the bits which be-
came empty when data was shifted out are treated as follows:

—5-59 —

Matrix Instructions

5.3.9 LOGICAL MULTI-BIT ROTATE (MROT) cont.

(1) ifinput 3is ON, the carries are placed in the empty bits.

(2) Ifinput 3is OFF, the carries are thrown away and 0Os are placed in the empty bits.

c) Ifn=4andinputs 1,2, and 3 are ON, the operation shown below is performed, with the
carries being placed in the empty bits.

Destination table (Size: Z)

D (st Dim~1 (mth) D+2-1 (Zth)
: M L M : L M L
o001 0010 0611 0100]-----!0101 0110 0111 1000} --=-- {1601 1010 1011 1100 |
GOEE(0010 0011 0100 0101] =====]BHU 0111 1000 1001]

“—N 1 M L M

l 1

d) The pointer value does not change.
e) The status of the outputs is treated as follows:
(1) Output 1: ON if shift is successful,

{2) Output 2: ON if the shift fails for any of the following reasons.
The pointer is part of the destination table.
The pointer value is not between 1 and 15, inclusive.

3) Ifinput 2 is OFF, the following processing will take place.

a) When input 1 turns ON, the bit pattern in the destination table is shifted n bits to the
right. “n” is the pointer value and must be between 1 and 15.

b) The bits shifted out of the destination table (called the carries) and the bits which be-
came empty when data was shifted out are treated as follows:

(1) Ifinput 3 is ON, the carries are placed in the empty bits.

{2) Ifinput 3 is OFF, the carries are thrown away and 0s are placed in the empty bits.

— 5-60 —

5.3 Matrix Instructions

¢) lfn=4andonlyinput 1 is ON, the operation shown below is performed. The carries
are discarded and Os are placed in the empty bits.

Destination table {Size: Z)

D 18y Dtm-1 (mth) D+7-1 (zm)
M L M M
[0001 0970 0011 0100] --~-=[0707 0170 T177 1000]-----L001 1010 1011 1ﬂ
MGUN 0010 ﬂﬂj ---- L100 0101 0110 011]] ===== 11000 1001 1670 1011
M L M Discarded

d) The pointer value does not change.
e) The status of the outputs are as follows:
(1) Qutput 1: ON if shift is successful.

(2) Output 2: ON if the shift fails for any of the following reasons.
The pointer is part of the destination table.
The pointer value is not between 1 and 15, inclusive.

4) If the pointer value (n) is 0, no bits are shifted, output 1 will tum ON and output 2 will turn
OFF.

5) An overview of the operation of MROT is shown in the following table where “n” is the
pointer value.

— 561 —

Matrix Instructions
L e i —

5.3.9 LOGICAL MULTI-BIT ROTATE (MROT) cont.

Table 5.16 Operation of MROT

inputs Condition Operation Outputs
1 2 3 : 1 2
ON {ON |OFF [1=sn<15 |1) Bitsin destination table are shifted n bits to ON |OFF
left.

2) Carries are discarded and Os placed in empty
bits.

3} Value of n does not change.

ON 1)} Bits in destination table are shifted n bits to
left.

2) Carries are placed in empty bits.

3) Value of n does not change.

OFF | OFF 1) Bits in destination table are shifted n bits to
right.

2) Carries are discarded and Os placed in empty
bits. '

3) Value of n does not change.

ON 1) Bits in destination table are shifted n bits to
right.

2) Carries are placed in empty bits.

3) Value of n does not change.

Any |Any [n=0 1} Nothing is done. ON |OFF
n< g, OFF |ON
nz16 2) Pointer value and data in destination table do

OFF [Any |Any |None not change. OFF

Note [fthe pointeris part of the destination table, nothing will be shifted even ifinput 1 is ON. Output
1 will turn OFF and output 2 will turn ON.

4. Application Examples

4EXAMPLEp Example 1

1} Ladder Programming

P 400000 ——)

100001 000101
400041 f— }—
MROT 000102
#00002

— 5-62 —

' 5.3 Matrix Instructions

2) Operation

a) Before Execution

M: Most significant bit

400001 L: Least signiicant bit
IE Pointer
& Destination table (Size: 2) M
400011, (18 400012 (2nd)
M LM L

(0001 9010 0011 ofo0foto1 0170 0114 1000]

b) If the pointer value {n) is 4 when input relay 100001 changes from OFF to ON, the bits
in the destination table are shifted 4 bits to the left.

¢) The bits shifted out of the destination table (called the carries) are placed in the bits
that became empty when data was shifted out.

Dastination table {Size: 2)
400011, (1s) 400012, (2nd)
[L'M L
(0007 0010 0011 0100]0101 0110 0119 1000]

Wll777/7/ &

G0 [0010 0011 0100 0101]0770 0117 1000
—~—M LM
l 4000117 (1sty 400012 (2nd)

-~

Destination table (Size: 2)

d) The pointer value does not change.
€) The status of the output coils are as foliows:
{1) 000101: ON

(2) 000102: OFF

4EXAMPLEp Example 2
1) Ladder Programming

|P | 400001 —)}—

100001 000101

~{ 400011 —

MROT|[000102
#00002

— 5-63 —

Matrix Instructions

S
5.3.9 LOGICAL MULTI-BIT ROTATE (MROT) cont.

2) Operation

a) Before Execution

M: Most significant bit

440001 L: Least significant bit
Pginter
Left Right
A Destination table (Size: 2) —
400011, (1s) 400812, (onq)
M LM L

[000T 0010 007171 61000101 0170 0111 1000]

b) If the pointer value {n) is 4 when input relay 100001 changes from OFF to ON, the hits
in the destination table are shifted 4 bits to the right.

¢) The bits shifted out of the destination table (called the carries) are discarded and Os
are placed in the bits that became empty when data was shifted out.

Destination table (Size: 2)

400011, (1st) 400012, (2nd)
'M L'M L
{0001 0010 0011 0100]0101 0110 0111 1000]

ALNHHLLLIIN

AR 0001 0010 001170100 0107 0110 0f11]700%
M LM L, Discarded
4000117 (1st) 400012 (2nd)

Destination table (Size: 2)

d) The pointer value does not change.

e) The status of output coils are as follows:

(1) 000101: ON

(2} 000102: OFF

5.3 Matrix Instructions

m . R

5.3.10 LOGICAL BIT COUNT (BCNT)

1. Function

The number of 1 or 0 bits in the source table is counted. The operationis completedin one
scan.

Example
itinputs 1 and 2 are all ON, LOGICAL BIT COUNT will count the number of 1 bits in the
source table, as shown in the following diagram. The number (4) will be stored in the des-

tination.
Source table (Size: 2) M: Most signiﬁcant bit
400001, (1st) 400002, (ong) - L: Leastsignificant bit
M LM L
(1000 0000 5000 7000]7000 0000 0000 1600]
400011
Destination

- 2. Structure

Source (s)

ON:1orObitscounted Input1 — table — Output1: Echoes state of input 1.

ON: 1 bits counted Input2 —] Destination(D) {— Output2: ON when number of 1 or 0
OFF_: 0 bits countad bits is an odd number

BCNT

= Output3: ON when numberof1 or 0
Table size {I) bits is an even number

1) BCNT is the symbol of LOGICAL BIT COUNT.

2) BCNT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Table 5.17 lists the register reference num-
bers and constants that can be specified.

Example
Input1 — 400001 {— Oulput1 400001: Leading referance number of the
source table
Input 2 — 4‘000 1 |~ output2 400011: Reference number of the destination
BCNT #00002: Size of the source table (2)
$00002 — outputs

— 5-65 —

Matrix Instructions .
- -]
5.3.10 LOGICAL BIT COUNT (BCNT) cont.

Table 5.17 Structural Elements of BCNT

Element Meaning Possible settings
Top (8) |Leading Input register: 300001 to 300512 (ZO00O1 to Z00512)
reference

number of the | Holding register: 400001 to 409999 (W00001 to W09999)
source table | Constant register: 700001 to 704096 (K0ODOO1 to K04096)
Link register: R10001 to R11024 or R20001 to R21024

Middle | Reference Hoiding register: 400001 to 409999 (W00001 to W09999)
D T fth ‘

®) gggi?farﬁznt ® |Linkregister: R10001 to R11024 or R20001 to R21024
Bottom | Size of the Constant: #00001 to #00100

{(Z) source table

3. Operation
1) Before Execution

M: Most significant bit
L: Least significant bit
Source table (Size: 2)

§ , (1s) S+m-1_ (mth) $+1-~1 (Zth)
M 1 ‘M - L N L
[1000 0000 0000 1000| ===~= 1000 0080 0000 1008] ====- 11000 0000 0000 1000]
D
Destination The number of 1 bits is “p® and the number of O bits is “q."

2) Ifinputs 1 and 2 are ON, the following processing will take place. This processing will be
completed in one scan.

a) The number of 1 bits in the source table is counted and the number (p) is stored in the

destination:
D

|I| Destination

b) The data in the source table does not change.

¢) The status of the outputs are as follows:
(1) Output 1: ON
(2) Output 2: ON if number of 1 bits (p) is an odd number
(3) Output 3: ON if number of 1 bits (p) is an even number

3) ifinput 1 is ON and input 2 is OFF, the following processing will take place. This proces-
sing will be completed in one scan.

— 5-66 —

5.3 Marrix Instructions

<«EXAMPLEp

a) The number of 0 bits in the source table is counted and the number (q) is stored in the
destination:
D

II, Destination

b) The data in the source table does not change.

¢) The status 6f the outputs are as follows:
(1) Output1: ON
(2) Output 2: ON if number of 0 bits {q) is an odd number
(3) Output 3: ON if number of 0 bits {q) is an even number

4) An overview of the operation of BCNT is shown in the following table.

Table 5.18 Operation of BCNT

Inputs ‘ Operation Outputs

1 2 1 2 3

ON |ON |1) Number of 1s in source tabie is counted and ON |ONif ON if
number is stored in destination. number | number
of1sis |of1sis

2) Data in source fable does not change. odd even

OFF | 1) Number of 0s in source table is counted and ON if ON if
number is stored in destination. number | number
of Osis |ofOsis

odd aven

2) Data in source table does not change.

OFF |Any |1) Nothing is done. OFF | OFF OFF

2) Data in source table does not change.

4. Application Example

1) Ladder Programming

P 40000 — -
100001 000101
400011 ——)}

BCNT 000102

#0002 —— -
000103

- 5-67 —

Matrix Instructions :
. - - _______________________________-._.]

5.3.10 LOGICAL BIT COUNT {BCNT) cont.

2) Operation
a) Before Execution

Source table (Size: 2) M: Most significant big

400001, (1s) 400002 (2nd) L: Least significant bit
M L'M ' L
11000 0000 0000 1000[1060 6006 00060 1000]

400011
Destination {n = Any value)

3) When input 1 changes from OFF to ON, the following processing will take place. This
processing will be completed in one scan.

a) The number of 1 bits in the source table is counted and the number (4} is stored in the
destination:
400011

[:| Destination

b) The data in the source table does not change.
¢} The status of the output coils are as follows:
(1) 000101: ON
{2) 000102: OFF (because the number of 1 bits (4) is not odd)

(3) 000103: ON (because the number of 1 bits (4) is even)

— 5-68 —

5.4 Building Programs

M

5.4 Building Programs

This section describes how to build a program using matrix instructions.

5.4.1 Storage Locations on Networksoveevrinnrnenrennnnnnnn, 5-69
542 Inputs ... e, 570
543 OUPUIS ..o 5-70
54.4 Duplicate Coll Usageooovveirneereeeeiia 5-71
5.4.5 Operation of Disabled Coils e et 5-72

5.4.1 Storage Locations on Networks

All matrix instructions require three vertical elements on a network, one top element, one
middle element, and one bottom element. They can thus be stored anywhere on a 5-row by
10-column matrix (rows 1 through 5 and columns 1 through 10) on the network.

Note Matrix instructions cannot, however, be placed to the right of coils (including output coils,
internal coils, link coils, MC coiis, and MC control coils).

Example

Column

Row 1

100001

o s W W e s s e M

100021 100022 100023 100024 100028 100026 100027 100028 100028

54 —{ F—aoo0ar

100041 100042

— 5-69 —

Matrix Instructions
w L
5.4.2 Inputs :

5.4.2 Inputs

Inputs to matrix instruction can be connected to relay elements (except coils) and outputs
from timers, counters, math instructions, data transfer instructions, other instructions, etc.’

Example

Column .
1 2 3

Row 1 —| }—4300021 400001

goigo1
2 4coouz}Ll 400002
SUB | MBIT
3 4000021400001}

5.4.3 Outputs

Outputs to matrix instruction can be connected to any of the following: coils, contacts, inputs
to math instructions, inputs to data transfer instructions, etc,

Example

Column

Row 1 — 4000011400002F
o101

2 400002 —000001
MBIT) B

3 4200001 #0000t

— 570 —

5.4.4 Duplicate Coil Usage

Example: Incorrect Application

KET#!

5.4 Building Programs

1) A coil table that includes coils that have already been used cannot be used as a destina-

tion.

100002

100004

100006

100003
100005

100007

—
000001

—
000002

-
000003

NET#2

P
100001

400001

000001
AND N

$o0001

—{
000101

Wrong: This operand
cannot be used.

Coils 000001 to 000003 are used in network #1, so coil 000001 cannot be used as the
reference for a destination, such as the one shown above in network #2.

2} The coils in coil tables used as destinations cannot be used again as coils. The coils on
the right in the following diagram cannot be used because they have already been used
as a destination,

Example: Incorrect Application

Wrong: This operand cannot be usad.

v

P 400001 |——{ - — — !

NETH#1| 100001 000101 me—n,mouz 100003 1000001 |
000001 — A

AND 100004 100005 (000002 |

#00001 L -

100005 100007 1000008

Coils 000001 to 000016 are used in network #1, so coils 000001 to 000003 cannot be
used as the references in network #2,

—571—

Matrix Instructions
5.4.5 Operation of Disabled Coils

5.4.5 Operation of Disabled Coils

Do not execute matrix instructions containing disabled coils (including coils, link coils, MC
coils, and MC control coils) as destinations. If disabled coils are used as destinations, their
status will be overwritten by the matrix instruction, as shown in the following example. The
disabled coils, however, will not be enabled.

Example
— P |—{ 400001 [—
100081
ag0001
CR
700001

1) Assume the following status for holding register 400001 and coils 000001 to 000016:

400001[1111 1111 1111 1111}

Coils 000001 to 000016: All disabled OFF

2) When input relay 100001 changes from OFF to ON, all coils from 000001 to 000016 will
be disabled ON.

— 572 —

Bit Manipulation Instructions

This chapter describes the instructions used to manipulate register bits

like contacts and coils,

6.1 Bit Manipulation Instructions ceeess 62

6.2 Details of Bit Manipulation Instructions 6-3
6.2.1 NORMALLY OPENBIT{(NOBT) 6-3
62.2 NORMALLY CLOSED BIT (NCBT) 6-5
623 NORMALBIT(NBIT)covvveennnennnnnnn. 6-7
624 SETBIT(SBIT).............. e 6-9
625 RESETBIT(RBIT)ccovvieeeennnnnn.n, 6-11

6.3 Building Programs veess. 6-14
63.1 Storage Locations on Networks 6-14
632 Imputso i 6-15
633 OUPWS ..\ttt 6-15

— 61—

Bit Manipulation Instructions

6.1 Bit Manipulation Instructions

» The five bit manipulation instructions are described in the following table.

Table 6.1 Bit Manipulation Instructions

This section introduces the bit manipulation instructions, which are used to apply contact
and coil functions for relay elements to register bits.

Name

Symbol

Function

Page

NORMALLY OPEN
BIT

NOBT

1)

2}

The logic state of a specified bit in a specified register is tested
and output 1 is turmed ON or OFF accordingly.

The same operation is performed as that for a normally open
contact relay element, For a normally apen contact, power flow
is controlied based an the ONJOFF status of a coil. With
NORMALLY OPEN BIT, power flow is controlled based on the
logic state (1/0) of a specified bit,

6-3

NORMALLY CLOSED
BIT

NCBT

The logic state of a specified bit in a specified register is tested
and output 1 is turned ON or OFF accordingly.

The same operation is performed as that for a normaliy closed
contact of a relay element. For a normally closed contact,
power fiow is controlled based on the ON/OFF status of a coil.
With NORMALLY CLOSED BIT, power flow is controlled based
on the logic state (1/0) of a specified bit.

6-5

NORMAL BIT

NBIT

The logic state of a spacified bit in a specified register is set to
1 orresetto C.

The same operation is performed as that for a coil of a relay
element. For a coil, power flow controls the ON/OFF status of a
coil. With NORMAL BIT, power flow controis the logic state
(1/0) of a specified bit.

6-7

SET BIT

SBIT

2)

The logic state of a specified bit in a specified register is set to
1. SET BIT can be combined with RESET BIT to perform the
same operation as that for a latched coil of a relay element.

The logic state of a specified coil in 16 consecutive coils is set
to ON. The function allows duplicate coil usage, i.e., a coil can
be controlied from more than one place in the program. This
function can also be used for link coils, MC coils and MC
control coils.

6-9

RESET BIT

RBIT

1)

2)

The logic state of a specified bit in a specified register is reset
to 0. RESET BIT ¢an be combined with SET BIT to perform the
same operation as that for a latched coil of a relay element.

The logic state of a specified coil in 16 consecutive coils is set
to OFF. The function allows duplicate coil usage, i.e., a ¢oil can
be controlled from more than one place in the program. This
function can also be used for link coils, MC coils and MC
control coils.

B-11

— 62—

. 6.2 Details of Bit Manipulation Instructions
e

6.2 Details of Bit Manipulation Instructions

| This section describes the functions, structures, and operation of each bit manipulation
instruction, and provides simple examples of their application.

6.2.1 NORMALLY OPEN BIT (NOBT) ..o oo 6-3
6.2.2 NORMALLY CLOSED BIT(NCBT) e, 6-5
6.23 NORMALBIT (NBIT)oovinineneeeee e 6-7
6.24 SETBIT(SBIT) ..oumtit e e 6-9
6.25 RESETBIT(RBIT) ..vovtinteone oo 6-11

6.2.1 NORMALLY OPEN BIT (NOBT)

1. Function

1) The logic state of a specified bit in a specified register is tested and output 1 is tumed ON
or OFF accordingly.

2) The same operation is performed as thatfor a normally open contact relay element. Fora
normally open contact, power flow is controlled based on the ON/OFF status of a coil.

With NORMALLY OPEN BIT, power flow is controlted based on the logic state (1 /0)ofa
specified bit.

2. Structure

ON: Logic state of Input 1 — Register (R) |— Output 1: ON or OFF depsnding on logfc state

specified bit of specified bit.
tosted. : ON when bitis 1
NOBT OFF when bitis 0

Bit No. (n)

1) NOBT is the symbol for NORMALLY OPEN BIT.

2) NOBT requires two elements, one top element and one bottom element, located verti-

cally onthe network. Refer to Table 6.2for details on specifying constants or registers for
these elements.

Example
Input1 — 400001 |— OQutput 1 Output 1 tums ON or OFF depending on the logic
stato of bit 2 of holding register 400001.
NOBT
#00002

—_—6-3—

Bit Manipulation Instructions .
. __ . -__J
6.2.1 NORMALLY OPEN BIT (NOBT}) cont.

Table 6.2 Structural Elements of NOBT

Element Meaning Possible Settings

Top (R) | The legic state of bit n in R, the register Input register: 300001 to 300512
specified for the top element, is tested (Z00001 to 200512}
and output 1 is tumed ON or OFF
accordingly. ‘Holding register: 400001 to 409999

{W00001 to W09999)

Constant register: 700001 to 704096
{K00001 to K04096)

Link register: H10001 to R11024
R20001 1o R21024

Botton #00001 to #00016
(n) '

3. Operation

1). Status Before Execution

9 101112 13141516 _ -=—— Bit No.
0000 1111

L MSB L LsB

2) The following processing will be performed when input 1 turns ON.

a) The value of n specified for the bottom element (1 < n < 16) is taken as a bit number,
the logic state of bit n in the register specified for the top element is tested, and output
1 is turned ON or OFF accordingly.

(1) Ifthe bitis 1, output 1 will be tumed ON.
(2) If the bit is 0, output 1 will be tumed OFF.
b) The data in the register does hot change.

3) Output 1 will be tumed OFF when input 1 tums OFF.

«4EXAMPLEp 4, Application Example

1) Ladder Programming

I_ 400001 _()_

100001 000101
NOBT
#00002

— 64—

: 6.2 Details of Bit Manipulation Instructions
ﬁ
2) Processing

a) Before Execution

1234 5678 9101112 13141516 <e— Bit No.
400001 {000 1000 0000 1111 |

t MSB L LSB

b) Ifinput relay 100001 turns ON with the status shown above, coil 000101 will be turhed
ON because bit 2 of holding register 400001 is 1. The contents of holding register
400001 does not change. '

- ©) Coif 000101 will turn OFF when input relay 100001 turns OFF.

d) ifinputrelay 100001 turns ON with the status shown below, coil 000101 will be turned
OFF because bit 2 of holding register 400001 is 0.

12 3 4 5
1

78 9101112 13141516
400001 [0% 0 0 00

&
0 0000 1111

8) Wheninput 1 turns ON, NOBT will thus turn output 1 ON or OFF according to the logic
state of the specified bit, as shown above.

6.2.2 NORMALLY CLOSED BIT (NCBT)

1. Function

1) The logic state of a specified bit in a specified register is tested and output 1 is tumed ON
or OFF accordingly.

2) The same operation is performed as that for a normally closed contact relay element. For
anormally closed contact, power flow is controlied based on the ON/OFF status of a coil.
With NORMALLY CLOSED BIT, power flow is controlled based on the logic state (1/0) of
a specified bit.

2. Structure

ON: Logic state of Input 1 — Register (R} |— Output 1: ON or OFF depending on logic state
spacifiad bit of specifiad bit,
tested. OFF when bit is 1
NCBT ON when bitis 0
Bit Ne. {n)

—_—6-5 —

Bit Manipulation Instructions
6.2.2 NORMALLY CLOSED BIT (NCBT) cont.

1) NCBT is the symbol for NORMALLY CLOSED BIT.

2) NCBT requires two elements, one top element and one bottom element, located verti-
cally on the network. Referto Table 6.3for details on specifying constants or registers for
these elements.

Example

Input1 —{ 400001 |— Output1 Output 1 turns ON or OFF dspending on the logic
stato of bit 2 of holding register 400001.

NCBT
#00002

Table 6.3 Structural Elements of NCBT

Element Meaning Possible Seftings

Top (R) | The logic state of bit n in R, the register Input register: 300001 to 300512
specified for the top element, is tested : {Z00001 to Z00512)
and output 1 is turned ON or OFF
accordingly. Holding register: 400001 to 409999

(W00001 to W09998)

‘Constant register: 700001 to 704096
(KO00O1 to K04096)

Link register: R10001 to R11024
R20001 to R21024

Bottom #0000 to #00016
(n)

3. Operation
1) Status Before Execution

9 101112 13141516 = BitNo,
000 1111]

L MSB L— LSB

[=]

2) The following processing will be performed when input 1 tums ON.

a) The value of n specified for the bottom element (1 < n < 16) is taken as a bit number,
the logic state of bit n in the register specified for the top element is tested, and output
1 is turned ON or OFF accordingly. '

(1) Ifthe bit is 1, output 1 will be turmed OFF.
(2) If the bit is 0, output 1 will be turned ON.
b) The data in the register does not change.

3) Output 1 will be tumed OFF when input 1 turns OFF.

— 66 —

6.2 Details of Bit Manipulation Instructions

<EXAMPLEp 4, Application Example

1) Ladder Programming

}__ 400001 (}_
100001 000101
NCBT
#00002

2} Processing
a) Before Execution

8 9101112 13141516 =+ Bit No.
0 0000 1111]

L

b) Ifinput relay 100001 turns ON with the status shown above, coil 000101 will be turned
ON because bit 2 of holding register 400001 is 0. The contents of holding register
400001 will not change.

¢) Coil 000101 will be turned OFF when input relay 100001 tums OFF,

d) If input relay 100001 turns ON with the status shown below, coil 000101 will remain
OFF because bit 2 of holding register 400001 is 1.

5678 9101112 13141516
1000 0000 1111]

&) Wheninput 1 turns ON, NCBT will thus tum output 1 ON or OFF according tothe logic
state of the specified bit, as shown above.

6.2.3 NORMAL BIT (NBIT)

1. Function

1} The logic state of a specified bit in a specified register is set to 1 or reset to 0.

2) The same operation is performed as that for a coil relay element. For a coil, power flow
controls the ON/OFF status of a coil. With NORMAL BIT, power flow controls the logic
state (1/0) of a specified bit.

—6-7 —

Bit Manipulation Instructions :
. .- _______________________________________J]
6.2.3 NORMAL BIT (NBIT) cont.

2. Structure

ON: Specified bitset Input1 — Register{R) }— Output 1: Echoes state of input 1,
to 1 or resst
to 0.
NBIT
Bit No. (n)

1) NBIT is the symbol for NORMAL. BIT.

2) NBIT requires two elements, one top element and one bottom element, located vertically
on the network. Refer to Table 6.4 for details on specifying constants or registers for
these elements.

Example
Input1 — 400001 |— Output 1 Bit 2 of holding registsr 400001 is set to 1 or reset
to 0,
NBIT
#00002
Table 6.4 Structural Elements of NBIT
Element Meaning Possible Settings
Top (R) | The logic state of bit n in R, the register Holding register: 400001 to 409998
specified for the top element, is setto 1 or {(W00001 to W092999)
resetto O, . .
Link register: R10001 to R11024
R20001 to R21024
Bottom #00001 to #00016
(n)

3. Operation
1) Status Before Execution

8 9101112 13141516 -+ BitNo.
0 0000 0000 |

L MSB L LSE

2) The following processing will be performed when input 1 turns ON.

a) The value of n specified for the bottorn element (1 < n < 16) is taken as a bit number
and the logic state of bit n in the register specified for the top element is set to 1.

b) Oulput 1 is turned ON.

— 6-8

- 6.2 Decails of Bit Manipulation Instructions
L B —

3} The following processing will be performed when input 1 turns OFF.

a) The logic state of bit n in the register specified for the top element is reset to 0.

b) Output 1 is turned OFF.

<EXAMPLEp 4, Application Example

1) Ladder Programming

l,_ 400001 ——{()_

100001 000101
NBIT
#00002

2) Processing
a) Before Execution

9101112 13141516 -=—Bit No.

8
0 0000 0000 |

L MSB L LSB

b) Wheninput relay 100001 tums ON, bit 2 of holding register 400001 will be setto 1 and
coil 000101 will be turned ON.

¢) When input relay 100001 turns OFF, bit 2 of holding register 400001 will be reset to 0
and coil 000101 will be turned OFF,

d) NBITthussetsorresetsthe specified bit according to the ONJOFF status of input1,as
shown above.

6.2.4 SET BIT (SBIT)

1. Function

1) The logic state of a specified bit in a specified register is set to 1.

2) SET BIT canbe combined with RESET BIT (see 6.2.5 RESET BIT (RBIT)) to perform the
same operation as that for a latched coil relay element.

—69 —

Bit Manipulation Instructions

6.2.4 SET BIT (SBIT) cont.

2. Structure

ON: Specified bitis Input1 — Register (R} |— Oﬁtput 1: Echoes state of input 1.
setto 1.
SBIT
Bit No. {n)

1} SBITis the symboi for SET BIT.

2) SBIT requires two elements, one top element and one bottom element, located vertically
on the network. Refer to Table 6.5 for details on specifying constants or registers for
these elements.

Example
Input1 = 400001 |— Output1 Bit 2 of holding register 400001 is setto 1.
SBIT
#00002
Table 6.5 Structural Elements of SBIT
Element Meaning: Possible Settings
Top (R) | The logic state of bit n in R, the register Holding register: 400001 to 408999
specified for the top element, is setto 1. (W00001 to W09999)
Coil: 000001 to 008177
Link coit: D10001 to D11009
MC coil: ~Y10001 to Y10241
MC contral coil: Q10001 to Q10145
Link register: R10001 tc R11024
R20001 to R21024
Bottom #00001 1o #00016
{n}

3. Operation

1) Status Before Execution

9 101112 13141516 -+ Bit No.
0000 0000

L MSB L LSB

6.2 Deiails of Bit Manipulation Instructions

M

2) The following processing will be performed when input 1 turns ON.

a) The value of n specified for the bottom element (1 <n < 16) is taken as a bit number
and the logic state of bit n in the register specified for the top element is set to 1.

b) Output 1 is turned ON.
3) The following processing will be performed when input 1 turns OFF, |

a) The logic state of bit n in the register specified for the top element remains set to 1.

b) Output 1 is turned OFF.

<EXAMPLEM 4, Application Example

1) Ladder Programming

|_ 400001 |__ Output 1
100001

SBIT
#00002

2) Processing

a) Before Execution

1234 _5 8 9101112 13141518 ~— Bit No.
400001(00 0 0 0 0 0000 0000 |

L MSB : L LSB

b} Wheninputrelay 100001 tums ON, bit 2 of holding register 400001 willbe setto 1 and
output 1 will be turned ON.

c) When input relay 100001 turns OFF, bit 2 of holding register 400001 will remain at 1
and output 1 will be turned OFF.

6.2.5 RESET BIT (RBIT)

1. Function

1) The logic state of a specified bit in a specified register is reset to 0.

2) RESET BIT can be combined with SET BIT (see 6.2.4 SET 8IT (SBIT)) to perform the
same operation as that for a latched coil relay element.

— 6-11 —

Bit Manipulation Instructions
.-

6.2.5 RESET BIT (RBIT) cont.

2. Structure

ON: Specifiedbitis Input1—{ Register (R) |— Output1: Echoes state of input 1.
reset to 0.

RBIT

Bit Ne. (n}

1) RBIT is the symbol for RESET BIT.

2) RBIT requires two elements, one top element and one bottom element, located vertically
on the network. Refer to Table 6.6 for details on specifying constants or registers for

these elements.

Example
Input1 — 400001 [— Output1 Bit 2 of holding register 400001 is reset ic 0.
RBIT
#00002
Table 6.6 Structural Elements of RBIT
Element Meaning Settings
Top (R} | The logic state of bit n in R, the register Holding register: 400001 to 408993
specified for the top element, is reset to 0. (W00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024
Bottom #0001 to #00016
(n)

3. Operation

1) Status Before Execution

123 4 6 78 9101112 13141516 <=— BitNo.
R{o1 00 000 0000 0000

L‘ MSB L LSB

5 7
0 0

2) The following processing will be performed when input 1 turns ON.

a) The value of n specified for the bottomn slement (1 £n < 16) is taken as a bit number
and the logic state of bit n in the register specified for the top element is reset to 0.

—6-12 —

6.2 Details of Bit Manipulation Instructions

b) Output 1 is turned ON:
3) The following processing will be performed when input 1 turns OFF.

a) The logic state of bit n in the register specified for the top element remains reset to 0.

b) Qutput 1 is turned OFF.

«EXAMPLEp 4, Application Example

1) Ladder Programming

I__ 400001 | ooyt 1
100001

RBIT
#00002

2) Processing
a) Before Execution

8 9101112 13141516 -+— Bit No.
0 0000 000G |

| b MSB b LsB

b) When input relay 100001 tufns ON, bit 2 of holding register 400001 will be reset to 0
and output 1 will be turned ON.

¢} When input relay 100001 tums OFF, bit 2 of holding register 400001 will remain at 0
and output 1 will be turned OFF,

—6-13 —

Bit Manipulation Instructions
6.3,1 Storage Locations on Networks

6.3 Building Programs

This section describes precautions that should be taken when designing programs that
contain bit manipulation instructions.

6.3.1 Storage LocationsonNetworksot 6-14
B.3.2 INPUIS ...t i i e 6-15
B.3.3 OUIDUS ..ttt ittt e e et e e e aeae e e eeaaaaaas 6-15

6.3.1 Storage Locations on Networks

All bit manipulation instructions require two elements (top and bottom} located vertically
onthe network, so they can be stored anywhere on a 6-row by 10-column matrix (rows 1
through 6 and columns 1 through 10).

Note Bit manipulation instructions cannot, however, be placed to the right of coils (including output
coils, intemal coils, link coils, MC coils, and MC control coils).

Example
Column :
1 2 3 4 5 6 T 8- 9 10 1
Row 1 anocol}
100001
2 00002
sH FHH HH M >
100011 100012 100013 100014 100015 100QI6 100017 1000t8 100019 000102
4
5
g S P e g
100021 100022 080103 & e eeecmmmmccmcam—e—mmei)
NCBTy $@0202 2 TTTTTTTYT
7 00002

—6-14 —

6.3 Building Programs

6.3.2 Inputs

Inputs to bit manipulation instructions can be connected to relay elements (except coils)

and/or outptts from timers, counters, math instructions, data transfer instructions, other
instructions, etc. '

Example

Column
H 2 3 4

Row 1 — gorojacoo2C -

100001 T6.1 OBTI 001001

2 00001 FHO000 1
100002

6.3.3 Outputs

Outputs from bit manipulation instructions can be connected to any of the following: coils,
contacts, inputs to math instructions, inputs to data transfer instructions, etc.

Colurnn
1 2 3 4

Row 1 —| +—sooo0s Haooonn-C -

100001 001001
CBT

2 00001 ‘VOOUIZ [
SUB

3 400013

—6-15 —

Data Conversion Instructions

This chapter describes the instructions used to convert data between
different types of expression.

7.1 Data Conversion Instructions 72

7.2 Details of Data Conversion Instructions 7-5

7.2.1 BCD-TO-BINARY CONVERSION (BIN) 7-5
72.2 BINARY-TO-BCD CONVERSION (BCD) 7-11
723 ASCI-TO-BINARY CONVERSION (ATOB) 7-17
724 BINARY-TO-ASCH CONVERSION (BTOA) 7-23
7235 16-BITCONVERSION(CAST)ceenn.... 7-27
7.2.6 32-BITCONVERSION(MDCST)0ovnn... 7-36

7.3 BuildingPrograms....................... 7-46

73.1 Storage Locations on Networks 7-46
732 Imputs ... e 7-46

733 OWPUIS .. oevetriieetieaee e 7-46

— 71—

Data Conversion Instructions

7.1 Data Conversion Instructions

» The six data conversion instructions are described in the following table.

Table 7.1 Data Conversion Instructions

This section describes how to convert the expressions used to store data in holding
registers and other registers.

Symbol Function

Name Page
BCD-TO-BINARY BIN The data in the registers of the source table is 7-5
CONVERSION treated as 4-digit BCD data, converted to binary

data, and stored in corresponding registers of the
destination table. The conversion is completed in
one scan.
Example
Results of Destination table (size: 5)
cohversion
Source table (size: 5) are storad

400010} 0000 0000 0000 0000 | Pointer

Binary Data BCD Data

300001 1st —e= 400011

300002 —e 400012

300003 —u= 400013

300004 —a= 400014

300005 — 400015

BCD Data Binary Data
BINARY-TO-BCD BCD The data in the registers of the source table is 7-11
CONVERSION conhverted from binary data to 4-digit BCD data and
stored in corresponding registers of the destination
table. The conversion is completed in one scan.
Example
Results of Destination table (size: 5)
conversion
Source table (size: 5) are stored
4ooo1o|_oooo 000 0000 0000 | Pointer

400001 1st —= 40001 1 1st

400002 2nd —* 400012 q 2nd

400003 ard —= 400013 {3nd

400004 4th — 400014 4th

400005 |} 01 0gi0Y sth —™ 400015 | 5th

—_T72—

7.1 Data Conversion Instructions

m

(Hexadecimal notation)

Name Symbol "Function Page
ASCII[-TO-BINARY ATOB The data in each pair of registers forming a block in | 7-17
CONVERSION the source table is treated as four ASCII characters

and converted to 4-bit binary data and stored in
corresponding registers of the destination table.
The conversion is completed in one scan. The only
ASCIl characters that can be converted are Oto 9
andAto F.
Example Results of
conversion
are stored _
Block ___—— 200011 1st
1 400012 2nd Destination table
Block / 400013 | HOAB {ard [(size: 4)
Source table 2 / 400014 EEBEE | ath
{size: 8) Block Binary Data
3 (Hexadecimal notation)
Block
4
BINARY-TQ-ASCII BTOA | The data in each register of the source table is 7-23
CONVERSION separated intc 4 sets of 4-bit binary data,
converted into four ASCIi characters, and stored in
corresponding blocks of the destination table. The
conversion is completed in one scan.
Example
Results of
conversion
are stored
Source table _| 400001 st —____ Block
{size: 2) 400002 and 1 Destination tabls
_ N Block | 400013 £ (size: 4)
Binary Data 2 laoooiaf

ASCIl Data

—_T73

Data Conversion Instructions

Name Symbol Function Page
16-BIT DATA CAST The numeric expression of a 16-bit binary integet is | 7-27
CONVERSION changed from type 1 to type 2 or from type 2 to
type 1. The conversion is completed in one scan.
Example 1 Convertad from type 1
400001 400002 to type 2 expression 400011
Type 1 Expression Type 2 Exprossion
Example 2 Converted from type 1
400001 400002 to type 2 expression 400011
Type 1 Expression Type 2 Expression
Example 3 Converted from type 2 .
400001 to type 1 expression 400011 400012
Type 2 Expression Type 1 Expression
Exa@ple 4 Converted from type 2 :
400001 to type 1 expression 400011 400012
Type 2 Expression Type 1 Expression
32-BIT DATA DCST | The numeric expression of a signed or unsigned 7-36
CONVERSION 8-digit decimal integer is changed from type 1 o
type 2 or from type 2 to typs 1. The convetsion is
completed in ona scan.
Example 1 Converted from type 1
400001 400002 to type 2 expression 400012 400011
Type 1 Expression Type 2 Expression
Example 2 . Converted from type 1
400001 400002 to type 2 expression 400012 400011
Type 1 Expression Type 2 Expression
Example 3 Converted from type 2
400002 400001 fo type 1 expressicn 400011 400012
Type 2 Expression Type 1 Expression
4
Example Converted from type 2
400002 400001 to type 1 expression 400011 400012
Type 2 Expression Type 1 Expression

—_T—

7.2 Details of Data Conversion Instructions

M

7.2 Detaiis of Data Conversion Instructions

= This section describes the function, structures, and operation of each data conversion
instruction and provides simple examples of their application.

7.2.1 BCD-TO-BINARY CONVERSION (BIN)oovvoeneeeni 7-5
7.2.2 BINARY-TO-BCD CONVERSION(BCD)ocovevenennn. . 7-11
7.2.3 ASCI-TO-BINARY CONVERSION (ATOB)ooooooeeeo 717
7.24 BINARY-TO-ASCI CONVERSION (BTOA) -ovvones oo 7-23
725 16-BITCONVERSION (CAST)ovveneeee e 7-27
7.26 32-BITCONVERSION (DCST)oueennianee e 7-36

7.2.1 BCD-TO-BINARY CONVERSION (BIN)

1. Function

The data inthe registers of the source table is treated as 4-digit BCD data, converted to binary -

data, and stored in corresponding registers of the destination table. The conversion is com-
pleted in one scan.

Results of Dastination table (size: 5)
conversion
Source table (size; 5) are stored
400010 Pointar
300001 — 400011 :
300002 —= 400012
3200003 — 400013
300004 —e 400014
300005 — 400015

BCD Data Binary Data

2. Structure

ON: Datais con- Input 1 —| Source table (S) — OQutput 1: Echoes state of input 1.
vartad.
ge§titnaﬁgn — OQutput 2: ON if one or more item in source
ointer (P) table cannot be converted,
BIN
Table size (Z)

1) BIN is the symbol for BCD-TO-BINARY CONVERSION.

2) BIN requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Refer to Table 7.2 for details on specifying
constants or registers for these slements.

—7-5 —

Data Conversion Instructions

7.2.1 BCD-TO-BINARY CONVERSION (BIN) cont,

Example
Input1 — 300001 [— Output1 300001: leading reference number of source
table
400010 [~ 400010: Referance number of pointsr (Next reg-
BIN Output 2 ister after pointer is first register in des-
. tination tabis.}
#00005 #00005: Size of source and destination tables (5)
Table 7.2 Structural Elements of BIN
Element Meaning Possible Settings
Top (S) | Leading reference number of source table | Input register: 300001 to 300512

Holding register:

Constant register:

Link register:

{Z00001 to Z00512)

400001 10 409999
(W00001 to W09999)

700001 to 704096
(K00001 1o KQ4098)

R10001 to R11024 or
R20001 to R21024

Middle Reference number of pointer Holding register: 400001 to 409998
P) (W00001 to W02998)
Link register: R10001 to R11023 or
R20001 to R21023
Bottom | Size of source and destination tables Constant; #00001 to #00016
{2)

Note The next register after the pointer is the first register in the destination table.

3. Operation

1) Status Before Execution

Source table (size: Z)

S

0001 0010 0011 0100

1st

S+n-1

1001 0000 COQG1 0010

nth

S+Z-1

0111

1000 1001 0000

Zth

—_T-6 —

P+1

P+n

P+Z

Destination table {size: Z)

00090 0000 0000 0000

0000 0000 O00C 0000

Q000 0000 0000 Q000

0000 0000 0000 0000

Pointer
1st

nth

Zth

7.2 Details of Data Conversion Instructions

%

2) Ifthe data in all of the registers in the source table is 4-digit BCD, the following data con-
version will be executed when input 1 turns ON. The conversion is completed in one
scan.

Results of Destination table (size: Z)

Source table (size: Z) conversion
are stored P| 0000 0000 0000 0000 | Pointer
41t — P+

S+r-1 {nth —= Penf

S+Z~1 H Zth —e P+ZE

a) The data in each register of the source table is converted to binaty data and stored in
the corresponding register in the destination table.

b) The data in the registers of the source table does not change.
¢) The contents of the pointer is set to all zeros.
d) The outputs are set as follows:

(1) Output 1: ON

(2) Output 2: OFF

3) Ifthe data in any of the registers in the source table is not 4-digit BCD, the following data
conversion will be executed when input 1 turns ON. The conversion is completed in one
scan.

a) The data in each register of the source table containing 4-digit BCD is converted to
binary data and stored in the corresponding register in the destination table.

b) The data in each register of the source table not containing 4-digit BCD is not con-
vertedto binary data, and invalid data (not necessarily all zeros) is stored in the corra-
sponding register in the destination table. The register in the destination table con-
taining invalid data, counting from the first register in the table, is indicated by the
value placed in the pointer as shown in the following example.

Exampile: Ifthe 3rd regiéter inthe source table does not contain 4-digit BCD when the
conversion instruction is executed, invalid data will be stored in the 3rd register inthe
destination table, and the 3rd bit in the pointer counting from the LSB will be set to 1.

Results of Destination table
cohversion

Source table (size: 5) are storad i
40001Q| 0000 0000 QOOO 0300 | Pointer
300001 | 0001 0010 0011 0100 | 1st —= 400011 0006 C100 1101 00710 | 1st
300002 2nd —s 4000t2| 0001 0110 0010 1110 | 2nd
800003 {134 0000 000G, 0000 | 3rd —w- 400013 00N T AGTE 00T F000'] ard
300004 | 0011 0100 0101 0110 | 4th -—w= 400014| 0000 1101 1000 0000 | 4th
300005 | 0111 1000 1001 00DC | 5th —= 400015] 0001 1110 1101 0010 | 5th

— 77—

Data Conversion Instructions

7.2.1 BCD-TO-BINARY CONVERSION (BIN) cont.

c) The outputs are set as follows:
(1) Output 1: ON
(2) Output 2: ON
4) Data is converted as described next.

a) Thedatain each register of the source table is handled as 4-digit BCD as showninthe
following illustration. :

MSB ' LSB
S+n—1 Q001 0010 0011 0100 nth
4thdigit Srddigit 2nddigit 1stdigit
S ———
v
Four digits of BCD data {1234)

b) Eachdigitofthe BCD data is converted to binary data as shown in the following table.

Table 7.3 BCD-TO-BINARY CONVERSION

Data Before Converted Data ‘Data Before Converted Data

Conversion (Decimal Notation) Conversion (Decimal Notation)
Digit Bit Pattern Digit Bit Pattern

4th 0000 0 2nd 0000 0

0001 1000 0001 10

0010 2000 0010 20

0011 3000 0011 30

0100 4000 0100 40

o1 5000 o101 50

0110 6000 o110 60

0111 7000 o111 70

1000 8000 1000 80

1001) 9000 1001 90

Other Invalid data Other Invalid data

(unpredictable) {unpredictable)

3rd 0000 0 18t 0000 0

0001 100 oo 1

0010 200 0010 2

0011 . 300 0011 3

0100 400 0100 4

0101 500 0101 5

0110 600 0110 6

o111 700 o1m 7

1000 800 1000 8

1001 900 1001 9

Other Invalid data Other Invalid data

{unpredictable) (unpredictable)

c} The binary values for the converted digits are added and the result is stored in the
corresponding register of the destination table.

— 7.8 —

7.2 Details of Data Conversion Instructions

,

d) An example of the conversion process is provided next for the nth register of the
source table.

(1) The BCD contents of the nth register of the source table is as follows:

S+r—1| 0001 0010 o011 0100 | nth BCD Data

dthdigit 3rddigit 2nddigit st digit

(2) Each digit of BCD data is converted to binary and then added.
Sum= 1000 + 200 + 30 + 4 {decimal)
= 1234 (decimal)
= 0000 0100 1101 0010 {binary)

{(3) The sum is stored in the nth register of the destination table.

MSB LSB
P+n | o000 0100 1101 0010 | nth Binary Data

4. Application Examples

4EXAMPLEp Example 1

1) Ladder Programming

P}— so0001 (i }—

100001 000101
400010 ——{ }— -
BIN 000102
#00005

2) Conversion Process

a) Before Conversion

Destination table (size: 5)
Source table (size: 5)

4000104 0000 0000 00QQ 0000 | Pointer
300001 | 0001 0010 0011 o0too | 1st 400011 | 0000 0000 0000 OOCDO | st
300002 | 0101 0110 ©111 1000 | 2nd © 400012| 0DCO ©OCO CODOD 000D 2nd
300003 | 1001 0000 0001 0010 | 3rd 400013] 0000 0000 0000 0000 | 3rd
300004 | 0011 0100 0101 0110 | 4th 400014] 0000 0000 0000 0000 | 4th
300005 | 0111 1000 1001 0000 | 5th 400015| 0000 0000 0000 0000 | 5th

—7.9

Data Conversion Instructions
7.2.1 BCD-TO-BINARY CONVERSION (BIN) cont.

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Rasults of Destination table (size: 5)
conversion

Source table (size: 5} are stored
400010 0000 0000 000Q 0000 | Pointer

300001 | ist —e 40001t 1 1st
300002 | 2nd —s 400012 2nd
300003 |: 3rd —e 400013 3rd

4th

300004 |
] 5th

300005 |G

(1) The binary conversion of the data in each register in the source table will be
stored in the corresponding register in the destination table.

(2) The data in the registers of the source table does not change.
(3) The value of the pointer remains as all zeros.

(4) The status of the coils is as follows:
Coil 000101: ON only forthe scan in which input relay 100001 changed from OFF
to ON.
Coil 000102: Remains OFF.

4EXAMPLEp Example 2

1) Ladder Programming

P— 800001 —(

100001 000101
400010 |—{
BIN 000102
#00005

2) Conversion Process
a) Before Conversion

The data in the 3rd register of the source table is not 4-digit BCD.

Destination table {size: 5)

Source table (size: 5)

. 400010| CC0D0 0000 0000 0000 | Pointer
300001 | 000t 0010 0011 0100 i ist 400011 0000 Q000 0000 0000 | 1st
300002| 0101 0110 0111 1000 { 2nd 400012| 0000 0000 0000 0QOO | 2nd
300003| 11110000 0000 0000 § 3rd 400013| 0000 0000 0000 0000 | 3rd
300004} 0011 0100 0100 0110 § 4th 400014 0000 0000 0000 0O0CO | 4th
3000051 01111000 1001 0000 | 5th 400015| 0000 0000 0000 0000 | Sth

-—7-10 —

7.2 Details of Data Conversion Instructions

m—

b) The following data conversion will be performed when input relay 100001 changes

from OFF to ON. The conversion will be completed in one scan,

Source table (size: 5)

Results of
conversion
are storad

400010

Destination table (size: 5)

0000 0600 Q000 0%00 | Pointer

300001 [3 400011 [15t
300002 : 2nd
300003 3rd
300004 4th

5th

(1) The binary conversion of the data in each register in the source table, except for
the 3rd register, is stored in the corresponding register in the destination table.

(2} The data in the 3rd register of the source table will be not 4-digit BCD so it will be
not converted to binary. Invalid data will be stored in the 3rd register of the des-
tination table and the 3rd bit from the LSB of the pointer willbe setto 1 to indicate
that the 3rd register in the destination table contains invalid data.

(3) Coil 000101 and coil 000102turn ON only forthe scanin which input relay 100001
changed from OFF to ON.

7.2.2 BINARY-TO-BCD CONVERSION (BCD)

1. Function

The data in the registers of the source table is converted from binary data to 4-digit BCD data
and stored in corresponding registers of the destination table. The conversion is completed in

one scan,
Results of Destination table (size: 5)
conversion)
Source table (size: 5) are stored
: 400010} 0000 0000 00Q0 0000 { Pointsr
400001 1st —» 400011 1st
400002 2nd —™ 400012 2nd
400003 3rd —™ 400013 3rd
400004 4th ~—* 400014 4th
400005 4 5th —* 400015L011¥ 100 4 5th

Binary BCD Data

2. Structure

ON: Datais con- Input 1 —] Source table (S) — Output 1: Echoes state of input 1.

verted,
Destination | _ Output 2: ON if one or mors item in source
Pointer (F) table cannot be converted.
BCD
Table size (2)

—7-11 —

Data Conversion Instructions

7.2.2 BINARY-TG-BCD CONVERSION (BCD) cont.

1) BCD is the symbol for BINARY-TO-BCD CONVERSION.

2) BCD requires three elements, one top element, one middle element, and one bottom ele-
ment, located vertically on the network. Refer to Table 7.4 for details on specifying
constants or registers for these eiements.

Example
Input1 —{ 400001 — Output 1 400001: Leading reforence number of source table
400010: Referance number of pointer {Next register
400010 }— Output?2 " after pointer is first register in destination
BCD table.}
#00005 #00005: Size of source and destination tables (5)
Table 7.4 Structural Elements of BCD
Element Meaning Possible Settings
Top (S) |Leading reference number of source table | Input register: 300001 to 300512
S (200001 to Z00512)
Holding register: 400001 to 409999
(WO00001 to W09999)
Constant register: 700001 to 704096
{(KOOOD01 to K04096)
Link register: R10001 to R11024 or
R20001 to R21024
Middle Reference number of pointer Holding register: 400001 to 409998
(P) (W00001 to W09938)
Link register: R10001 to R11023 or
R20001 to R21023
Bottom |Size of source and destination tables Consiant: #00001 to #00016
(2)

Note

3. Operation

1) Status Before Execution

Source table (size: 2)

S| o000 0100 1101 0010 |ist

S+n-11{ 0010 0011 0011 0100 |nth

S+Z-1| 0001 1110 1101 0010 { Zth

—7-12 —

P+1

P+h

P+Z

The next register after the pointer is the first register in the destination table.

Destination table (size: Z)

0000 0CO0 0000 0000

0000 0COC 0000 0000

0000 0000 GO0 0000

0000 C000 0000 0000

Pointer
1st

nth

Zth

7.2 Details of Data Conversion Instructions

2) If the data in all of the registers in the source table can be converted to 4-digit BCD, the
following data conversion will be executed when input 1 turns ON., The conversion is
completed in one scan.

Results of Destination table (size: Z)

Source table (size: Z) conversion
are stored P| oooo 0000 0o0Q QO
st —m P+t

Pointer
| 1st

S+n—1 inth —= P nth

S+Z~1 JZth —= psz |: Zth

a) The data in each register of the source table is converted to 4-digit BCD data and
stored in the corresponding register in the destination table.

b) The data in the registers of the source table does not change.
¢} The contents of the pointer is set to all zeros.
d) The outputs are set as follows:

(1) Output 1: ON

.(2) Output 2: OFF

3) Ifthe data in any of the registers in the source table cannot be converted to 4-digit BCD,
the following data conversion will be executed when input 1 tums ON. The conversion is
completed in one scan.

a) The data in each register of the source table that can be converted to 4-digit BCD‘i's
converted to 4-digit BCD and stored in the corresponding register in the destination
table.

b} Thedataineachregister ofthe sourcetable that cannot be convertedto 4-digitBCDis
notconverted, and invalid data (not necessarily all zeros) is stored in the correspond-
ing register in the destination table. The register in the destination table containing
invalid data, counting from the first register in the table, is indicated by the value
placed in the pointer as shown in the following example.

Example: If the data in the 3rd register in the source table cannot be converted to
4-digit BCD when the conversion instruction is executed, invalid data will be stored in
the 3rd register in the destination table, and the third bit in the pointer counting from
the LSB will be set to 1. '

Results of Destination table
conversion
Source table (size: 5) are stored .
400010| 0000 0000 0000 0300 | Pointer

400001 | 0000 0100 1101 0010 | 1st —= 400011 0010 0011 0100 | 1st
400002 | 0001 2nd — 400012 0110 0111 1000 | 2nd
400003 ~— 400013} D301 b 104001 0107 ard
400004 | 0000 1101 1000 0000 | 4th —™ 400014 0100 0101 4th
400005 | 0001 1110 1101 0010 | 5th —™ 400015 1000 1001 0000 | 5th

- 713 —

Data Conversion Instructions

7.2.2 BINARY-TO-BCD CONVERSION (BCD) cont.

¢) The outputs are set as follows:
(1) Output 1: ON
(2) Output 2: ON

4) Data is converted as described next.

a) The data in each register of the source table is handled as 4 digits as shown in the

following illustration.

S+n-1| 0000 0100

101 0010

S+n-1 1234

nth Binary

nth Decimal

b} Each digit is converted to BCD data as shown in the following table.

Table 7.5 BINARY-TO-BCD CONVERSION

Data Before
Conversion (as
Decimal)

Converted Data
(Bit Pattern)

O~ eAON—2O

0000
0001
0010
oon
0100
0101
0110
om
1000
1001

c) Thebitpatterns resulting from conversion are stored in the corresponding registers of
the destination table as shown below.

S+n=-1| 0001 0010

0011 o100

4th digit 3rddigit 2nd digit tstdigit
— —

T
Four digits of BCD data (1234)

— 714 —

nth

7.2 Details of Data Conversion Instructions

4. Application Examples

4EXAMFPLEp Example 1

1) Ladder Programming

P—{ 400001 ‘——(-

100001 000101
400010 ——()~
BCD | o0o102
#00005

2) Conversion Process
a) Before Conversion

Destination table (size: 5)
Source table (size: 5)

400010/ 000G 0000 0000 Q00D | Pointer
400001 1st 400011 0000 Q000 0000 0000 | 1st
400002 2nd 400012| 0000 0000 0000 0000 | 2nd
400003 3nd 400013| 000D 000D 0000 0000 | 3rd
400004 ath 400014| 0000 000G 00CO 00CO | 4th
400005 00T Sth 400015| 0000 GOOC 0000 0000 | S5th

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Results of Destination table (sizs: &)
conversion
Source table (size: 5) are storad

_ 400010[000C 000D 0000 0000 | Pointer

300001 st — :

300002 2nd —»

300003 3d —

390004 4th —

300005 5h —*

(1) Thedata in each register in the source table will be converted to 4-digit BCD and
stored in the corresponding register in the destination table.

(2) The data in the registers of the source table does not changs.
(3) The value of the pointer remains as all zeros.

(4) The status of the coils is as follows:
Coil 000101: ON only forthe scan in which input relay 100001 changed from OFF
to ON.
Coil 000102: Remains OFF.

—715—

Data Conversion Instructions

7.2.2 BINARY-TO-BCD CONVERSION (BCD) cont.

EXAMPLEp-

Example 2

1) Ladder Programming

P —{ 400001 — >

100001 000101
400010 }—{)}—
BCD 000102
#00005

2) Conversion Process

a) Before Conversion

The data in the 3rd register of the source table cannot be converted to 4-digit BCD.

Source table {size: 5)

1st
2nd
3rd
4th
Sth

400001
400002
400003
400004
400005

400010
40001
400012
400013
400014

400015

Destination table (size: 5)

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0C00

Pointer
1st
2nd
3rd

4th

Sth

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be compieted in one scan.

Results of
conversion
Source tabla (size: 5) are stored

B

G 15t —»
1 ond
1 3nd
{ 4th
1 5th

—r
—
—
—

400010

400011 |
400012};
400013 :
400014
400015 ;

Destination table (size: 5)

Pointsr
1st

2nd
3rd

4th

4 5th

(1) The datain any register other then the 3rd one in the source table is converted to
4-digit BCD and stored in the corresponding register in the destination table.

(2) The datainthe 3rd register of the source cannot be converted to 4-digit BCD so it
will be not converted. Invalid data wili be stored in the 3rd register of the destina-
tion table and the 3rd bit from the LSB of the pointer will be setto 1 to indicate that
the 3rd register in the destination tabie contains invalid data. '

(3) Coil 000101 and coil 000102 will turn ON only for the a scan in which input relay
100001 went from OFF to ON.

—7-16 —

7.2 Details of Data Conversion Instructions

7.2.3 ASCII-TO-BINARY CONVERSION (ATOB)

1. Function

The data in each pair of registers forming a block in the source table is treated as four ASCI}
characters and converted to 4-bit binary data and stored in corresponding registers of the
destination table. The conversion is completed in one scan. The only ASCII characters that
can be converted are Oto 9and Ato F

400002
400003
Source table < 400004
(size: B) 400005
400006
400007
\ 400008

(400001 [

Results of
convearsion
are stored

st Block __
2nd 1
1st | Block /

2nd 2
st Block

2nd 3
1st Block
2nd 4

ASCI Data

2. Structure

ON: Datais con-
varted,

400011
400012
400013
400014

Destination table
(size: 4)

Binary Data
(Hexadecimal notation)

Input 1 — Source table (S) — Output 1: Echoes stats of input 1.

Destination

(— Output 2: ON if one or more item in source
table (D) table cannot be converted,
ATOB
Table size (Z)

1) ATOB is the symbol for ASCII-TO-BINARY CONVERSION.

2) ATOB requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 7.6 for details on specifying
constants or registers for these elements.

Example

Input1 —

400001

400011
ATOB
#00004

— Output 1 400001:

— Output2 400011

#00004:

—T7-17 —

Loading reference numbar of the source
tabla

Leading referance number of the destination
table

Size of the destination table (4)

Data Conversion Instructions

7.2.3 ASCII-TO-BINARY CONVERSION (ATOB) cont.

Table 7.‘6 Structural Elements of ATOB

Element Meaning Possible Settings

Top {8) |Leading reference number of source table {Input register: 300001 to 300511
(Z00001 to Z00511)

Holding register: 400001 to 409998
(WO00001 to W09998)

Constant register: 700001 to 704095
{K00001 to K04095)

Link register: R10001 to R11023
R20001 to R21023

Middie Leading reference number of destination | Holding register: 400001 to 409999

(D) table (W00001 to W09999)
Link register: R10001 to R11024
R20001 to R21024
Bottom | Size of destination table Constant: #00001 to #00100

(Z)

Note The source table is twice the size of the destination table.

3. Operation

1) Status Before Execution

{ s[o1 | 1st Block D[oooo |1st
S+1| 23 2nd 1 Destination tabl
asunation (=]
. D+n—1] 0000 |nth (size: 2)
Source table d Se2n-2| 45 | 1st Block D+Z-1|_0000 | Zth
(size: 27) s+2n-1| 67 | ond n

Binary Data
(Hexadecimal notation)

S+2Z-2{ AB | 1st Block
\S+22-1{_CD_| 2nd z

. ASCll Data

—7-18 —

7.2 Details of Data Conversion Instructions

2) lithe ASClldata (0to 9, Ato F)inall of the blocks in the source table can be converted, the
following data conversion will be executed when input 1 turns ON. The conversion will be
completed in one scan.

Results of
convarsion

Destination table

/ - (size: Z}
/ Binary Data
(Hexadecimal notation)

a) The data in each block of the source table (4 ASGii characters) is converted to binary
data and stored in the corresponding register in the destination table (4 sets of 4-bit
binary data). The data converted forblock n of the source tableis storedin registernof
the destination table.

Source table 4 S42n-2
(629:22) " < §oon ¢

S+22-2
\ §+2Z-1

ASCIl Data

b) The data in the blocks of the source table does not change.
¢} The outputs are set as follows:

(1) Output 1: ON

(2) Output 2: OFF

3) lf the ASCI| data in any of the blocks in the source table cannot be converted (i.e., con-
tains any characters except 0to 9 and Ato F), the following (partial) data conversion will
be exectted when input 1 turns ON. The conversion will be completed in one scan.

a) The ASCl! data in each block is converted fromthe beginning block and stored in cor-
responding registers in the destination tables until the first block that cannot be con-
verted s discovered.

b) No other blocks are converted after a block that cannot be converted is discovered.
¢) The data in the blocks of the source table does not change.
d) The outputs are set as follows:

(1) Output 1: ON

(2) Output 2: ON

—7-19 —

Data Conversion Instructions
7.2.3 ASCII.TO-BINARY CONVERSION (ATOB) cont.

4) Data is converted as described next.

a) As shown below, each 4 ASCII characters are converted to 4 sets of 4-bit binary data
(i.., 4 hexadecimal characters) and stored in the corresponding register in the des-
tination table. The data converted for block h of the source table is stored in register n
of the destinatioh table. '

ASCII 4 converted to binary 4 and stored.

1 1st

4
| ASCII 5 converted to binary 5 and stored. I

Blockn ﬁ
ASCII 6 converted to binary 6 and stored.

2nd

ASCII 7 converted to binary 7 and storad,

b) EachASCllcharacteris converted to 4-bit binary data as shown inthe following table.

Table 7.7 ASCH-TO-BINARY CONVERSION

Data Before Conversion Converted Data Before Conversion Converted
. Data Data
ASCI Hexadecimal | Hexadecimal ASCII Hexadecimal | Hexadecimal

Notation Notation Notation Notation Notation Notation
0 30 0 8 38 8
1 31 1] 39 2]
2 32 2 A 4 A
3 33 . 3 B 42 B
4 34 4 c 43 c
5 35 5 D 44 D
6 36 6 E 45 E
7 37 7 F 46 F

4. Application Examples

4EXAMPLEp Example 1

1) Ladder Programming

pj— 40000t |— »—

100001 000101
400011 —(}»—
ATOB | aoo0102
#00004 {.

—7-20 —

7.2 Details of Data Conversion Instructions

m*

2) Conversion Process

a) Before Conversion

{ 400001 01 | 1st Block 400011 | 0000 | 1st

400002{ 23 | 2nd 1 400012 | 0000 |2nd {_ Destination table

400003 45 | 1st Block 400013 | 0000 [3rd [(size:4)
Source table J 400004 67 | 2nd 2 400014 | 0000 |4th
{size: 8) 400005] 89 | 1st Block

Binary Data

400006 AB | 2nd 3 {Hexadecimal notation)

400007| CD 1st Block

\ 400008 EF | 2nd 4

ASCI Data

b) The foliowing data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Results of
convearsion
. are stored
4 1st Block ____——= 400011 st
2nd 1 400012 nd |_ Destination table
tst | Block " 400013 [5B |amd [(526:4)
Source table < 2nd 2 400014 BEDEF | 4th
(size: 8) tst | Block .
Binary Data
2nd 3 {Hexadecimal notation)
1st Block
1 2nd 4
ASCII Data
(1) The data in each block of the source table (4 ASCII characters) is converted to
4-bit binary data and stored in the corresponding register in the destination table
(4 sets of 4-bit binary data). The data converted for block n of the source table is
stored in register n of the destination table (h = 1 to 4).
(2) The data in the blocks of the source table does not change.
(3) The status of the coils is as follows:
Coil 000101: ON only for the scan in which input relay 100001 changed from OFF
to ON. '
Coil 000102: Remains OFF.
4EXAMPLEp Example 2

1) Ladder Programming

P— 400001 | }—
100001 000101
400011 f—()
ATOB | goo102

 #00004

721 —

Data Conversion Instructions
7.2.3 ASCII-TO-BINARY CONVERSION (ATOB) cont.

2) Conversion Process

a} Before Conversion

(a00001] 01 | 1st Block 400011 | 0000 | 1st

400002{ 23 2nd 1 400012 | 0000 |2nd Dgslination table

400003{ 45 | 1st |_Block 400013 [0000 |3rd [(size:4)
Source tahle < 400004 G7 | 2nd 2 400014 | 0000 | 4th
(size: B) 400005! B9 | 1st Block Bi Data

4000061 AB | 2nd 3 {Hexadecimal notation)

400007] cD | 1st Block

\ 400008| EF | 2nd 4

ASCII Data

b) The following data conversion wilt be perfofmed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Results of
conversion .
are stored S—
(400001 1st | Block___——400011 0053 1 1st
400002 Hond [1 400012 | 0000 |2nd | Destination table
400003] 45 | 1st | Block 400013 | oooo |ard [(size:4)
Source table 4 400004| G7 | 2nd 2 400014 { 0000 |4th
{size: 8) 400005| B9 | 1st Block .
Binary Data
400006} AB | 2nd 3 (Hexadecimal notation)
400007 €D | 1st Block
\ 400008] EF | 2nd 4

ASCI] Data

(1) Thedatainblock 1 of the source table (4 ASCI| characters) is converted to binary
data and stored in register 1 in the destination table (4-bit binary data}.

(2) The ASCII data (G) in the 2nd register in block 2 of the source table cannot be
converted; therefore conversion does not carried out for the rest of the blocks in
the source table,

(3) The data in the blocks of the source table does not change.

(4) Coil 000101 and coil 000102 will turn ON only for the scan in which input relay
100001 changed from OFF to ON.

—7-22 —

7.2 Details of Data Conversion Instructions

7.2.4 BINARY-TO-ASCIl CONVERSION (BTOA)

1. Function

The data in each register of the source table is separated into 4 sets of 4-bit binary data, con-
verted into four ASCil characters, and stored in corresponding blocks of the destination table.
The conversion is completed in one scan.

Results of
conversion
b ara stored Block
Source table 400001 1st o 400011
(size: 2) { 400002 | 2nd 1 |400012 Destination table
\ Block | 400013 (size: 4)

Binary Data
(Hexadecimal notation)

2 |400014

ASCIl Data

2. Structure

ON: Datais converted. Input 1 — Sourcs table {S) t— Output 1: Echoas state of inpud 1,

Destination
tabls (D)
BTOA

Table size (2)

1} BTOA is the symbol for BINARY-TO-ASCIl CONVERSION.

2) BTOA requires three elements, one top element, one middle element, and one bottomn
element, located vertically on the network. Refer to Table 7.8 for details on specifying
constants or ragisters for these elements.

Example
Input1 — 400001 [— Output 1 400001: Lealding reference number of the source
table .
400011 400011: Leading reference number of the destination
BTOA table

#00002 #00002: Size of the sourcs table (2)

—7-23 —

Data Conversion Instructions .
- ...]
7.2.4 BINARY-TO-ASCH CONVERSION (BTOA) cont.

Table 7.8 Structural Elements of BTOA

Element Meaning Possible Settings

Top (S) |Leading reference number of source table | Input register: 300001 to 300512
(Z00001 to Z00512)

Helding register: 400001 to 409999
(W00001 to W09999)

‘Constant register: 700001 to 704096
(K00001 to KO4096)

Link register: R10001 to R11024
R20001 to R21024

Middle Leading reference number of destination | Holding register: 400001 to 409998

(D) table {(W0D001 to W09998)
Link register: R1000C1 to R11023
R20001 to R21023
Bottom | Size of source tabie Constant: . #00001 1o #00100

{Z)

Note The destination table is twice the size of the source table.

3. Operation

1) Status Before Execution

s| 0123 | 1st Block o[oo | 1st)
So t2bh 1 D+1j 00 2nd
urce i<}
(sizo: 2) S+n—1| 89AB | nth
S+Z-1| 1234 | Zth Block D+2n-2] 00 1st > D_estination table
n D+2n-1| 00 | 2nd [(Si2e:22)

Binary Data
{Hexadecimal notation)

Block | D+2Z-2| 00 1st
z D+2Z-1| 00 2nd }

ASCIl Data

—T7-24 —

7.2 Details of Data Conversion Instructions

2) The following data conversion will be executed when input 1 fums ON. The conversion
will be completed in one scan.

Results of
conversion
are stored
S 1st —_— Block D
o abl 1 D+1
urce =]
S+Z-1 Zth \ Block [D+2n-2 \, Destination table
_ n D+2n~1 (size: 22)
Binary Data
(Hexadecimal notation)
Block D+27-2
Zz D+2Z-1

ASCH Data

a) The data in each register of the source table is separated into 4 sets of 4-bit binary
data, converted into four ASClI characters, and stored in corresponding blocks of the
destination table. The data converted for register n of the source able is stored in
block n of the destination table.

b) The data in the registers of the source table does not change.
¢) The output 1 turns ON.

3} Data is converted as shown below.

Binary 9 converted to ASCII 9 and stored.

Binary 8 converted to ASCI| & and stored.

] nth Binary Data D+n-2
(Hexadecimal notation) D+i1

S+n—1 [-B9A

1st
: 2nd} Block n

B AsclData

Binary A converted to ASCI[A and stored,

Binary B converted to ASCll B and stored.

4) Each 4 bits of binary data are converted to ASClI as shown in the following table.

— 725 —

Data Conversion Instructions

7.2.4 BINARY-TO-ASCII CONVERSION (BTOA) cont.

Table 7.9 BINARY-TO-ASCIt CONVERSION

Data Before

Data Befare Converted Data Converted Data
Conversion {HEX Notation) Conversion {HEX Notation)
{HEX Notation) (HEX Notation)
o 30 : 8 38
1 31 9 39
2 32 A 41
3 33 B 42
4 34 Cc 43
5 35 D 44
6 36 E 45
7 37 F 46
«EXAMPLEp 4, Application Example
1) Ladder Programming
P—{ 400001 —()}
100001 ' 000101
400011
BTOA
#00002
2) Conversion Process
a) Before Conversion
Sourcetable | 400001| 0123 | 1st Block f400011 | 00]1st
(size: 2) 400002 { 4567 | 2nd 1 |[400012| 00 |2nd { Destination table
Birary Data Block [400013[o0 |1st [(size:d)
inary Dal
(Hexadecimal notation) 2 400014| 00 |2nd
ASCll Data

b) The following data conversion will be performed when input refay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Rasults of
conversion
are stored

Source table | 40000 1st
. —
(size: 2) {40000 2nd \

Binary Data
{Hexadecimal notation)

Block [400011 1 1st

1 400012 1 2nd Destination table
Block | 400013 {1st [(size:4)

2 400014 | 2nd

ASClI Data

(1) Thedataineach register of the source table is separated into 4 sets of 4-bit binary
data, converted into four ASCI! characters, and stored in corresponding blocks of
the destination table. The data converted for register n of the source table is
stored in block n of the destination table.

—7-26 —

7.2 Details of Data Conversion Instructions

M

(2) The data in each register of the source table does not change.

{3) Coil 000101 turns ON only for the scan in which input relay 100001 changed from
OFF to ON.

7.2.5 16-BIT CONVERSION (CAST)

1. Function

The numeric expression of a 16-bit binary integer is changed from type 1 to type 2 or from
type 2 to type 1. The conversion is completed in one scan.

Exampls 1

Converted from type 1
400001 400002 to type 2 expression 40
Type 1 Expression Type 2 Expression
!
Example 2 Converted from type t
400001 400002 to type 2 expression 400011
Type 1 Expression ~ Type 2 Expression
Example 3
ple Converted from type 2
to type 1 expression 400011 400012
Type 2 Expression Type 1 Expression
Example 4
ample Converted from type 2

400001 to type 1 expression 400011 400012

Type 2 Expression Type 1 Expression

2. Structure
ON: Data expression con- Input 1 — Source table — Output 1: Echoss state of input 1.
verted. (s)
OFF: Convertfromtype 1t0 Input2 — Destinaion |— Output 2: ON it result of conversion exceeds
type 2 table (D) range of 16-bit binary number.
ON: Convert from typa 2 to '
type 1. CAST
ON: Convertunsigned data. Input 3 —| #00001

OFF: Convert signed data.

—7-27 —

Data Conversion Instructions

7.2.5 16-BIT CONVERSION (CAST) cont.

1) CAST is the symbol for 16-BIT CONVERSION.

2) CAST requires three elements, one top element, one middle element, and one bottomn
element, located vertically on the network. Refer to Table 7. 10 for details on specifying
constants or registers for these elements.

Example
Input1 —j 400001 — Qutput 1

Input2 — 400011 |— Output2

Input3 — #00001

CAST

400001:
400011:

#00001:

Leading reference number of the source table
Leading reference number of the destination

table
Fixed (1)

Table 7.10 Structural Elements of CAST

Element Meaning Possible Settings
Top (8) |Leading reference number of source table | Input register: 300001 to 300511
(size:2) (200001 to Z00511)
Holding register: 400001 to 409998
(WO00001 to W09998)
Constant register: 700001 to 704095
(K00001 to K04095)
Link register: R10001 to R11023
R20001 to R21023
Middle Leading reference number of destination | Holding register: 400001 to 409898
(D) table (size:2) (W00001 to W09998)
Link register: R10001 to R11023
R20001 to R21023
Bottom | Fixed Constant: #00001
3. Operation
1) Status Before Execution
Source table S Vi | 1st D V3 tst Deslination table
(size: 2) S+1 |_v2_|2nd D+1 | V4 |2nd (size: 2)

2) The following data conversion will be executed when input 1 tums ON and inputs 2 and 3
are OFF. The conversion will be completed in one scan.

a) The data in the two registers of the source table (V1 and V2) is taken as an unsigned
5-digit decimal integer (0 to 65,535) in a type 1 expression and converted to an un-
signed 9-digit decimal integer (0 to 655,415,535) (V5).

*V5=10,000x V1 + V2

—7-28 —

7.2 Details of Data Conversion Instructions

b) The lower 16 bits of V5 are stored in the leading register of the destination table. The

upper 16 bits are discarded.
s S+1 D+1
V4 {unchanged) |
1st 2nd 2nd

¢) Thus, if the data in the two registers of the source table (V1 and V2) is an unsigned
5-digit decimal integer in a type 1 expression {0 to 65,535), it will be converted to an
unsigned 9-digit decimal integer in a type 2 expression and the result will be stored in
the leading register of the destination table.

Converted from typa 1

] S+1 to type 2 expression D+1
—_ V4 (unchanged) |
1st 2nd 1st 2nd
Type 1 Expression Type 2 Expression

d) Thedatainthe registefs ofthe source table and the data of the second register in the
destination table does not change.

e) The status of the outputs is as follows as iong as input 1 is ON:
(1) Output 1: ON
{2) Output 2: OFF if V5 is 65,535 or less; ON if V5 is greater than 65,535.

3) The following data conversion will be executed when inputs 1 and 3turn ON and input 2 is
OFF. The conversion will be completed in one scan.

a) The data in the two registers of the source table (V1 and V2) is taken as a signed
5-digit decimal integer (32,768 0 32,767) in a type 1 expression and converted to a
signed 10-digit decimal integer (~2,147,483,648 to 2,147,483,647) (V5).

* If V1 2 0, then V5 = 10,000 x IV1| + V2|
* If V1 <0, then V5 = —(10,000 x IV1] + iV2l)

b) The lower 16 bits of V5 are stored in the leading register of the destination table. The

. upper 16 bits are discarded.
S S+1 D D+1
- | Va(unchanged) |
15t 2nd A 1st 2nd)

¢) Thus, ifthe data in the two registers of the source table {V1 and V2) is a signed 5-digit
decimal integer in a typs 1 expression (-32,768 to 32,767}, it will be converted to a
signed 10-digit decimal integer in a type 2 expression and the result will be stored in
the leading register of the destination table.

Converted from type 1
5 S+1 to type 2 expression D+1
- - V4 {unchanged) I
1st 2nd 15t 2nd
Type 1 Expression Type 2 Expression

—7-29 —

Data Conversion Instructions
7.2.5 16-BIT CONVERSION (CAST) cont.

d) The data in the registers of the source table and the second register in the destination
table does not change. '

e) The status of the outputs is as follows as Iohg as input 1 is ON:
(1) Output 1: ON
(2) Output 2: OFF if -32,768 < V5 < 32,767; ON otherwise.

4) Thefollowing data conversion will be executed when inputs 1 and 2 tum ON and input 3is
OFF. The conversion will be completed in one scan.)

a) Thedatainthe leading register of the source iable (V1}istaken as an unsigned 5-digit
decimal integer (0to 65,535) in a type 2 expression, it is converted to a type 1 expres-
sion, and the result is stored in the two registers of the destination table (V5 and V6).

Converted from type 2
to type 1 expression D D+1
1st st 2nd
Type 2 Expression Type 1 Expression

b) The following equation is used.
* V1 + 10,000 = V5 with a remainder of V6
c) The data in the registers of the source tablé does not change.
d) Output 1 is ON and output 2 remains OFF as long as input 1 is ON.

5) The following data conversion will be executed wheninputs 1,2, and 3 turn ON. The con-
version will be completed in one scan.

a) The data in the leading register of the source table (V1) is taken as a signed 5-digit
decimal integer (~32,768 to 32,767) in a type 2 expression, it is converted to a type 1
expression, and the resuit is stored in the two registers of the destination table (V5 and

V6).
Converted from type 2
1o type 1 expression D D+t
1st 1st 2nd
Type 2 Expression Type 1 Expression

b) The following equation is used.

¢ V1 + 10,000 = V5 with a remainder of V6

—7-30 —

7.2 Details of Data Conversion Instructions

“_

¢) The data in the registers of the source table does not change.

d) Output 1 is ON and output 2 remains OFF as long as input 1 is ON.

4. Application Examples

4EXAMPLEp Example 1:

An unsigned, 5-digit decimal integer in a type 1 expression is converted to a type 2
" expression. ' '

1) Ladder Programming

P— 400001 |—()}—

100001 000101
— 400011 |— }—
CAST | oooto2

-] #0000t

2) Conversion Process

a) Before Conversion

Source table 400001 6] 1st 400011
(size: 2) 400002 | 5535 | 2nd 400012

o

1st Destinafion table
2nd (size: 2)

o

b) The foliowing data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Convarted from type 1
400001 400002 to type 2 expression 400011

10000x6+5$35=65535

1st 2nd 1st
Type 1 Expression Type 2 Expression

(1) The data in the two registers of the source table (V1 and V2) is taken as an un-
signed 5-digit decimal integer (65,535) in a type 1 expression, it is converted to a
type 2 expression, and the result is stored in the leading register of the destination
table. '

(2} The data inthe registers of the source table and the data in the second register in
the destination table does not change.

(3) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

—T7-31—

Data Conversion Instructions
e ..]

7.2.5 16-BIT CONVERSION (CAST) cont.

¢} Thus, the above program section can be used to convert an unsigned 5-digit decimal
integer in a type 1 expression (0 to 65,535) to a type 2 expression.

d) Ifthe value of the two registers in the source table exceeds 65,535 when taken as an
unsigned 5-digit decimal integer in a type 1 expression, the following processing WI||
be performed when input relay 100001 turns ON.

{1) The lower 16 bits of the conversion results is stored in the leading register of the
destination table and the upper 16 bits is discarded.

(2) Thedatainthe registers of the source table and the data of the second register in
the destination table does not change.

(3) Coil 000101 and coil 000102 tums ON only for the scan in which input relay
100001 changed from OFF to ON.

4EXAMPLEp Example 2:
A signed, 5-digit decimal integer in a type 1 expression is converted to a type 2
expression,

1) Ladder Programming

— P —{ 400001 +—(

100001 000101
- 400011 —{
CAST 000102
#00001

2) Conversion Process

a) Before Conversion

o

Source table 400001 -3 | 1st 400011 Of 1st Destination table
(size: 2) 400002 | 2768 2nd 400012 2nd (size: 2)

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Converted from type 1
400001 400002 to type 2 exprassion 400011

-

—{10000 x 3 + 2768) = -32768

1st 2nd 1st
Type 1 Expression Type 2 Expression

—7-32 —

' 7.2 Details of Data Conversion Instructions

(1) The data in the two registers of the source table (V1 and V2) is taken as a sighed
5-digit decimal integer (~32,768) in a type 1 expression, itis convertedto a type 2
expression, and the result is stored in the leading register of the destination table.

(2) Thedataintheregisters of the source table and the data of the second registerin
the destination table does not change.

(8) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

¢} Thus, the above program section can be used to converta signed 5-digit decimal inte-
" gerin a type 1 expression (-32,768 to 32,767) to a type 2 expression.

d) Ifthe value of thetwo registers of the source table is notbetween -32,768and 32,767,
inclusive, when taken as a signed 5-digit decimal integer in a type 1 expression, the
following processing will be performed when the input relay 100001 turns ON.

(1) The lower 16 bits of the conversion results is stored in the leading register of the
destination table and the upper 16 bits is discarded.

(2) Thedata inthe registers of the source table and the data of the second registerin
the destination table does not change.

(3) Coil 000101 and coil 000102 turns ON only for the scan in which input relay
100001 changed from OFF to ON.

<4EXAMPLEp - Example 3: ‘
An unsigned, 5-digit decimal integer in a type 2 expression is converted to a type 1
expression.

1) Ladder Programming

p 400001 |
100001 000101
400011 A }—

CAST | ooo102
#00001

2) Conversion Process

a) Before Conversion

o

Sourcs table 400001 | 65535 | 15t 400011
(size: 2) 400002 0| 2nd 400012

1st Destination table
and (size: 2)

o

—733—

Data Conversion Instructions
7.2.5 16-BIT CONVERSION (CAST) cont.

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Convenrted from type 2
40000t to type 1 exprassion 400011 400012

] 65535 /10000 = 6 with a remainder of
1st 1st 2nd 5535
Type 2 Expression Type 1 Expression

(1) The data in the leading register of the source table (V1) is taken as an unsigned
5-digit decimal integer (65,535} in a type 2 expression, it is converted to atype 1
expression, and the result is stored in the two registers of the destination table.

(2) The data in the registers of the source table does not change.

(3) The status of the coils is as follows:

Coit 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

c¢) Thus, the above program section can be used to convert an unsigned 5-digit decimal
integer in a type 2 expression (0 to 65,535) to a type 1 expression.

4EXAMPLEp- Example 4:
A signed, 5-digit decimal integer in a type 2 expression is converied to a type 1
expression.

1) Ladder Programming

P 400001 [—(»—

100001 000101
400011 }—{)
CAST | ooot02
400001

2) Conversion Process

a) Before Conversion

Source table 400001 |-32768| 1st 400011
(size: 2) 400002 o 2nd 400012

o

o

1st Destination table
ond (size: 2) :

—7-34—

7.2 Details of Data Conversion Instructions

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Converted from type 2
400001 to type 1 expression 400011 400012
- - =32768 / 10000 ==3 with a ramainder
1st st 2nd of 2768
Type 2 Expression Type 1 Expression

(1) Thedataintheleadingregister of the source table (V1) is taken as a signed 5-digit
decimal integer (~32,768) in a type 2 expression, it is converted to a type 1 ex-
pression, and the result is stored in the two registers of the destination table.

(2) The data in the registers of the source table does not change,

(3) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

¢) Thus, the above program section canbe usedto converta signed 5-digit decimal inte-
ger in a type 2 expression (~32,768 to 32,767) to a type 1 expression.

—7-35 —

Data Conversion Instructions
e R e e e

7.2.6 32-BIT CONVERSION (DCST)

7.2.6 32-BIT CONVERSION (DCST)

1. Function

The numeric expression of a signed or unsigned 8-digit decimal integer is changed from type
1 to type 2 or from type 2 to type 1. The conversion is completed in one scan.

Example 1

Converted from type 1
400001 400002 to type 2 expression 400012 400011
Type 1 Expression Type 2 Expression
I
Example 2 Converted from type 1
400001 400002 1o type 2 expression 400012 400011
Type 1 Expression Type 2 Expression
le 3
Example Converted from type 2
400002 400001 to type 1 expression 400011 400012
Type 2 Expression Type 1 Expression
Example 4 Converted from type 2

400002 400001 to type 1 expression 400011 400012

Type 2 Expression Type 1 Expression

2. Structure
ON: Data expression con- Input1 —| Source table — Output 1: Echoes state of input 1.
verted. (S)
OFF: Converts fromtype 1to Input2 —| Destination |— Output 2: ON if absolute value of result of con-
type 2. table (D) version exceeds 99,999,999,
ON: Converts from type 2 to
type 1. DCST
OFF: Converts unsigned data. Input 3 — #00001

ON: Converts signed data.

1) DCST is the symbol for 32-BIT CONVERSION.

2) DCST requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 7.11 for details on specifying
constants or registers for these elements.

—7-36 —

7.2 Details of Data Conversion Instructions

“_

Example
Input1 —} 400001 i— Qutput 1 400001: Leading reference numbsr of source table
400011; Leading refarence number of destination
Input2 — 400011 — OQutput2 table
DCST #00001: Fixed (1)
Input3 — #00001

Table 7.11 Structural Elements of DCST

Element Meaning Possible Settings
Top (8) | Leading reference number of source table | input register: 300001 to 300511
(size:2) (200001 to Z00511)

Holding register: 400001 to 409998
{(WO00001 to W09998)

Constant register: 700001 to 704095
{K00001 to K04085)

Link register: R10001 to R11023
R20001 to R21023

Middle Leading reference number of destination | Holding register: 400001 to 409998

D) table (size:2) {(WQ0001 to W09998)
Link register: R10001 to R11023
R20001 to R21023

Bottom | Fixed Constant: #00001

3. Operation
1) Status Before Execution

Source table s V1 | 1st D V3 | tst Destination table
(size: 2} S+1 | v2 |2nd D+t | V4 [2nd [(size: 2}

2) The following data conversion will be executed when input 1 tums ON and inputs 2 and 3
are OFF. The conversion will be completed in one scan.

a) The data in each of the two registers of the source table (V1 and V2) is taken as an
unsigned 5-digit decimal integer (0to 65,535) ina type 1 expression and converted to
an unsigned 9-digit decimal integer (0 to 655,415,535) (V5).

* V5 =10,000 x V1 + V2

b} The result, V5, is stored inthe two registers of the destination table. The upper 16 bits
are stored in the second register of the destination table and the lower 16 bits of V5 are
stored in the leading register of the destination table.

8 S+1 D+1 D

1st 2nd 2nd 1st

—7-37 —

Data Conversion Instructions

7.2.6 32-BIT CONVERSION (DCST) cont.

¢) Thus, ifthe data in each of the two registers of the source table (V1 and V2) is between
0 and 9,999 in a type 1 expression, it will be converted to an unsigned 8-digit decimal
integer (0t0 99,999,999) in a type 2 expression, and the result willbe stored in the two
registers of the destination table. ' '

Converted from type 1
to type 2 exprassion

—
-

1st 2nd . 2nd 1st
Type 1 Expression Type 2 Expression

d) The data in the registers of the source table does not change.
e) Output 1 is ON as long as input 1 is ON and output 2 remains OFF.

3) The following data conversion will be executed when inputs 1 and 3tum ON and input 2is
OFF. The conversion will be completed in one scan.

a) The data in each of the two registers of the source table (V1 and V2) is taken as a
signed 5-digit decimal integer (-32,767 to 32,767) in a type 1 expression and con-
verted to a signed 10-digit decimal integer (—2,147,483,648 to 2,147,483,647) (V5).

o If V1 2 0, then V5 = 10,000 x IV1| + [V2I
o If V1 < 0, then V5 = (10,000 x IV11 + [V2I)

b} Theresult, V5, is stored inthe two registers of the destination table. The upper 16 bits
are stored in the second register of the destination table and the lower 16 bits of V5 are
stored in the leading register of the destination table,

S S+1 D+1 D

1st 2nd 2nd 1st

c) Thus, if the data in each of the two registers of the source table (V1 and V2) is —9,899
£1=09,999and0 = V2 = 9,999 in a type 1 expression, it will be converted to an
signed 8-digit decimal integer (99,999,999 to 99,999,999) in a type 2 expression,
and the result will be stored in the two registers of the destination table.

Converted from type 1
S S+1 to type 2 expression D+1 D
1st 2nd 2nd 1st
Type 1 Expression Type 2 Expression

d) The data in the registers of the source table does not change.

—7-38 —

7.2 Details of Data Conversion Instructions

e) Output 1is ON as long as input 1 is ON and output 2 remains OFF.

4) Thefollowing data conversion will be executed when inputs 1and 2turn ON and input 3is
OFF. The conversion will be completed in one scan.

a) The data in the two registers of the source table (V5) is taken as an unsigned 9-digit
decimalinteger (0 to 4,294,967,295) in atype 2 expression, it is converted to atype 1
expression, and the result is stored in the two registers of the destination table (V6 and
V7).

b) The following equation is used.
= V5 + 10,000 = V6 with a remainder of V7
¢) The result of the conversion is treated as follows:

(1) 1f V5is 99,999,999 or less, V6 will be stored in the leading register and V7 will be
stored in the second register of the destination table.

Convartad from type 2
S+1 8 to type 1 expression D D+1
2nd 1st st 2nd
Type 2 Expression Type 1 Expression

Output 1 is ON as long as input 1 is ON and output 2 remains OFF.

(2) If VS is greater than 99,999,999, the upper 4 digits of V6 will be stored in the lead-
ing register and V7 will be stored in the second register. The 5th and 6th digits of
V6 will be discarded.

éonverted from type 2 ’ '
to type 1 exprassion D D+1

2nd 1st . . 1st 2nd
Type 2 Expression Type 1 Expression

Outputs 1 and 2 are ON as long as input 1 is ON.
d) The data in the registers of the source table does not change.

5) The following data conversion will bs executed when inputs 1, 2, and 3 turn ON. The con-
version will be completed in one scan.

a) The data inthe two registers of the source table (V5) is taken as a signed 9-digit deci-
mal integer (-2,147,483,64810 2,147,483,647) ina type 2 expression, it is converted
to atype 1 expression, and the result is stored in the two registers of the destination
table (V6 and V7).

—7-39 —

Data Conversion Instructions
7.2.6 32-BIT CONVERSION (DCST) cont.

b) The following equation is used.
¢ V5 + 10,000 = V6 with a remainder of V7
¢) The result of the conversion is treated as follows:

(1) If the absolute value of V5 is 99,999,999 or less, V6 will be stored in the leading
register and the absolute value of V7 will be stored in the second register.

Converted from type 2

S+1 8 fo type 1 expression D D+1
2nd 1st 1st 2nd
Type 2 Expression Type 1 Expression

Output 1 is ON as long as input 1 is ON and output 2 remains OFF.

(2) Ifthe absotute value of V5 is greater than 99,999,999, the upper 4 digits of V6 will
be stored in the leading register (signed) and the absolute value of V7 will be
stored in the second register of the destination table. The 5th and 6th digits of V6

will be discarded.
Converted from type 2
S+1 S to typa 1 expression D D+1
2nd 1st 1st 2nd
Type 2 Expression Type t Expression

Outputs 1 and 2 is ON as long as input 1 remains ON.

d) The data in the registers of the source table does not change.

4. Application Examples

<EXAMFLEp- Example 1:
An unsigned, 8-digit decimal integer in a type 1 expression is converted to a type 2
expression.

1) Ladder Programming

P] 400001 —(
100001 000101
— 400011 |-
DCST
~| #00001

—_—7-40 —

' 7.2 Details of Data Conversion Instructions

2) Conversion Process

a) Before Conversion

Source table (size: 2) Destination table (size: 2)
400001 400002 400012 400011
| 1234] sers] | o |
Ist 2nd 2nd 1st.
Type 1 Expression Type 2 Expression

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Convertsd from type 1 .
to type 2 expression 400012 400011

1st 2nd 2nd 18t
Type 1 Expression Type 2 Expression

(1) The data in the two registers of the source table (V1 and V2) is taken as an un-
sighed 8-digit decimal integer (12,345,678) ina type 1 expression, itis converted
to atype 2 expression, and the result is stored in the two registers of the destina-
tion table.

(2) The data in the registers of the source table does not change.

(3) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

c¢) Thus, the above program section can be usedto convert an unsigned 8-digit decimal
integer in a type 1 expression (0 to 99,999,999) to a type 2 expression.

4EXAMPLEp Example 2:

A signed, 8-digit decimal integer in a type 1 expression is converted to a type 2
expression.

1) Ladder Programming

—-{pl——- 400001 {—(}—

100001 000101
- 400011 -

DCST

#00001

—7-41 —

Data Conversion Instructions
7.2.6 32-BIT CONVERSION (DCST) cont,

2) Conversion Process

a) Before Conversion

Source table (size: 2) Destination table {size: 2)
A
400001 400002 400012 . 400011
[-1234 | s678 | [o |
1st 2nd 2nd 1st
Type 1 Expression Type 2 Expression

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Convertad from type 1

400001 400002 iotype 2 expression 400012 400011
1st 2nd 2nd 1st
Type 1 Expression Type 2 Expression

(1) The data in the two registers of the source table (V1 and V2) is taken as a signed
8-digit decimal integer (~12,345,678) in a type 1 expression, it is converted to a
type 2 expression, and the result is stored in the two registers of the destination
table.

(2) The data in the registers of the source tabie does not change.

(3) The status of the coils is as follows:

Coit 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

c) Thus, the above program section can be used to convert a signed 8-digit decimal inte-
ger in a type 1 expression (—99,999,999 to 99,999,999) to a type 2 expression.

4EXAMPLEp Example 3:
An unsigned, 8-digit decimal integer in a type 2 expression is converted to a type 1
exprassion.

1) Ladder Programming

P 400001 —{
100001 000101
400011 ——

DCST | ooo102
#00001 ,

— 742 —

7.2 Details of Data Conversion Instructions

ﬁ_

2) Conversion Process

a) Before Conversion

Source table (size: 2) Destinaticn table (size: 2)
400002 400001 400011 400012
(12345678 | [0 | 0 |
2nd 1st tst 2nd
Type 2 Expression Type 1 Expression

b) The following data conversion will be performed when input relay 100001 changes
from OFF to Ol_\l. The conversion will be completed in one scan.

Convsrtad from type 2
400002 400001 to type 1 expression 400011 400012

—

2nd 1t ' 1st 2nd
Type 2 Expression Type 1 Expression

(1) The data in the two registers of the source table is taken as an unsigned 8-digit
decimal integer (12,345,678) in a type 2 expression, it is converted to a type 1
expression, and the result is stored in the two registers of the destination table.

(2) The data in the registers of the source table does not change.

(3) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

¢) Thus, the above program section can be used to convert an unsigned 8-digit decimal
- integer in a type 2 expression (0 to 99,999,99?) to a type 1 expression.
]

\
d) Ifthe value of the unsigned integer in the type 2 expression in the two registers of the
source table is greater than 99,999,999, the following processing will be carried out
when input relay 100001 turns ON.

(1} The lower 8 digits of the result is stored in the two registers of the destination
table. The Sth and 10th digits of V6 is discarded.

(2) The data in the registers of the source table does not change,

(3) Coils 000101 and 000102 turns ON only for the scan in which input relay 10001
changed from OFF to ON.

— 743 e

Data Conversion Instructions
7.2.6 32-BIT CONVERSION (DCST) cont.
4EXAMPLEp Example 4:
A signed, 8-digit decimal integer in a type 2 expression is converted to a type 1
expression.

1) Ladder Programming

' P 400001 |——(—

100001 000101

' 400011 ——{ }—

‘ DCST | oo00102
#00001

2) Conversion Process

a) Before Conversion

Source table (size: 2) Destination table (size: 2)
400002 400001 400011 400012
| -12345678 | | 0| o
2nd 1st 1st 2nd
Type 2 Expression Type 1 Expression

b) The following data conversion will be performed when input relay 100001 changes
from OFF to ON. The conversion will be completed in one scan.

Converted from type 2
400002 400001 to type 1 expression 400011 400012
2nd 1st 1st 2nd
Type 2 Expression Type 1 Expression

(1) The data in the two registers of the source table is taken as a signed 8-digit deci-
mal integer (99,999,999 to 99,999,999) in a type 2 expression, it is converted to
atype 1 expression, and the result is stored in the two registers of the destination
table.

(2) The data in the registers of the source table does not change.

(3) The status of the coils is as follows:

Coil 000101: ON only for the scan in which input relay 100001 changed from
OFF to ON

Coil 000102: OFF

¢) Thus, the above program section can be usedto convert a signed 8-digit decimalinte-
ger in a type 2 expression (~99,999,999 {0 99,899,999) to a type 1 expression.

—7-44 —

7.2 Details of Data Conversion Instructions

d) |fthe absolute value of the signed integer inthe type 2 expression in the two registers
of the source table is greaterthan 99,999,999, the following processing will be carried
out when input relay 100001 turns ON.

(1} The lower 8 digits of the result is stored in the two registers of the destination
table. The 9th and 10th digits of V6 is discarded.

(2) The data in the registers of the source table does not change.

(3) Coils 000101 and 000102 turns ON only for the scan in which input relay 10001
changed from OFF to ON.

—7-45 —

Data Conversion Instructions
e . . .]
7.3.1 Storage Locations on Networks :

7.3 Building Programs

This section describes precautions that should be taken when designing circuits that
contain bit manipulation instructions.

7.3.1 Storage LocationsonNetworks oiiiiiiiine, 7-48
732 INPUIS ... e i 7-48
733 OUPUIS ..ottt ettt e et e e e et ee i 7-46

7.3.1 Storage Locations on Networks

Data conversion instructions require three vertical elements on a network, one top ele-
ment, one middle element, and one bottom element. They can thus be stored anywhere
on a 5-row by 10-column matrix (rows 1 through 5 and columns 1 through 10) on the net-
work.

Note Dataconversioninstructions cannot, however, be placed to the right of coils (including output
coils, intemnal coils, link coils, MC coils, and MC control coils).

Example
Column
I 2 3 4 5 6 T 8 g 10 1t
R 1 eoo-C D~} .
100001 QOOOGT - - ome e e e mmmm—mmmemmmmeemnaee ;
2 wovti- ' '
BIN
3 200005

aH

100021 100022 100023 100024 100023 100028 100027 100018 10002%

5 |—leocatf
100041
B 400081
ATOB|
7 #00004

7.3.2 Inputs

Inputs to data conversion instructions can be connected to relay elements (except coils)
and/or outputs from timers, counters, math instructions, data manipulation instructions,
other instructions, etc.

7.3.3 Outputs

Outputs from data conversion instructions can be connected to any of the following: coils,
contacts, inputs to math instructions, inputs to'data manipulation instructions, etc.

—7-46 —

Other Data Manipulation
Instructions

This chapter describes instructions used to manipulate data in various
ways,

8.1 Other Data Manipulation Instructions 82

8.2 Data Setting Instructions Cevesaatas 8-6
821 SETWORDDATA (SDAT)ccuuns.... 8-6
822 SETDOUBLE WORD DATA (SDDT) 8-9
823 BuildingProgramsc00.inn... 8-13
8.3 Data Rearrangement Instructions 8-14
831 LOGICAL BYTE REARRANGEMENT (TWST) 8-14
832 SWAP(SWAP)............. FRTUOUOR 8-18
833 SORT(SORT)oovvivnniiniiinnnnnennn, 8-23
834 BuildingProgramsc0.iiihann, 8-32
8.4 Data Split/Combine Instructions 8-33
841 BYTESPLIT(BYSL) 8-33
84.2 BYTE COMPOSITION (BYCM) 8-37
843 NIBBLESPLIT(NBSL) 8-40
844 NIBBLE COMPOSITION (NBCM) 8-46
84.5 Building Programs 8-51

8.5 Block Addition and Check Calculation

Instructions teteterecaaea . 882
851 BLOCKADD(BADD)0ovvvvninnnnnnnn.. 8-52
852 CHECKSUM(CKSM)oovivininnnnn... 8-56
853 BuildingProgramsco0vhin... L. B2

— 81—

Other Data Manipulation Instructions

8.1

Other Data Manipulation Instructions

This section describes other data manipulation instructions and their functions (besides
those outlined in Chapters 3 to 7).

» The eleven data manipulation instructions are described in the following table.

Table 8.1 Other Data Manipulation Instructions

Name Symbol Function Page
SET.WORD DATA SDAT Word data {16-bit data) is set in a register. 8-6
Execution of the instruction is completed in one
scan. This instruction can be thought of as one
type of data transfer instruction.
Example 1 Setting a constant
Constant |] Source Set " 400011} Destination
Example 2 Setting a holding register data
400001 Set Destination
SET DOUBLE WORD | SDDT | A 32-bit binary integer is set in two consecutive B-9
DATA registers using a type 2 numetic expression.

Execution of the instruction is completed in one
scan. This instruction can be thought of as one
type of data transfer instruction.

Source 1
Source 2

Example Selting a positive integer (1, 234, 567, 890} in holding registers 400012 and 400011 as type

400011

F—

*18,838 x 65,536 + 722 = 1,234,567,890

Each register in the destination table is separated

LOGICAL BYTE TWST 8-14
REARRANGEMENT into upper and lower bytes and then the order of
the bits within each byte is placed in reverse order.
The rearrangement is completed in one scan.
Example
Destination table (size: 5) Rearranged Destination table (size: 5)
400001 ist — 400001] 1st
400002 2nd — 400002 | 2nd
400003 3d —= 400003} 1ard
400004 4th —= 400004 1 4th
400005 o 5th — 400005 500 1 5th
{Upper byte) (Lower byte) {Upper byte) (Lower byta)

—82—

8.1 Other Data Manipulation Instructions

m

Name Symbol Function Page

SWAP SWAP | Each register in the source table is separated into | 8-18
upper and lower bytes and then the order of the
bytes is reversed and stored in the corresponding
register of the destination table. The
rearrangement is completed in one sean.

Example
Bytas reversed
— 400011 £
— 400012 .
Source table Destination tabls
(size: 5) —_— 400013 {size: 5)
_— 400014
—— 400015
Hexadecimal notation Hexadecimal notation
SORT SORT | The data in each register of the source tabie or of | 8-23

the dastination table is treated as 16-bit binary data
(0 to 65,535), the data is sorted into ascending or
descending order, and then the sorted result is
stored. The sort is completed in one scan.,

Example Rearmranging the source table data in descending order,

Sorted
400001 15t 400011
400002 2nd 400012 _
fs?;;?g)“b"’ 400003 3nd 400013 pestination
400004 4th 400014 4th (size: 5)
400005 |:2000:] Sth 400015 5th
BYTE SPLIT BYSL | The data (word data) in each register of the source [8-33
table is split into bytes and then the bytes are
stored in the two registers of the corresponding
block in the destination tabls, The split is
completed in one scan.
Example Word data
splitinto
byt data pevg 3
~——___, Block [4o00011] oogt | 1t
Source table 1 400012| 0023 | 2nd
(size: 4) \ Block | 400013(0045 | 1st
= \ 2 400014 | 00&7 | 2nd \. Destination
Hexadecimalnotation\ Block _| 400015| 0088 | 1st (table (size: 8)
3 400016 | 00AR | 2nd
Block _§ 400017 00ED | 1st
4 400018| OOEF | 2nd

Hexadecimal notation

—83—

Other Data Manipulation Insiructions

Name Symbol ~ Function : Page
BYTE COMPOSITION [BYCM | The data in the lower bytes of the two registersin | 8-37
each block in the source table is combined into
word data and the data is stored in the
corresponding register in the destination table.
Execution is complsted in one scan.
Example Byte daia
combined into
wond data
(" 400001 1st | Block __—— 400011 118t
400002 2nd 1 " 400012 q 2nd Destination table
400003 1st |_Block / 400013 Jorg [(sizecd)
Source table 400004 2nd 2 400014 [EBEE] ath
(siza: 8) 400005 tst | Block / Hexadecimal notation
400006 2nd 3 :
400007 1st Block
\ 400008 | gopg | 2nd 4
) Hexadecimal notation
NIBBLE SPLIT NBSL The data word data for each register or 18 8-40
. coils/relays of the source table is split into four :
nibbles {4-bit data) and then the nibbles are stored
in the four registers of the corresponding block in
the destination table. The split is completed in one
scan.
Example Word data
splitinto
Source [400001 ribbie data 400011 [000 | 15t)
2 H s
—_——— e
table {400002 Block J 400012 000% | 2nd
{size: 2) o
Hexadecimal notaticn 1 400013 ""—""om { 3
exacecim 400014 | 000£ | 4th \, Dastination table|
400015{ 00C% | 1st (size: 8)
Block J 400016 000€ | 2nd
2 400017 | 0007 | 3rd
400018 | 000# | 4th)
Hexadecimal notation
NIBBLE NBCM | The data in the lower four bits (nibbles} of the four | 8-46
COMPOSITICN registers in each block in the source table is
combined into word data and the data is stored in
the corresponding register or 16 coils/relays in the
destination table. Execution is completed in one
scan.
Example Nibble data
combined into
{ 400001 £ | 1st word data 400011 1st | Destination table
400002 2nd Block 400012 | 2nd | (size: 2)
1
400003 8rd Hexadecimal notation
Source < 400004 4th
table 400005 5 | 1st
(si26:8) | 400006 | 000 |2nd |, Block
400007 7 |3 2
\ 400008 8 | ath
Hexadecimal notation

-

8.1 Other Data Manipulation Instructions

ﬁ“

Name Symbol Function Page
BLOCK ADD BADD | The data in registers of the source table is added 8-52
by word or by byte in unsigned addition and the
result is stored in the two registers of the
destination table. Execution is completed in one
scan.
Example Word adding
Sum is stored.
400001 1st 400011 1st } Destination table
: 400012 2nd | (size: 2)
Source table | 490002 2nd /' (size: 2]
(size: 5) 400003 8rd Decimal notation
400004 4th
400005 S0 Sth
Decimal notation Sum = 10000 + 20000 + 30000 + 40000 + 50000 = 150000 _
CHECKSUM CKSM | Straight check calculation, binary calculation, 8-56

CRC-16 (cyclic redundancy check) calculation, or
LRC (longitudinal redundancy check) calculation is
performed for the data in the source table,

in the lower byte of the leadin
upper byte,

Source table (size: 3)

Destination table (size: 2)-{

Example For the straight check calculation

400001
400002
400003

400100
400101

» the operation block data is added by byte and the result is stored
g register of the destination table. “00* (hexadecimal) is stored in the

Upper byte

Lower byte

Opsration block (size: 2)

0000 0000 | 0000 0000 |

Sum of bytes 1,2, 3, and 4
is sorted in lower byts,

‘2 is stored as the opera-
tion block size.

0000 0000

— 85—

Other Data Manipulation Instructions
8.2.1 SET WORD DATA (SDAT)

8.2 Data Setting Instructions

This section describes the functions, structures, and operations of the data setting
instructions and provides simple examples of their application.

821 SETWORDDATA(SDAT) ...oviiiiiiiiiiiii it iiieennaeneanes 8-6
8.2.2 SETDOUBLEWORDDATA(SDDT)coiviiiiiiiiiiinnn 8-9
8.2.3 BuildingPrograms PR 8-13

8.2.1 SET WORD DATA (SDAT)

1. Function

Word data (16-bit data) is set in a register. Execution of the instruction is compieted in one
scan. This instruction can be thought of as one type of data transfer instruction.

Constant 5] Source Set = 400011 Destination
Set -~
400001 Source » 400011 [=33768] Destination
2. Structure
ON: Datais set. Inputi — Source (S) |— Output 1: Echoes state of input 1.
SDAT
Destination {D)

1) SDAT is the symbol for SET WORD DATA.

2) SDAT requires two elements, one top element and one bottomn element, located vertically
" on the network. Refer to Table 8.2 for details on specifying constants or registers for
these elements.

Example
Input1 — #B5535 [— Output1 #65535: Constant (65,535)
400011. Reference number of the destination
SDAT
400011
Input1 — 400001 ~— Qutput1 400001: Reference number of the source
400011: Reference numbar of the destination
SDAT
480011

—8-6—

8.2 Data Setting Instructions

m“

Table 8.2 Structural Elements of SDAT

Element

Meaning

Possible Settings

Top (8} |Reference number of source

Constant: #00000 to #65535

Input register:” 300001 to 300512
(Z00001 to Z00512)

Holding register: 400001 to 409999
(W00001 1o Woggg9)

Constant register: 700001 to 704096
(K00001 to K04096)

Link register: R10001 to R11024 or
R20001 to R21024

)

Bottom Referance number of destination

Holding register: 400001 to 409999
(W00001 to W09999)

Link register: R10001 to R11024 or
R20001 to R21024

3. Operation

1) Status Befors Execution

8 [-a2res | Source

D E Dastination

2) The following data transfer will be executed when input 1 turns ON.,

fo
Source Transfer

| Destination

a) The word data in the source is transferred fo the destination.

b) The data in the source does not change.

c) Output 1is ON as long as input 1 is ON.

4. Application Examples

4EXAMPLEp Example 1

Data is transfgrred from a constant.

1) Ladder Programming

Pl

100001

#65535 ____()_
000101

SDAT

400011

— 87—

Other Data Manipulation Instructions :
8.2.1 SET WORD DATA (SDAT) cont.

2) Operation

a) Before Execution

Constant|_65535 | Source 400011 {___ 0] Destination

b) The following data transfer will be performed when input relay 100001 changes from
OFF to ON. The transfer will be completed in one scan.

Transfer

= 400011 &1 Destination

Constant

(1) The constant specified as the source (65,535) is transferred to the destination.

(2) Coil 000101 tumns ON only forthe scan in whichinput relay 100001 changed from
OFF to ON. ,

AEXAMPLEp Example 2
Data is transferred from a holding register.

1} Ladder Programming

Pl_ 400001 ______()___

100001 000101
SDAT
400011

2) Operation

a) Before Execution

400001 Source 400011 Destination

. b) The following data transfer will be performed when input relay 100001 changes from
OFF to ON. The transfer will be completed in one scan.

Transfer _
Destination

» 400011

400001

(1) The source data is transferred to the destination.

—8-8—

8.2 Data Setting Instructions

H—

(2) The source data does not change.

(3) Coil 000101 turns ON only for the scan in which input relay 100001 changed from
OFF to ON.

8.2.2 SET DOUBLE WORD DATA (SDDT)

1. Function

A 32-bit binary integer is set in two consecutive registers using a type 2 numeric expression.
Execution of the instruction is completed in one scan. This instruction can be thought of as
one type of data transfer instruction.

Constant

| Source 1 400012 400011
Constant

; Sot
.: Source 2 \

*18,838 x 65,536 + 722 = 1,234,567,890

2. Structure

ON: Datais set, tnput 1 —| Source 1 (S1) [— Output 1: Echoes state of input 1.

Source 2 (S2)

sDDT

Destination
table (D)

1) SDDT is the symbol for SET DOUBLE WORD DATA.

2) SDDT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 8.3 for details on specifying
constants or registers for these alements.

Example
Input1 — #18838 |— Output 1 #18838: Constant (18,838)
Upper 16 bits of 32-bit data
#00722 #00722: Constant (722)
SDDT Lowar 16 bits of 32-bit data, -
400011 400011: Leading reference number of the destination
table (size: 2)

— 89

Other Data Manipulation Instructions
8.2.2 SETDOUBLE WORD DATA (SDDT) cont.

Table 8.3 Structural Elements of SDDT

Elerment Meaning Possible Settings
Top (51) | Specify the upper 16 bits of the 32-bit Constant; #00000 to #65535
data between 0 and 65,535.
Middle | Specify the lower 16 bits of the 32-bit data
{52) between 0 and 65,535.
Bottom |Leading reference number of destination | Holding register: 400001 to 409998
(D) table. The 32-bit data is set as follows - ' (W00001 to W09998)
{table size fixed at 2):)
Link register: R10001 to R11023 or
D+1 Upper 16 bits st R20001 to R21023
D Lower 16 bits 2nd

3) The values for S1 and S2 to store as source 1 and source 2 to set for a 32-bit integer V in
registers D and D+1 can be calculated as follows:

a) fvz0,
V + 65,5636 = S§1 with a remainder of S2
Example: If V = 1,234,567,890,

V + 65,536 = 18,838 with a remainder of 722.
Thus S1 =18,838 and 82 =722

b) V<0,
14294967296 + V| + 65,5636 = S1 with a remainder of S2
Example: If V = —1,234,567,890,

14294967296 + V| + 65,536 = 46,697 with a remainder of 64,814.
Thus S1 = 46,697 and S2 = 64,814

3. Operation
1) Status Before Execution

(=]

2nd Destination table
1st (size: 2)

S1 | 18838] Source 1 - D#1
S2 722| Source 2 D

(=]

2) The following data transfer will be executed when input 1 turns ON.

. Transfer e
St Source 1 ———— D+t | {2nd Destination table
s2 | Source2 — = D 11st (size: 2)
As 32-bit data:

18,838 x 65,536 + 722 = 1,234,567 890

D+1 D

—8-10 —

) 8.2 Data Setting Instructions

&) The data in source 1 and 2 is transferred to the first and second registers in the des-
tination table.

b} Thus, 32-bit data is stored in the two consecutive registers of the destination table by
storing the upper 16 bits of the 32-bit data in source 1 and the lower 16 bits in source 2,

¢) Output 1 is ON as long as input 1 is ON.

4. Application Examples

AEXAMPLEp Example 1
Unsigned 32-bit data is set.

1) Ladder Programming

100001 | poo70n | 000101

SDDT
400011

2) Operation

a) Before Execution

o

Constant | 18838| Source 1 400012
Constant 722| Source 2 400011

2nd Destination table
1st (size: 2)

[=]

b) The following data transfer will be performed when input relay 100001 changes from
OFF to ON. The transfer will be completed in one scan.

v Transfer
] Source 1 ~————m 40001

Source 2 ————m 400011

Constant
Constant

2nd Destination
1st table (size; 2)

As 32-bit data:
18,838 X 65,536 + 722 = 1,234,567,850

400012 400011

(1) Thedatain source 1 andsource 2is transferred to the first and second registersin
the destination table.

(2) The 32-bit data (1,234,567,890) is thus set in holding registers 400012 and
400011.

- 8-11 —

Other Data Manipulation Instructions
8.2.2 SET DOUBLE WORD DATA (SDDT) coni.

(3) Coil 000101 turns ON only for the scan in which input relay 100001 changed from
OFF to ON.

4EXAMPLEp Example 2
Signed 32-bit data is set.

1) Ladder Programming

PI_ #46697 ____(}_

100001 | gag1g | 000101

SDDT
400011

2) Operation

a) Before Execution

o

2nd Destination table
1st (size: 2)

Constant | 46697 | Source 1 400012
Constant | 64814 | Source 2 400011

(=}

b) The following data transfer will be performed when input relay 100001 changes from
OFF to ON. The transfer will be completed in one scan.

. Transfer P
Source 1 —— 40001

Source 2 ——m—tm 40001

g712nd | Destination
{ 1st table (size: 2)

Constant
Constant [

As 32-bit data:
46,697 x 65.536 + 84,814 — 4,294,967,296 = ~1,234,567,890

400012 " 400011

(1) Thedatain source 1 andsource 2 is transferred to the firstand second registersin
the destination table.

(2) The 32-bit data (~1,234,567,890) is thus set in holding registers 400012 and
400011.

(8) Coil 000101 tums ON only for the scan in which input relay 100001 changed from
OFF to ON.

—8-12 —

8.2 Data Setting Instructions

8.2.3 Building Programs

1.

Storage Locations on Networks

A. SET WORD DATA

SET WORD DATA instructions require two elements (top and bottom) located vertically
onthe network, so they can be stored anywhere on a 6-row by 10-column matrix {rows 1
through 6 and columns 1 through 10). T

SET DOUBLE WORD DATA

SET DOUBLE WORD DATA instructions require three vertical elements on a network,
one top element, one middle element, and one bottom element. They canthus be stored
anywhere on a 5-row by 10-column matrix (rows 1 through 5 and columns 1 through 10)
on the network. :

Note SET WORD DATA and SET DOUBLE WORD DATA instructions cannot, however, be placed
to the right of coils (inciuding output coils, intemal coils, link coils, MC coils, and MC control

coils).
Example
Column
1
Row 1 —jessss
E;IWO‘I
2
SH B e >
100021 100022 100023 100024 100025 100026 to002T 100028 100028 SDAT! 00003
4 400083
5 o]
100041 100042
6 l#00722
DT
7 400004
2. Inputs .

Inputs to SET WORD DATA and SET DOUBLE WORD DATA instructions can be con-
nected to relay elements (except coils) and/or outputs from timers, counters, math
instructions, data manipulation instructions, other instructions, etc.

3. Outputs

Outputs from SET WORD DATA and SET DOUBLE WORD DATA instructions can be
connected to any of the following: coils, contacts, inputs to math instructions, inputs to
data manipulation instructions, etc.

—8-13 —

Other Data Manipulation Instructions
8.3.1 LOGICAL BYTE REARRANGEMENT (TWST)

8.3 Data Rearrangement Instructions

This section describes the function, structures, and operation of the data rearrangement
instructions and provides simple examples of their application.

8.3.1 LOGICAL BYTE REARRANGEMENT (TWST) 8-14

. 832 SWAP(SWAP) ... e e 8-18
833 SORT(SORT) ..cvviiiiiiiii ittt e i i aaanenas 8-23
834 BuldingPrograms e e e 8-32

8.3.1 LOGICAL BYTE REARRANGEMENT (TWST)

1. Function

Each register in the destination table is separated into upper and lower bytes and then the
order of the bits within each byte is placed in reverse order. The rearrangement is completed
in one scan.

Destination table (size: 5) Destination table (size: 5)

Reamanged
400001 18t —e 400001 f st
400002 2nd — 400002} 2nd
400003 ard —» 400003 rd
400004 4th — 400004 th
400005 |£00Y B0 sth —% 400005 FRING ¥ A0 400 Sth

(Upper byta) (Lower byts) (Upper byte) (Lower byte)

2. Structure

ON: Datareatrangad. Input1 —| Destination |— Output 1: Echoss siate of input 1.
table (D}

TWST

Table size (2)

1) TWST is the symbol for LOGICAL BYTE REARRANGEMENT.

2) TWST requires two elements, one top element and one bottom element, located verti-
cally onthe network. Referto Table 8.4for details on specifying constants or registers for
these elements.

Example
Input1 — 400001 |— OQuiputi 400001: Leading referance number of the destination
table '
#00005: Constant (5)
TWST
#00005

- =814 —

8.3 Data Rearrangement Instructions

Table 8.4 Structural Elements of TWST

Element Meaning Possible Settings
Top (D) | Leading reference number in destination | Holding register: 400001 to 409999
table (W00001 to W09999)
Link register: R10001 to R11024 or
R20001 to R21024
Bottom | Size of destination table Constant: #00001 to #00100
04}

3. Operation

1) Status Before Execution

Destination table {size: Z)

D[0001 0010,0011 0100 | 1st
)

D+n—=1] 1001 1010' 1011 1100 | nth

D+Z-1] 0001 00100011 0100 | Zth
(Upper byte) (Lower byte)

2) The following data rearrangement will be executed when input 1 tums ON. The rear-
rangement will be completed in one scan.

Destination tabla (size: Z) Destination table (size: Z)

Rearranged
D op 1st —e D 1st
—-—. .
D+n—1 nth — Din—1 nth
—_—
D+2~1 L0306 Zth —» D+Z-1[0 000 G| Zth
(Upper byte} (Lower byts) (Upper byte) (Lower byts)

a) Eachregistern (n = 1 to Z) in the destination table is separated into upper and lower
bytes and then the order of the bits within each byte is placed in reverse order as
shown in the following illustration.

Order of bits in upper byte is reversed.

’ ||l| ﬂul

D+n—1 | 1001 1010 1011 1100 | nth D+n-1 | 0101 100170011 1101 | nth

L 4 i

Order of bits in lower byts is reversad,

—8-15—

Other Data Manipulation Instructions
8.3.1 LOGICAL BYTE REARRANGEMENT (TWST) cont.

b) Output 1is ON as long as input 1 is ON.

4. Application Examples

<4EXAMPLEp Example 1

1) Ladder Programming

P '_ 400001

100001

TWST
#00005

000101

2) Operation

a) Before Execution

Destination table (size: 5}

400001 | 0001 0010, 0011

0100 | 1st

400002 | 0101 0110 0111

1000 | 2nd

400003 [1001 1010 ' 1011

1100 | 3rd

400004 [1101 1110+ 1111

0000 | 4th

400005 | 0001 0010, 0011

0100 | 5th

(Upper byts) (Lower byte}

b) The following data rearrangement will be performed when input relay 100001
changes from OFF to ON. The rearrangement will be completed in one scan.

Destination table (size: 5)

Rearranged
400001 fi4 1 1st —= 400001
400002 2nd —= 400002
400003 3rd —= 400003
400004 4th —= 400004
400005 5th — 400005 [

“(Jpper byte) (Lower bﬂrté)

—8-16 —

Destination tabie (size: 5)

I'(i!pperkﬁs.fté) (LSwer bvie) |

. 8.3 Data Rearrangement Instructions

(1} Each register n (n = 1 to 5) in the destination table is separated into upper and
lower bytes and then the order of the bits within each byte is placed in reverse
order. The following illustration shows how the bits is rearranged for the third reg-
ister.

Order of bits in upper byte is reversed.

g =l

400003[1001 10101011 1100 | 3rd 400003 [0101_1001:0011 11071 | 3nd

L= =]

Order of bits in lower byte is reversed.
(2} Coil 000101 turns ON only for the scan in which input relay 100001 changed from
ON to OFF. ~

4EXAMPLEp Example 2

GL130 (Master) GL120 {Slave)

AN 00001 (= | yeyosys

100001 000101

400005 ——(}»—
COMM | ooo102

——|P|— 40001t —— }—

100002 000103

400011

Status of coil 000001 to coil
000016 is stored as shown in -— —()— """ —()_
step 2) below. Status of coils read Q00001 ocoo1e

1) AGL130PLC and a GL120 PLC are cc;nnected via MEMOBUS as in the above illustra-
tion.

2) The programin the GL130 uses the COMM instructionto read the status of coil 000001to
coil 000016 of the GL120 and store the results in holding register 400011, as shown inthe
following illustration. The COMM instruction is used in the automatic MEMOBUS mode.

BitNe. 1 8 9 16
= > —{ | — »
400011 | status of [~ status of | Statusof | Status of
000008 000001 | oooo16 0000089
MSB LSB

— 817 —

Other Data Manipulation Instructions
8.3,2 SWAP (SWAF)

3) TWST can be used as shown below to rearrange the contents of holding register 400011
to the order required by data transfer, matrix, and other instructions.

P’_ 400011 |
000103
TWST
#00001
BitNo. 1 8 -] i6
~ - R ~« -
400011 | gtatys of — | Status of | Statusof || Status of
000001 000008 000009 0000186
MSB LSB

8.3.2 SWAP (SWAP)

1. Function

Each register in the source table is separated into upper and lower bytes and then the order of
the bytes is reversed and stored in the corresponding register of the destination table. The
rearrangement is completed in one scan.

Example
Bytes reversed
400001 —_— 400011
00002 —_— 400012 L
Sourcs table 4 Destination table
(size: 5) 400003 —— 400013 {size! 5)
400004 _— 400014
400005 _— 400015
(Hexadecimal notation) {Hexadecimal notation)

2. Structure

ON: Upperandiow- Input 1 — Source table (S) — Qutput 1: Echoes stats of input 1
or bytes are re-
versed.

Destination
table {D)

SWAP

Table size (Z)

—8-18 —

8.3 Data Rearrangement Instructions

1) SWAP is the symbol for SWAP.

2) SWAP requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 8.5 for details on specifying
constants or registers for these slements. ‘

Example
Input1 — 400001 [~ Output { 400001: Leading refarence number of the source
table

400011 400011: Leading reference number of the destination
SWAP #00005:; tgfleta t(5

#00005 + Constant (5)

Table 8.5 Structural Elements of SWAP

Element Meaning Possible Settings

Top (S) |Leading reference number in source table Input register: 300001 to 300512
(200001 to Z00512)

Holding register: 400001 to 409999
(WO00001 to W09999)

Constant register: 700001 to 704096
(K00001 to K040986)

Link register: R10001 to R11024 or
R20001 to R21024

Middle Leading reference number in destination | Holding register: 400001 to 409999

(D) 1able {(WO00001 to W09999)
Link register: R10001 to R11024 or
R20001 to R21024
Bottom | Size of source and destination tables Constant: #00001 to #00100
(£) -

3. Operation

1) Status Before Execution

s [ot2z | 1a D 0000 |1st

Source table Destination table
(size: 2) S+n=1 | 8948 | nth D+n—1] 0000 |nth (size: Z)

S+Z-1| 1234 | Zth D+Z-1 | G000 |Zth

(Hexadecimal notation) {Hexadecimal notation)

—8-19 —

Other Data Manipulation Instructions

8.3.2 SWAP (SWAP) cont.
2) The following data rearrangement will be executed when input 1 turns ON. The rear-
rangement will be completed in one scan.
Bytes reversed
s st ——e D
So tab Destination table
urca table —
(size: 2) S+n-1 nth ———e Den-d (size: 2)
—
S+7~1 Zth ——e D+Z4
{Hexadecimal notation) (Hexadecimal notation)

a) Eachregistern (n=1to Z)inthe sourcetable is separated into upper and lower bytes
andthenthe order of the bytes is reversed and stored in nth register of the destination
table.

b) The data in the source table does not changed.

c) Output 1 is ON as long as input 1 is ON.

4. Application Examples

4EXAMPLEp Example 1

1) Ladder Programming

=] I_ 400001 __()_
100001 : 000101
SWAP
#00005
2) Operation
a) Before Execution
400001 [0123 | 1st 400011 [0000 |1st
400002 | 4567 | 2nd 400012 | 0000 |2nd
So tabl inati
(Si;;?g) ® < 400003 { 89AB | 3rd 400013 | 0000 | 3rd g?::”;“" table
400004 | CDEF | 4th 400014 | 0000 |4th
400005 | 1234 | 5th 400015 | 0000 |5th
(Hexadecimal notation} {Hexadecimal notation)

- 8-20 —

: 8.3 Data Rearrangement Instructions

b) The following data rearrangement will bé performed when input relay 100001
changes from OFF to ON. The rearrangement will be completed in one scan.

Bytes roversed

400001 1st — 400011

400002 2nd —_— 400012
S bl Destination
iz 8) < 400003 31— 400013 (s?:;";'c’" able

400004 F: 4th —— 400014

400005 | #{ 5th — 400015 | 345

(Hexadecimal notation) (Hexadecimal notation)

(1) Eachregister n (n =110 5) in the source table is separated into upper and lower
bytes and then the order of the bytes is reversed and stored in nth register of the
destination table.

(2) The data in the source table does not changed.

(3} Coil 000101 turns ON only for the scan in which input relay 100001 changed from
ON to OFF. '

4EXAMPLEp Example 2

1) Ladder Programming

P— o000t 400001 [400011

100001
400001 | | 400011 | | TWST
BLKM SWAP #00001
#00001 #00001

- 8-21 —

Other Data Manipulation Instructions
8.3.2 SWAP (SWAP) cont.

2) When input relay 100001 turns ON, the status of coil 000001 to coil 000016 will be stored
in holding register 400011 in the order 000016 to 000001.

~ A r|A |0~
000001 000008 | 00000 000016
l BLKM
BitNo. 1 8 9 16
~ ~ |+ ~ >
400001 } gratys of || Status of | Status of || Status of
000001 000008 | 000009 000016
MSB LSB
l SWAP
BitNo. 1 8 9 16
~ - « |- ~
400011 | giatys of |—| Statusof | Statusof |~ Status of
000009 000016 000001 00008
MSB LSB
TWST
/
BitNo. 1] 9 16
—{ > ~{ 1 r — r
400011 | status of | = | Statusof | Status of |] Status of
000016 000009 | 000008 000001
MSB LSB

-_— 8.22 —_—

8.3 Data Rearrangement Instructions

8.3.3 SORT (SORT)

1. Function

The data in each register of the source table or of the destination table is treated as 16-bit
binary data (0to 65,535), the data is sorted into ascending or descending order, and then the
sorted result is stored. The sort is completed in one scan.

Sorted
400001 1st 400011
400002 2nd 400012 S
S tabi
(siz6: 5) ble & 400003 3rd 400013 ?;;;";m" teble
400004 ath 400014
400005 5th 400015 |
2. Structure
ON: Data sorted. Input 1 — Source table (S} — Output 1: Echoes state of input 1,
ON: Descending Input2 — Destination — Output2: ON when a sort efror occurs,
OFF: Ascanding table (D)
SORT
ON: Sortdastination Input3 — Table size ()
table data -
OFF: Sort source
table data

1) SORT is the symbol for SORT,

2) SORT requires three elements, one top element, one middle element, and one bottom
element, located vertically on the network. Refer to Table 8.6 for details on specifying
constants or registers for these elements. :

Example
Input1 — 400001 |— Output 1 400001: Leading refarence number of the source table
400011; Leading reference number of the destination
Input2 —{ 400011 |— Qutput2 table
SORT #00005: Constant (5}
Input3 —{ #00005

— 823 —

Other Data Manipulation Instructions
8.3.3 SORT (SORT) cont. '

Table 8.6 Structural Elements of SORT

Element Meaning Possible Settings

Top (S) |Leading reference number in source table | Input register: 300001 to 300512
(Z00001 to 200512)

Holding register: 400001 to 409999
(W00001 to W09998)

Constant register: 700001 to 704096
(KG0001 to K04098)

Link register: R10001 to R11024 or
r * R20001 to R21024

Middle Leading reference number in destination | Holding register: 400001 to 408999

(D} table (W00001 to W08999)
Link register: R10001 to R11024 or
R20001 to R21024
Bottom | Size of source and destination tables Constant: #00001 to #00100
{Z)

3. Operation
1) Status Before Execution

S 10000 § 1st D 60000 | 1st
5000 1000 .
Source table Sen—1] 50000 | nth D+n—1 | 20000 | nth Dgsu_natlon table
(size: Z} {size; Z}
100 8000

8+Z-1|_7000] Zth D+Z-1 10 | Zth

IMPORTANT | Thefollowingdescriptionfor items 2 to 5 assume that the source and destination tables do not
overiap.

2) Sorting Source Table Data in Ascending Order

a) Whenonly input 1 turns ON, the data in each register of the source table will be treated
as 16-bit binary data (0 to 65,535), the data will be sorted into ascending order, and
then the sorted result will be stored in the destination table. The sort willbe completed
in one scan. '

b) The data in the source table does not change.

c) Output 1 is ON as long as input 1 is ON and output 2 remains OFF.

Sortad in ascending order

Destination table
(size: Z}

Source table
(siza: Z) S+n—1

S+Z7-1

: 8.3 Data Rearrangement Instructions

3) Sorting Source Table Data in Descending Order

a) When inputs 1 and 2 turn ON and input 3 turns OFF, the data in each register of the
source table will be treated as 16-bit binary data (0 to 65,535), the data will be sorted
into descending order, and then the sorted result willbe stored in the destinationtable.
The sort will be completed in one scan.

b) The data in the source table does not change.

¢) Output 1 is ON as long as input 1 is ON and output 2 remains OFF.

Sorted in descending order

S D
Source table Destination table
(size: 2) et D+n-1 (size: 2)

S+Z-1 D4+Z-1

4) Sorting Destination Table Data in Ascending Order

a) When inputs 1 and 3 turn ON and input 2 turns OFF, the data in each register of the
destination table will be treated as 16-bit binary data (0 to 65,535), the data will be
sorted into ascending order, and then the sorted result will be stored in the destination
table. The sort will be completed in one scan.

b) The data in the registers of the source table is also reordered in the same way as the
registers inthe destination table, i.e., datain corresponding registers moves together
with the registers of the destination table. .

c) Output 1 is ON as long as input 1 is ON and output 2 remains OFF,

Reordered together with Sorited in ascending order
destination table _
s : (b}
Source table 1 Destination table
(size: Z) Sen-1 D (size: 2)
S+Z-1 i D+2-1

5) Sorting Destination Table Data in Descending Order

a) When inputs 1,2, and 3 turn ON, the data in each register of the destination table will
be treated as 16-bit binary data (0 to 65,535), the data will be sorted into descending

order, and then the sorted result will be stored in the destination table. The sort will be
completed in one scan.

b) The data in the registers of the source table is also reordered in the same way as the
registers inthe destination table, i.e., datain corresponding registers moves together
with the registers of the destination table.

—8-25—

Other Data Manipulation Instructions

8.3.3 SORT (SORT) cont.
c) Output 1 is ON as long as input 1 is ON and output 2 remains OFF.
Reordered together with Sorted in descending order
destination table
s HHebog 1st D
(Ss?:a rc;)table Sen—t nth Den—1 g?zs::nza;lon table
S+Z-1 | Zth D+Z-1
6) Sorting Overlapping Source and Destination Tables
a} Ifinput 3 is OFF and input 1 turns ON, the data in each register of the source table will
be treated as 16-bit binary data (0 to 65,535), the data will be sorted into descending
or ascending order, and then the sorted result will be stored in the destination table.
The data in the registers in the source table that overlap with the destination table will
change after the sort has been completed, as shown in the following example.
(1) Before Execution: 400005 is in Both Tables
400001 | 10000 | 1st 400005 [7000 [1st
400002 | 5000 | 2nd 400006 | 1000 | 2nd o
ey < 400003 50000 | 3o 400007 [2000031 ¢~ (o)
400004 | 100 | 4th 400008 | 8000 | 4th
400005 | 7000 | 5th 400009 10 ! 5th
(2) Wheninput 1 tumns ON, the data in the source tables will be placed in ascending
order in the destination table. The data in holding register 400005 of the source
table will be 100 as the result of the sort.
400001 | 10000 | 1st 400005 | 100 | 1st
400002 | 5000 | 2nd 400006 | 5000 | 2nd o
f;;‘;?g)‘ab'e' 400002 [50000 | 3rd 400007 |_7000 | 3rd g?;::";m" tabla
400004 § 100 | 4th 400008 |_10000 | 4th
400005 : 400009 { 50000 | 5th

b) Ifinput 3 is ON, the sort will not be executed even if input 1 turns ON. The data in the
source and destination tables will not change and outputs 1 and 2 are ON as long as
input 1 is ON.

7) The operation of SORT is outlined in the following table.

— 8-26 —

8.3 Data Rearrangement Instructions

Table 8.7 Operation of SORT

Inputs Conditions Operation Outputs
1 2 2 ’ 1 2
ON [OFF {OFF | Source and 1} Source table data is sorted in ascending (ON |[OFF
destination order and stored in the destination table.
tables do not
overlap.

2) Source table data does not change.

ON 1) Source table data is sorted in descending
order and stored in the destination table.

2) Source table data does not change.

CFF Source and | 1) Source table data is sorted in ascending .
destination order and stored in the destination table.
tables
overlap,

2) Source table data changes for all registers
that are aiso patt of the destination table.

ON 1) Source table data is sorted in descending

order and stored in the destination table.

2) Source table data changes for all registers
that are also part of the destination table.
OFF {ON [Source and [1) Destination table data is sorted In

destination ascending order and stored in the
tables do not destination table.
overlap,

2) Data in the sort table moves tbgether with
the registers of the destination table.

ON 1) Destination table data is sorted in

descending order and stored in the

destination table.

2) Data in the sort table moves together with
the registers of the destination table.

Any Source and [1) Nothing is sorted (sort error), ON
destination
Lﬁ'ﬁ: 2) Source table and destination table data
P- does not change.
OFF |Any | Any |None 1} Nothing is sorted. OFF | OFF

2) Source table and destination table data
doss not change.

—827—

Other Data Manipulation Instructions
8.3.3 SORT (SORT) cont.

4. Application Examples

AEXAMPLEp Example 1

1) Ladder Programming

P

100001

2) Operation

Source table data is sorted in ascending order.

a) Before Execution

400001
Source table 400002
(size: 5) 400003
400004
400005

400001 —{)}
000101
400011 |—{
SORT | oo0102
#00005
10000 | 1st 400011
5000 | 2nd 400012
50000 | 3rd 400013
100 | 4th 400014
7000 | 5th 400015

60000 | 1st
1000 { 2nd Destination table
20000 | 3rd {size: 5)
8000 | 4th
10 | Sth

b) Data will be sorted as shown below when input relay 100001 changes from OFF to
ON. The sort will be completed in one scan.

400001
Source table 400002
(size: 5) 400003
400004

400005

Sorted in ascending order

400011
400012
400013
400014
400015

Destination table
(size: 5)

(1) The data in each register of the source table is treated as 16-bit binary data (0 to
65,535), the data is sorted into ascending order, and then the sorted result is
stored in the destination table.

{2) The data in the source table does not change.

(3) Coil 000101 turns ON only for the scan in which input relay 100001 changed from
OFF to ON. Coil 000102 remains OFF.

—8§-28 —

8.3 Data Rearrangement Instructions

4EXAMPLEp Example 2
Source table data is sorted in descending order.

1) Ladder Programming

P 400001 ——)}—
100001 _ oootot1
400011 }——)}—

SORT | o010z
#00005

2) Operation

a) Before Execution

400001 [10000] 1st 400011 | 60000] 15t

400002 | 5000 | 2nd 400012 | 1000 | 2n .
Source tabl Destination tabl
(size: 8 < 400003 50000 | ard 400013 [20000 |3rd = (7SO 0

400004 | 100 | 4th 400014 [80001 4th

400005 | 7000] 5th 400015 __10]5th

b) Data will be sorted as shown below when input relay 100001 changes from OFF to
ON. The sort will be completed in one scan.

Sorted in descending order

400001 E i 1st 400011 [
Source table 400002 2nd 400012 Dastination table
(size: 5) . 400003 3rd 400013 (size: 5)

400004 4th 400014

400005 34 5th 400015

(1) The data in each register of the source table is treated as 16-bit binary data (O to
65,535), the data is sorted into descending order, and then the sorted resut is
stored in the destination table.

(2) The data in the source table does not changs.

(3) Coil 000101 turns ON only for the scan in which input relay 100001 changed from
OFF to ON. Coil 000102 remains OFF.

—8-29 —

Other Data Manipulation Instructions
8.3.3 SORT (SORT) cont.

4EXAMPLEp Example 3
Destination table data is sorted in ascending order.

1) Ladder Programming

I 400001 |—(}—

100001 000101
— 400011 |—(Y~
SORT | oo0102

#00005

2) Operation

a) Before Execution

400001 | 10000 | 1st 400011 | 60000 | 1st
00002 000 d A
Source table 4 > 2n 4000121000 j 2nd Destination table
(size: 5) 400003 | 50000 | 3rd 400013 | 20000 /3rd > (5izg: 5)
400004 100 | 4th ‘400014 | 8000 | 4th
400005 | 7000 j 5th - 400015 10 | 6th

b) Data will be sorted as shown below when input relay 100001 changes from OFF to
ON. The sort will be completed in one scan.

Reorderad togethar with Soned in ascending onder
destination table

400001
Source table 400002
(size: 5) 400003
400004
400005

Dastination table
(size: 5}

(1) The data in each register of the destination table istreated as 16-bit binary data (0
to 65,535), the data is sorted into ascending order, and then the sorted result is
stored in the destination table.

(2) The data in the source table is also recrdered inthe same way as the registers in
the destinationtable, i.e., datain correspondmg reglsters moves togetherwiththe
registers of the destination table.

(3) Coil 000101 turns ON only for the scan in which input retay 100001 changed from
OFF to ON. Coil 000102 remains OFF.

—8-30 —

8.3 Data Rearrangement Instructions

4EXAMPLEp-

Example 4
Destination table data is sorted in descending order.

1) Ladder Programming

p 400001 —
100001 000101
. a00011 | —(Y
SORT | oo0102
#00005

2) Operation

a) Before Execution

400001 [10000 | 1t 400011 [60000 | 1st
400002 | 5000 | 2nd 400012 | 1000 | 2nd o
z Dest |
f;,‘-’;‘a'?g)m 400003 | 50000 | 3rd 400013 | 20000 | 3rd {siazs;:"sa)t'c'maba
400004 | 100 | 4th 400014 | 8000 4th
400005 | 7000 | 5th 400015 10|sth

b) Data will be sorted as shown below when input relay 100001 changes from OFF to
ON. The sort will be completed in one scan.

Reardered together with Sotted in descending order
destination table
15t 400011 1st
Source table 2nd 400012 2nd Destination table
(size: 5) 3rd 400013 3d (size: 5)

“4th 400014
] 5th 400015

(1) Thedata in each register of the destinationtable is treated as 16-bit binary data (0
to 65,535}, the data is sorted into descending order, and then the sorted resultis
stored in the destination table.

(2) The data in the source table is also reordered in the same way as the registers in
the destinationtable, i.e., datain corresponding registers moves together with the
registers of the destination table.

(3) Coil 000101 turns ON only for the scan in which inputt refay 100001 changed from
OFF to ON. Coil 000102 remains OFF.

—8-31—

Other Data Manipulation Instructions

8.3.4 Building Programs

8.3.4 Building Programs

1.
A

Storage Locations on Networks

LOGICAL BYTE REARRANGEMENT

LOGICAL BYTE REARRANGEMENT instructions require two elements (top and bot-
tom) located vertically on the network, so they can be stored anywhere on a 6-row by
10-column matrix (rows 1 through 6 and columns 1 through 10).

SWAP, SORT

SWAP, SORT instructions require three vertical elements on a network, one top element,
one middie element, and one bottom element. They can thus be stored anywhere on a
5-row by 10-column matrix (rows 1 through 5 and columns 1 through 10} on the network.

Note LOGICAL BYTE REARRANGEMENT, SWAP and. SORT instructions cannot, however, be
placed te the right of coils (including output coils, internal coils, link coils, MC coils, and MC

control coils).
Example
Column
1 2 3 4 5 6 7 8 9 10 1
Row 1~} —eoooes > Nothing can be stored in this area.
100001 00000 e
2 ¥ 0000

SH -

10002t 100022 100023 100024 100025 1000286 100027 100029 10002y ohooe3

4
5H F— Fuwoon
100041 100042
B 3400041
SORT
7 -#0000
2. Inputs
Inputs to LOGICAL BYTE REARRANGEMENT, SWAP and SORT instructions can be
connected to relay elements (except coils) and/or outputs from timers, counters, math
instructions, data manipulation instructions, other instructions, etc.
3. Outputs

Outputs from LOGICAL BYTE REARRANGEMENT, SWAP, and SORT instructions can
be connected to any of the following: coils, contacts, inputs to math instructions, inputs to
data manipulation instructions, etc.

—8-32 —

. 8.4 Data Split/Combine Instructions

€

8.4 Data Split/Combine Instructions

841 BYTESPLIT(BYSL)coviieiii i 8-33
842 BYTECOMPOSITION (BYCM)coveeeansnin 8-37
8.43 NIBBLESPLIT{NBSL)0coviinieii 8-40
8.4.4 NIBBLECOMPOSITION(NBCM)ccoooveiiiinni 8-46
845 BuildingPrograms.................. o i 8-51

8.4.1 BYTE SPLIT (BYSL)

1. Function

The data (word data) in each register of the source table is split into bytes and then the bytes
are stored in the two registers of the corresponding block in the destination table. The splitis
completed in one scan.

Word data
splitinto _
400001 [m Block _[400011 [00F | 1st)
Source table < 400002 1 400012| 0033 | 2nd
(size: 4) 400003 \ Block | 400013 | 0025 | 1st
400004 [EDEE. \ 2 400014 0067 | 2nd | pegtination table
Moot \ Block _| 400015 0088 | 1st ((size: 8)
3 400016 | 00AB | 2nd
Block _] 400017| 00€D | 1st :
4 400018 | 00EF | 2nd J
Hexadecimal

2. Structure

ON: Worddatasplit Input 1 — Source table ($) f— Qutput 1: Echoes state of input 1.
into byte data. ’

Destination
table (D}

BYSL

Table size (Z)

1) BYSL is the symbol for BYTE SPLIT,

2) BYSL requires three elements, one top element, one middle element, and one bottom
slement, located vertically on the network. Refer to Table 8.8 for details on specifying
constants or registers for these elements.

—8-33 —

Other Data Manipulation Instructions
8.4.1 BYTE SPLIT (BYSL) cont.

Example
input1 — 400001 — Output1 400001: Leading reference number of the source table
400011: Leading reference number of the destination
400011 ¢ table
BYSL #00004: Size of the source table (4)
#00004
Table 8.8 Structural Elements of BYSL
Element Meaning Possible Settings
Top (S) |Leading reference number in source table |input register: 300001 to 300512
(Z00001 to Z00512)
Holding register: 400001 {0 409998
(WO00001 to W09999)
Constant register: 700001 to 704096
{(K000O1 to K04096)
Link register: R10001 to R11024 or
R20001 to R21024
Middle Leading reference numbet in destination | Holding register: 400001 to 409998
(D) table (W00001 to W09988)
Link register: R10001 to R11023 or
R20001 to R21023
Bottom | Size of source table Constant: #00001 to #00100
(Z)

Note The destination table is twice the size of the scurce table,

3. Operation

1) Status Before Execution

s 1234 | 1st
Sourcs table
(size: Z) S+n-1 | 5678 [nth
S+Z2-1 | 9ABC [Zth
Hexadecimal

— 834 —

Block o[3191 st

1 D+1 | 2222 |2nd
Block D+2n-2 | 3333 1st

h D+2n—11 4444 |2nd
Block D+2Z-21 5555 | 1st

Z | D+2Z-1| 6666 |2nd

Hexadecimal

Dastination table
{size: 27)

8.4 Daia Split/Combine Insiructions

2) Data will be split as shown below when input 1 turns ON.

Word data
splitinto
byte data
s 1st { 15t)
Source table D - :
{size: Z) S+n-1 nth

S+Z—1 B e Zth
Hexadecimal

> Destinatich table
(size: 27)

1st
BE [2nd J

Hexadecimal

a) The word data in each register n (n = 1 to Z) of the source table is split into bytes and
then the bytes are stored in the lower bytss of the two registers of block n in the des-
tination table. “00” (hexadecimal) is stored in the upper bytes.

b) The data in the registers of the source table does not change.
c) Output 1 turns ON,
38) The bytes are split and stored as shown below.

Data from upper byte stored.

“00” storad ‘* l

A
Ds2n-2[0 1st } Block
D+2n—1] 0 2nd n
Hexadecimal ™ Hexadecimal

“O0” stored —-—f T

Data from lower byts storsd.

«EXAMPLEp 4, Application Example

1) Ladder Programming

Pl—{ 400001 [—(}—

100001 000101
400011
BYSL

$00004

— 835 —

Other Data Manipulation Instructions
8.4.1 BYTE SPLIT (BYSL) cont.

2) Operation

a) Before Execution

400001 [0123 | 1st Block | 400011 [1111 | 1st)
Source table < 400002 | 4567 | 2nd 1 400012| 2222] 2nd
{size: 4) 400003 | 89AB |3rd Block 400013 | 3333 | 1st
400004 | CDEF | 4th 2 400014 | 4444 | 2nd \, Destination table
Hexadecimal Block 400015 5565 | 1st (size: 8)
3 400016 | 6666 | 2nd
Block | 400017| 7777 | 1st
4 400018 8888 | 2nd)
Hexadecimal

b) Data will be split as shown below when input relay 100001 changes from OFF to ON.
The split will be completed in one scan.

Word data
split into
400001 byodata ook [400011 [00G% | 18t)
—_— oc 9t | 1s
Source table T~ ! 400012 0023 | 2nd
(size: 4) 400003 Block 400013| 00ah | 1st
400004 LIRS \ 2 400014 00R7 | 2nd Destination table
Hexadecimal Block 400015 | Q0BE | 1st [(size: 8)
: 3 400016 { 00AB | 2nd
Biock 400017 | 00CD | 1st
4 400018 | 00EE: | 2nd
Hexadecimal

(1) The word data in each register n (n = 1 to 4) of the source table is split into bytes
and thenthe bytes is stored in the lower bytes of the two registers of block