
New Ladder Editor
Machine Controller MP900/MP2000 Series

PROGRAMMING MANUAL

MANUAL NO. SIEZ-C887-13.1C

Copyright © 2001 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is con-
stantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.

iii

iii

About This Manual

This manual describes the programming instructons of the New Ladder Editor, a
programming software application that aids in the design and maintenance of
MP900-series and MP2000-series Machine Controllers.

This manual is written for readers with a working knowledge of Microsoft Windows
95/98/2000/NT. Refer to Windows documentation provided with your computer for
information on basic operations, such as opening and closing windows and mouse
operations.

Intended Audience

This manual is intended for the following users.

• Those responsible for designing the MP900 and MP2000 System
• Those responsible for writing MP900 and MP2000 motion programs
• Those responsible for writing MP900 and MP2000 ladder logic programs

Description of Technical Terms

In this manual, the terms are defined as follows:

• PLC = Machine Controller
• MPE720 = MPE720 Engineering Tool

Read this manual carefully to ensure the proper use of the New Ladder Editor. Also,
keep this manual in a safe place so that it can be referred to whenever necessary.

About The Software

Precautions

• This software is to be installed on one and only one computer. You must purchase
another copy of the software to install it on another computer.

• This software is not to be copied for any reason other than when installing it on the com-
puter.

• Store the floppy disks containing the software in a safe place.
• This software is not to be decompiled, disassembled, or reverse engineered.
• This software is not to be given to, rent to, exchanged with, or otherwise released to a

third party without the prior permission of Yaskawa Corporation.

Trademarks

• Windows and Windows 95/98/2000/NT are registered trademarks of Microsoft Corpora-
tion.

• Pentium is a registered trademark of Intel Corporation.
• Ethernet is a registered trademark of Xerox Corporation.

iv

Visual Aids

The following aids are used to indicate certain types of information for easier refer-
ence.

Indicates important information that should be memorized. Also indicates low-level
precautions that, if not heeded, may cause an alarm to sound but will not result in
the device being damaged.

Indicates application examples.

Indicates supplemental information.

IMPORTANT

EXAMPLE

INFO

v

v

Related Manuals

The MP900 series Machine Controllers consists of four models, the MP910, MP920,
MP930, and MP940.

The MP2000 series Machine Controllers consists of two models, the MP2100 and MP2300.

Manuals have been produced on these products line.

The following table shows related manuals for the MP900 and MP2000 series.

Refer to the following related manuals as reuqired.

Manual Name Manual Number
Applicable Model

MP910 MP920 MP930 MP940 MP2100 MP2300

Machine Controller MP930 User's Manual:
Design and Maintenance

SIEZ-C887-1.1 √

Machine Controller MP900/MP2000 Series
User's Manual: Ladder Programming

SIEZ-C887-1.2 √ √ √ √ √ √

Machine Controller MP900/MP2000 Series
User's Manual: Motion Programming

SIEZ-C887-1.3 √ √ √ √ √ √

Machine Controller MP900 Series
Teach Pendant User's Manual

SIEZ-C887-1.6 √ √

Machine Controller MP920
User's Manual: Design and Maintenance

SIEZ-C887-2.1 √

Machine Controller MP900 Series
Programming Panel Software
User's Manual for Simple Operation

SIEZ-C887-2.3 √ √ √ √

Machine Controller MP920 User's Manual:
Motion Module

SIEZ-C887-2.5 √

Machine Controller MP920 User's Manual:
Communications Module

SIEZ-C887-2.6 √

Machine Controller MP920
Installation Manual

SIEZ-C887-2.50 √

Machine Controller MP910 User's Manual:
Design and Maintenance

SIEZ-C887-3.1 √

Machine Controller MP940 User's Manual:
Design and Maintenance

SIEZ-C887-4.1 √

Machine Controller MP940
Installation Manual

SIEZ-C887-4.50 √

Machine Controller MP900/MP2000 Series
MECHATROLINK System User's Manual

SIEZ-C887-5.1 √ √ √ √

Machine Controller MP900 Series
260IF DeviceNet System User's Manual

SIEZ-C887-5.2 √ √

Machine Controller MP900 Series
MPLoader (Server) User’s Manual
for Server

SIEZ-C887-12.1 √ √ √

Machine Controller MP900 Series
MPLoader (Client) User’s Manual
for Client

SIEZ-C887-12.2 √ √ √

vi

Machine Controller MP900/MP2000 Series
New Ladder Editor Programming Manual

SIEZ-C887-13.1 √ √ √ √ √ √

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual

SIEZ-C887-13.2 √ √ √ √ √ √

Machine Controller MP2100/MP2100M
User’s Manual: Design and Maintenance

SIEPC88070001 √

Machine Controller MP2300 Basic Module
User’s Manual

SIEPC88070003 √

Machine Controller MP2300
User’s Manual: Communications Module

SIEPC88070004 √

Machine Controller MP900/2000 Series
MPE720 Software for Programming Device
User’s Manual

SIEPC88070005 √ √ √ √ √ √

(cont’d)

Manual Name Manual Number
Applicable Model

MP910 MP920 MP930 MP940 MP2100 MP2300

vii

CONTENTS
About This Manual - iii
About The Software - iii
Visual Aids- iv
Related Manuals - v

1 Ladder Program Instructions

1.1 Relay Circuit Instructions- 1-4
1.1.1 N.O. Contact Instruction (NOC) -1-4
1.1.2 N.C. Contact Instruction (NCC) -1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms]) - - - - - - - - - - - - -1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms]) - - - - - - - - - - - -1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s]) - - - - - - - - - - - - - - - - - -1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s]) - - - - - - - - - - - - - - -1-10
1.1.7 RISING PULSE Instruction (ON-PLS)- 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS) -1-13
1.1.9 COIL Instruction (COIL)- -1-14
1.1.10 SET COIL Instruction (S-COIL) -1-15
1.1.11 RESET COIL Instruction (R-COIL) -1-17

1.2 Numeric Operation Instructions - 1-19
1.2.1 STORE Instruction (STORE) -1-19
1.2.2 ADDITION Instruction (ADD) -1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) - - - - - - - - - - - - - - - - - -1-23
1.2.4 SUBTRACTION Instruction (SUB) -1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)- - - - - - - - - - - - - - -1-27
1.2.6 MULTIPLICATION Instruction (MUL) -1-28
1.2.7 DIVISION Instruction (DIV) -1-31
1.2.8 MOD Instruction (MOD)- -1-33
1.2.9 REM Instruction (REM) -1-34
1.2.10 INC Instruction (INC)- -1-35
1.2.11 DEC Instruction (DEC)- -1-36
1.2.12 ADD TIME Instruction (TMADD)- -1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) -1-39
1.2.14 SPEND TIME Instruction (SPEND) -1-41
1.2.15 SIGN INVERSION Instruction (INV) -1-43
1.2.16 1’S COMPLEMENT Instruction (COM) -1-44
1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS) - - - - - - - - - -1-45
1.2.18 BINARY CONVERSION Instruction (BIN) - - - - - - - - - - - - - - - - - - -1-46
1.2.19 BCD CONVERSION Instruction (BCD) -1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) - - - - - - - - - - - - - - - -1-50
1.2.21 ASCII CONVERSION Instruction (ASCII) - - - - - - - - - - - - - - - - - - -1-51
1.2.22 ASCII CONVERSION 2 Instruction (BINASC) - - - - - - - - - - - - - - - -1-52
1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN) - - - - - - - - - - - - - - - -1-53

viii

1.3 Logical Operation/Comparison Instructions- - - - - - - - - - - - 1-55
1.3.1 AND Instruction (AND) - 1-55
1.3.2 OR Instruction (OR) - 1-56
1.3.3 XOR Instruction (XOR) - 1-57
1.3.4 Comparison Instruction (<) - 1-59
1.3.5 Comparison Instruction (<=) - 1-60
1.3.6 Comparison Instruction (=) - 1-61
1.3.7 Comparison Instruction (!=)- 1-62
1.3.8 Comparison Instruction (>=) - 1-63
1.3.9 Comparison Instruction (>) - 1-64
1.3.10 RANGE CHECK Instruction (RCHK) - 1-65

1.4 Program Control Instructions - 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE) - 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE) - - - - - - - - - - - - - - - 1-69
1.4.3 FUNCTION CALL Instruction (FUNC) - 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) - - - - - - - - - - - - - - - - - - - 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS) - - - - - - - - - - - - - - - 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL) - - - - - - - - - - - - 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) - - - - - - - - - - - - - - - - - - - 1-77
1.4.8 IF Instruction (IF, END_IF) - 1-79
1.4.9 IF Instruction (IF, ELSE, END_IF) - 1-80
1.4.10 FOR Instruction (FOR, END_FOR) - 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION) - - - - - - - - - - - - - - - - - - 1-84

1.5 Basic Function Instructions - 1-85
1.5.1 SQUARE ROOT Instruction (SQRT) - 1-85
1.5.2 SINE Instruction (SIN) - 1-87
1.5.3 COSINE Instruction (COS) - 1-88
1.5.4 TANGENT Instruction (TAN) - 1-90
1.5.5 ARC SINE Instruction (ASIN) - 1-91
1.5.6 ARC COSINE Instruction (ACOS) - 1-92
1.5.7 ARC TANGENT Instruction (ATAN) - 1-93
1.5.8 EXPONENT Instruction (EXP)- 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) - 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG)- - - - - - - - - - - - - - - - - - 1-96

1.6 Data Manipulation Instructions- 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL) - 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR) - - - - - - - - - - - - - - - - - - 1-99
1.6.3 MOVE BITS Instruction (MOVB) - 1-101
1.6.4 MOVE WORD Instruction (MOVW) - 1-103
1.6.5 EXCHANGE Instruction (XCHG) - 1-105
1.6.6 SET WORDS Instruction (SETW) - 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)- - - - - - - - - - - 1-108
1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS) - - - - - - 1-110
1.6.9 BINARY SEARCH Instruction (BSRCH) - 1-111
1.6.10 SORT Instruction (SORT) - 1-113
1.6.11 BIT SHIFT LEFT Instruction (SHFTL)- 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR) - - - - - - - - - - - - - - - - - - - 1-115
1.6.13 COPY WORD Instruction (COPYW) - 1-116
1.6.14 BYTE SWAP Instruction (BSWAP)- 1-118

ix

1.7 DDC Instructions - 1-120
1.7.1 DEAD ZONE A Instruction (DZA) - 1-120
1.7.2 DEAD ZONE B Instruction (DZB) - 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) - - - - - - - - - - - - - - - - - - 1-124
1.7.4 PI CONTROL Instruction (PI)- 1-127
1.7.5 PD CONTROL Instruction (PD) - 1-131
1.7.6 PID CONTROL Instruction (PID) - 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG) - 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG) - 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN)- - - - - - - - - - - - - - - - - 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)- - - - - - - - 1-147
1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU) - - - 1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)- - 1-155
1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - - - - - - - - - - - - 1-163

1.8 Table Data Manipulation Instructions - - - - - - - - - - - - - - - 1-166
1.8.1 BLOCK READ Instruction (TBLBR) - 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) - 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL) - 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) - - - - - - - - - - - - - - - - - - 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL)- 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV) - 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI) - - - - - - - - - - 1-177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI) - - - - - - - - 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) - - - - - - - - - - - - - 1-182

2 Standard System Function

2.1 Message Functions - 2-2
2.1.1 Send Message Function (MSG-SND) -2-2
2.1.2 Receive Message Function (MSG-RCV) -2-13

2.2 Trace Functions - 2-22
2.2.1 Trace Function (TRACE) -2-22
2.2.2 Data Trace Read Function (DTRC-RD)- -2-23
2.2.3 Failure Trace Read Function (FTRC-RD) -2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) -2-31

2.3 Inverter Functions- 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR)- - - - - - - - - - - - - - - - - -2-34
2.3.2 Inverter Constant Read Function (ICNS-RD) - - - - - - - - - - - - - - - - - -2-39

2.4 Other Functions - 2-42
2.4.1 Counter Function (COUNTER)- -2-42
2.4.2 First-in First-out Function (FINFOUT) -2-44

x

Appendix A Expression

A.1 Expression - A-2
A.1.1 Operator - A-2

A.1.2 Operand - A-4

A.1.3 Instructions Available in EXPRESSION Instruction - - - - - - - - - - - - - - A-5

A.2 Recognizable Expression - A-6
A.2.1 Arithmetic Operator - A-6

A.2.2 Comparison Operator - A-6

A.2.3 Logic Operator - A-6

A.2.4 Substitution Operator - A-7

A.2.5 Function - A-7

A.2.6 Others - A-7

A.3 Application to Ladder Program - A-9
A.3.1 Conditional Expression of IF Instruction- A-9

A.3.2 Conditional Expression of WHILE Instruction - - - - - - - - - - - - - - - - - - A-9

A.3.3 Operational Expression of EXPRESSION Instruction - - - - - - - - - - - A-10

Revision History

1-1

1
1

Ladder Program Instructions

This chapter describes in the instructions for relay circuits, numeric operations,
logical operations and comparisons, program controls, basic functions, data
manipulation, DDC, and table data a manipulation.

1.1 Relay Circuit Instructions - 1-4
1.1.1 N.O. Contact Instruction (NOC) - 1-4
1.1.2 N.C. Contact Instruction (NCC) - 1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms]) - - - - - - - - - - - - - 1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms]) - - - - - - - - - - - 1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s]) - - - - - - - - - - - - - - - - - 1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s]) - - - - - - - - - - - - - - - 1-10
1.1.7 RISING PULSE Instruction (ON-PLS) - 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS) - 1-13
1.1.9 COIL Instruction (COIL) - 1-14
1.1.10 SET COIL Instruction (S-COIL) - 1-15
1.1.11 RESET COIL Instruction (R-COIL) - 1-17

1.2 Numeric Operation Instructions - 1-19
1.2.1 STORE Instruction (STORE) - 1-19
1.2.2 ADDITION Instruction (ADD) - 1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) - - - - - - - - - - - - - - - - - - 1-23
1.2.4 SUBTRACTION Instruction (SUB) - 1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX) - - - - - - - - - - - - - - 1-27
1.2.6 MULTIPLICATION Instruction (MUL) - 1-28
1.2.7 DIVISION Instruction (DIV) - 1-31
1.2.8 MOD Instruction (MOD) - 1-33
1.2.9 REM Instruction (REM) - 1-34
1.2.10 INC Instruction (INC) - 1-35
1.2.11 DEC Instruction (DEC) - 1-36
1.2.12 ADD TIME Instruction (TMADD) - 1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) - 1-39
1.2.14 SPEND TIME Instruction (SPEND) - 1-41
1.2.15 SIGN INVERSION Instruction (INV) - 1-43
1.2.16 1’S COMPLEMENT Instruction (COM) - 1-44

1 Ladder Program Instructions

1-2

1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS) - - - - - - - - - - 1-45
1.2.18 BINARY CONVERSION Instruction (BIN) - - - - - - - - - - - - - - - - - - - 1-46
1.2.19 BCD CONVERSION Instruction (BCD) - 1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) - - - - - - - - - - - - - - - - 1-50
1.2.21 ASCII CONVERSION Instruction (ASCII) - - - - - - - - - - - - - - - - - - - 1-51
1.2.22 ASCII CONVERSION 2 Instruction (BINASC) - - - - - - - - - - - - - - - - 1-52
1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN) - - - - - - - - - - - - - - - - 1-53

1.3 Logical Operation/Comparison Instructions - - - - - - - - - - - - 1-55
1.3.1 AND Instruction (AND) - 1-55
1.3.2 OR Instruction (OR) - 1-56
1.3.3 XOR Instruction (XOR) - 1-57
1.3.4 Comparison Instruction (<) - 1-59
1.3.5 Comparison Instruction (<=) - 1-60
1.3.6 Comparison Instruction (=) - 1-61
1.3.7 Comparison Instruction (!=) - 1-62
1.3.8 Comparison Instruction (>=) - 1-63
1.3.9 Comparison Instruction (>) - 1-64
1.3.10 RANGE CHECK Instruction (RCHK) - 1-65

1.4 Program Control Instructions - 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE) - 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE) - - - - - - - - - - - - - - - 1-69
1.4.3 FUNCTION CALL Instruction (FUNC) - 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) - - - - - - - - - - - - - - - - - - - 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS) - - - - - - - - - - - - - - - 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL) - - - - - - - - - - - - 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) - - - - - - - - - - - - - - - - - - - 1-77
1.4.8 IF Instruction (IF, END_IF) - 1-79
1.4.9 IF Instruction (IF, ELSE, END_IF) - 1-80
1.4.10 FOR Instruction (FOR, END_FOR) - 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION) - - - - - - - - - - - - - - - - - - 1-84

1.5 Basic Function Instructions - 1-85
1.5.1 SQUARE ROOT Instruction (SQRT) - 1-85
1.5.2 SINE Instruction (SIN) - 1-87
1.5.3 COSINE Instruction (COS) - 1-88
1.5.4 TANGENT Instruction (TAN) - 1-90
1.5.5 ARC SINE Instruction (ASIN) - 1-91
1.5.6 ARC COSINE Instruction (ACOS) - 1-92
1.5.7 ARC TANGENT Instruction (ATAN) - 1-93
1.5.8 EXPONENT Instruction (EXP) - 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) - 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG) - - - - - - - - - - - - - - - - - - 1-96

1.6 Data Manipulation Instructions - 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL) - 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR) - - - - - - - - - - - - - - - - - - 1-99
1.6.3 MOVE BITS Instruction (MOVB) - 1-101
1.6.4 MOVE WORD Instruction (MOVW) - 1-103
1.6.5 EXCHANGE Instruction (XCHG) - 1-105
1.6.6 SET WORDS Instruction (SETW) - 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD) - - - - - - - - - - - 1-108

1-3

1

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS) - - - - - - 1-110
1.6.9 BINARY SEARCH Instruction (BSRCH) - 1-111
1.6.10 SORT Instruction (SORT) - 1-113
1.6.11 BIT SHIFT LEFT Instruction (SHFTL) - 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR) - 1-115
1.6.13 COPY WORD Instruction (COPYW) - 1-116
1.6.14 BYTE SWAP Instruction (BSWAP) - 1-118

1.7 DDC Instructions - 1-120
1.7.1 DEAD ZONE A Instruction (DZA) - 1-120
1.7.2 DEAD ZONE B Instruction (DZB) - 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) - - - - - - - - - - - - - - - - - - 1-124
1.7.4 PI CONTROL Instruction (PI) - 1-127
1.7.5 PD CONTROL Instruction (PD) - 1-131
1.7.6 PID CONTROL Instruction (PID) - 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG) - 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG) - 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN) - - - - - - - - - - - - - - - - - 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN) - - - - - - - - 1-147
1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU) - - - 1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU) - - 1-155
1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - - - - - - - - - - - - 1-163

1.8 Table Data Manipulation Instructions - - - - - - - - - - - - - - - 1-166
1.8.1 BLOCK READ Instruction (TBLBR) - 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) - 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL) - 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) - - - - - - - - - - - - - - - - - - 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL) - 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV) - 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI) - - - - - - - - - - 1-177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI) - - - - - - - - - 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) - - - - - - - - - - - - - 1-182

1 Ladder Program Instructions

1.1.1 N.O. Contact Instruction (NOC)

1-4

1.1 Relay Circuit Instructions

1.1.1 N.O. Contact Instruction (NOC)

Outline

The NOC sets the value of the bit output to ON if the value of the referenced register is 1
(ON), and to OFF is the value of the referenced register is 0 (OFF).

Format

Parameter

Program Example

When MW000100 becomes ON, MB000101 becomes ON.

Parameter Name Setting

Relay No. • Any bit type register
• Any bit type register with subscript

Symbol: NOC
Full Name: NO Contact
Category: RELAY
Icon:

MB000100
ON
OFF

MB000101
ON
OFF

1.1 Relay Circuit Instructions

1-5

1

1.1.2 N.C. Contact Instruction (NCC)

Outline

The NCC sets the value of the bit output to OFF when the value of the referenced register is
1 (ON), and to ON when the value of the referenced register is 0 (OFF).

Format

Parameter

Program Example

When MB000100 becomes ON, MB000101 becomes OFF.

Parameter Name Setting

Relay No. • Any bit type register
• Any bit type register with subscript

Symbol: NCC
Full Name: NC Contact
Category: RELAY
Icon:

MB000100
ON
OFF

MB000101
ON
OFF

1 Ladder Program Instructions

1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

1-6

1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

Outline

The TON [10ms] is executed while the immediately-preceding value of the bit input is ON.
The value of the bit output is set to ON when the timer value reaches the set value. The
timer stops when the immediately-preceding value of the bit input is set to OFF during tim-
ing. When the bit input is set to ON again, timing restarts from the beginning (0). A value
equal to the actual timed time (10 ms Unit) is stored in the timer value register.
The maximum error of the count is 10 ms or less.

Format

Parameter

Parameter Name Setting

Set (set value) • Any integer type register
• Any integer type register with subscript (0 to 65535: in 0.01 sec

unit)
• Constant

Count (timer value) • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Symbol: TON [10ms]
Full Name: On-Delay Timer [10ms]
Category: RELAY
Icon:

1.1 Relay Circuit Instructions

1-7

1

Program Example

MW00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])

Outline

The TOFF [10ms] is executed while the immediately-preceding value of the bit input is
OFF. The value of the bit output is set to OFF when the timer value reaches the set value.
The timer stops when the immediately-preceding value of the bit input is set to ON during
timing.When the bit input is set to OFF again, timing restarts from the beginning (0). A
value equal to the actual timed time (10 ms Unit) is stored in the timer value register.
The maximum error of the count is 10 ms or less.

Format

ON

OFF

ON

OFF

0 5.00s-Ts

500

(Ts = Scan set value)

MB000100

MB000101

MB000011

IMPORTANT

Symbol: TOFF [10ms]
Full Name: Off-Delay Timer [10 ms]
Category: RELAY
Icon:

1 Ladder Program Instructions

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

1-8

Parameter

Program Example

MW00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

Outline

The TON [1s] times while the immediately-preceding value of the bit input is ON. The
value of the bit output is set to ON when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal
to the actual timed time (1 s Unit) is stored in the timer value register.
The maximum error of the count is 1 s or less.

Parameter Name Setting

Set (set value) • Any integer type register
• Any integer type register with subscript (0 to 65535: 0.01 sec

unit)
• Constant

Count (timer value) • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

0

500

ON

ON

OFF

OFF

MB000100

MB000101

MB000011
500s-Ts

(Ts = Scan set value)

IMPORTANT

1.1 Relay Circuit Instructions

1-9

1

Format

Parameter

Program Example

MW00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

Parameter Name Setting

Set (set value) • Any integer type register
• Any integer type register with subscript (0 to 65535: 1 sec unit)
• Constant

Count (timer value) • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Symbol: TON [1s]
Full Name: On-Delay Timer [1s]
Category: RELAY
Icon:

ON

OFF

ON

OFF

0 500s-Ts

500

(Ts = Scan set value)

MB000100

MB000101

MB000011

IMPORTANT

1 Ladder Program Instructions

1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

1-10

1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

Outline

The TOFF [1s] times while the immediately-preceding value of the bit input is OFF. The
value of the bit output is set to OFF when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal
to the actual timed time (1 s Unit) is stored in the timer value register.
The maximum error of the count is 1 s or less.

Format

Parameter

Parameter Name Setting

Set (set value) • Any integer type register
• Any integer type register with subscript (0 to 65535: 1 sec unit)
• Constant

Count (timer value) • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Symbol: TOFF [1s]
Full Name: Off-Delay Timer [1s]
Category: RELAY
Icon:

1.1 Relay Circuit Instructions

1-11

1

Program Example

MW00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

1.1.7 RISING PULSE Instruction (ON-PLS)

Outline

The ON-PLS sets the value of the bit input to ON during one scan when the immediately-
preceding value of the bit output changes from OFF to ON. The designated register is used
to store the previous value of the bit output.

Format

Parameter

0

500

ON

ON

OFF

OFF

MB000100

MB000101

MB000011
500s-Ts

(Ts = Scan set value)

IMPORTANT

Parameter Name Setting

Register No. • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C regis-

ters)

Symbol: ON-PLS
Full Name: Rise Pulse
Category: RELAY
Icon:

1 Ladder Program Instructions

1.1.7 RISING PULSE Instruction (ON-PLS)

1-12

Program Example

When IB00001 turns ON from OFF, MB000101 turns ON and stays ON during 1 scan.
MB000100 is used to store the previous value of IB00001.

Register status of Rising pulse instruction is shown in Table 1.1.

Note: Case of Program Example, the instruction is used not for rise detec-
tion of MB000100 but is used for rise detection of IB00001.
MB000100 is used only for storing the previous value of IB00001.

Table 1.1 Register Status with Rising Pulse Instruction

Input Result

IB00001 MB000100
(Previous value of

IB00001)

MB000100
(IB00001 stored)

MB000101

OFF OFF OFF OFF

OFF ON OFF OFF

ON OFF ON ON

ON ON ON OFF

IB00001

1 scan 1 scan

MB000100

MB000101

ON

OFF

ON

OFF

ON

OFF

1.1 Relay Circuit Instructions

1-13

1

1.1.8 FALLING PULSE Instruction (OFF-PLS)

Outline

The OFF-PLS sets the value of the bit input to ON for one scan when the immediately-pre-
ceding value of the bit output changes from ON to OFF. The designated register is used to
store the previous value of the bit output.

Format

Parameter

Program Example

When IB00001 turns OFF, MB000101 turns ON and stays ON during 1 scan. MB000100 is
used to store the previous value of IB00001.

Parameter Name Setting

Register No. • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C regis-

ters)

Symbol: OFF-PLS
Full Name: Fall Pulse
Category: RELAY
Icon:

IB00001

MB000100

MB000101

ON

OFF

ON

OFF

ON

OFF

1 scan1 scan

1 Ladder Program Instructions

1.1.9 COIL Instruction (COIL)

1-14

Register status of Falling pulse instruction is shown in Table 1.2.

Note: Case of Program Example, the instruction is used not for fall detec-
tion of MB000100 but is used for fall detection of IB00001.
MB000100 is used only for storing the previous value of IB00001.

1.1.9 COIL Instruction (COIL)

Outline

The COIL sets the value of the referenced register to 1 (ON) when the immediately-preced-
ing value of the bit input is ON, and to 0 (OFF) when the immediately-preceding value of
the bit input is OFF.

Format

Parameter

Table 1.2 Register Status with Falling Pulse Instruction

Input Result

IB00001 MB000100
(Previous value of

IB00001)

MB000100
(IB00001 stored)

MB000101

OFF OFF OFF OFF

OFF ON OFF ON

ON OFF ON OFF

ON ON ON OFF

Parameter Name Setting

Coil No. • Any bit type register (except for # and C register)
• Any bit type register with subscript (except # and C registers)

Symbol: COIL
Full Name: Coil
Category: RELAY
Icon:

1.1 Relay Circuit Instructions

1-15

1

Program Example

When MB000100 becomes ON, MB000101 becomes ON.

1.1.10 SET COIL Instruction (S-COIL)

Outline

The S-COIL turns ON the output when the execution condition is satisfied, and maintains
the ON state.

Format

Parameter

MB000100
ON
OFF

MB000101
ON
OFF

Parameter Name Setting

Coil No. • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C regis-

ters)

Symbol: S-COIL
Full Name: Set Coil
Category: RELAY
Icon:

1 Ladder Program Instructions

1.1.10 SET COIL Instruction (S-COIL)

1-16

Program Example

Case where the same output destination is designated multiple times.

The above example acts as in the graph below.

* When OB00000 is OFF, with the "set coil" instruction, OB00000 turns
ON.

∗

MB000000

MB000001

MB000002

MB000003

OB00000

1.1 Relay Circuit Instructions

1-17

1

1.1.11 RESET COIL Instruction (R-COIL)

Outline

The R-COIL turns OFF the output when the execution condition is satisfied, and maintains
the OFF state.

Format

Parameter

Program Example

Case where the same output destination is designated multiple times.

Parameter Name Setting

Coil No. • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C regis-

ters)

Symbol: R-COIL
Full Name: Reset Coil
Category: RELAY
Icon:

1 Ladder Program Instructions

1.1.11 RESET COIL Instruction (R-COIL)

1-18

The above example acts as in the graph below.

* When OB00000 is ON, with the "reset coil" instruction, OB00000 turns
OFF.

∗

MB000000

MB000001

MB000002

MB000003

OB00000

1.2 Numeric Operation Instructions

1-19

1

1.2 Numeric Operation Instructions

1.2.1 STORE Instruction (STORE)

Outline

The STORE instruction stores the contents of Source in the Dest.

Format

Parameter

Parameter Name Setting

Source • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: STORE
Full Name: Store
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.1 STORE Instruction (STORE)

1-20

Program Example

When a double-length integer type data is stored in an integer type register, the lower 16 bits are stored
as they are. Be careful since an operation error will not occur even if the data to be stored exceeds the
integer range (−32768 to 32767).

INFO

1.2 Numeric Operation Instructions

1-21

1

1.2.2 ADDITION Instruction (ADD)

Outline

The ADD instruction adds integer, double-length integer, and real number values. Source B
is added to Source A and stored in the Dest. If the result of adding integer values is greater
than 32767, an overflow error occurs. If the result of adding double-length integer values is
greater than 2147483647, an overflow error occurs.

Format

Parameter

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: ADD
Full Name: Add
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.2 ADDITION Instruction (ADD)

1-22

Program Example

Addition of Integer Type Values

Addition of Real Number Type Values

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, −, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (×) is the immediately pre-
ceding instruction and a division instruction (÷) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

INFO

1.2 Numeric Operation Instructions

1-23

1

1.2.3 EXTENDED ADDITION Instruction (ADDX)

Outline

The ADDX instruction adds integer values. Source B is added to Source A and stored in the
Dest. No operation error occurs, even if the operation results in an overflow. Otherwise, the
ADDX is much the same as the ADD.

Format

Parameter

Parameter Name Setting

Source A • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Source B • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: ADDX
Full Name: Expanded Add
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.4 SUBTRACTION Instruction (SUB)

1-24

Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the
addition of integer type values.

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, −, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (×) is the immediately pre-
ceding instruction and a division instruction (÷) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1.2.4 SUBTRACTION Instruction (SUB)

Outline

The SUB instruction subtracts integer, double-length integer, and real number values. Source
B is subtracted to Source A and stored in the Dest. If the result of subtracting integer values
is smaller than -32768, an underflow error occurs. If the result of subtracting double-length
integer values is smaller than -2147483648, an underflow error occurs.

Format

INFO

Symbol: SUB
Full Name: Subtract
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-25

1

Parameter

Program Example

Subtraction of Integer Type Values

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

1 Ladder Program Instructions

1.2.4 SUBTRACTION Instruction (SUB)

1-26

Subtraction of Real Number Type Values

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, −, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (×) is the immediately pre-
ceding instruction and a division instruction (÷) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

INFO

1.2 Numeric Operation Instructions

1-27

1

1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)

Outline

The SUBX instruction subtracts integer values. No operation error occurs, even if the oper-
ation results in an underflow.

Format

Parameter

Parameter Name Setting

Source A • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Source B • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: SUBX
Full Name: Expanded Subtract
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.6 MULTIPLICATION Instruction (MUL)

1-28

Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the
subtraction of integer type values.

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, −, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (×) is the immediately pre-
ceding instruction and a division instruction (÷) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1.2.6 MULTIPLICATION Instruction (MUL)

Outline

The MUL instruction multiplies integer, double-length integer, and real number values.
Source B is multiplied to Source A and stored in the Dest.

Format

INFO

Symbol: MUL
Full Name: Multiply
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-29

1

Parameter

Program Example

Multiplication of Integer Type Values

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

1 Ladder Program Instructions

1.2.6 MULTIPLICATION Instruction (MUL)

1-30

Multiplication of Double-length Integer Type Values

Multiplication of Real Number Type Values

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, −, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (×) is the immediately pre-
ceding instruction and a division instruction (÷) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

INFO

1.2 Numeric Operation Instructions

1-31

1

1.2.7 DIVISION Instruction (DIV)

Outline

The DIV instruction divides integer, double-length integer, and real number values. Source
A is divided by Source B and stored in the Dest.

Format

Parameter

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: DIV
Full Name: Divide
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.7 DIVISION Instruction (DIV)

1-32

Program Example

Division of Real Number Type Values

1.2 Numeric Operation Instructions

1-33

1

1.2.8 MOD Instruction (MOD)

Outline

The MOD instruction outputs the remainder of integer or double-length integer division to
the Dest. Always execute the MOD immediately after the division instruction. If the MOD
is executed somewhere else, the operation results obtained before the next entry instruction
cannot be guaranteed.

Format

Parameter

Program Example

The quotient of an integer type division is stoned in MW00101 and the remainder is stored
in MW00102.

Parameter Name Setting

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: MOD
Full Name: Integer Remainder
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.9 REM Instruction (REM)

1-34

1.2.9 REM Instruction (REM)

Outline

The REM instruction outputs the remainder of real number division to the Dest. Here, the
remainder refers to the remainder obtained by repeatedly subtracting the Base designated by
the Source. Thus, the n is the number of times subtraction is repeated.
 Dest = Source - (Base × n) (0 ≤ Dest < Base)

Format

Parameter

Program Example

The remainder of the division of the real number variable MF00200 by the constant value,
1.5, is determined and stored in DF00202.

Parameter Name Setting

Source • Any real number type register
• Any real number type register with subscript
• Constant

Base • Any real number type register
• Any real number type register with subscript
• Constant

Dest • Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

Symbol: REM
Full Name: Real Remainder
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-35

1

1.2.10 INC Instruction (INC)

Outline

The INC instruction adds 1 to the designated integer or double-length integer register. For
integer registers, no overflow error occurs even if the result of addition exceeds 32767.
Likewise, no overflow error occurs for double-length integer registers.

Format

Parameter

Program Example

Integer Type

Parameter Name Setting

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: INC
Full Name: Increment
Category: MATH
Icon:

⇔ equivalent

1 Ladder Program Instructions

1.2.11 DEC Instruction (DEC)

1-36

Double-length Integer Type

1.2.11 DEC Instruction (DEC)

Outline

The DEC instruction subtracts 1 from the designated integer or double-length integer regis-
ter. For integer registers, no underflow error occurs even if the result of subtraction is less
than -32768. Likewise, no underflow error occurs for double-length integer registers.

Format

Parameter

⇔ equivalent

Parameter Name Setting

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: DEC
Full Name: Decrement
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-37

1

Program Example

Integer Type

Double-length Integer Type

⇔ equivalent

⇔ equivalent

1 Ladder Program Instructions

1.2.12 ADD TIME Instruction (TMADD)

1-38

1.2.12 ADD TIME Instruction (TMADD)

Outline

The TMADD instruction adds one time (hours/minutes/seconds) to another time. The
Source is added to the Dest and the result is stored in the Dest. The formats of Source and
Dest are as follows.

If the contents of the Dest and Source and the operation result are with the appropriate
ranges, the operation will be performed normally. After the operation is completed, the [Sta-
tus] is turned OFF. If the contents of the Dest and Source are outside the data ranges, the
operation is not performed. In this case, 9999H is stored in the column "second" of the Dest,
and the [Status] is turned ON.

Format

Parameter

* Possible to omit.

Table 1.3 Data Format

Register Offset Data Contents Data Range (BCD)

0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59

1 Seconds 0000 to 0059

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

[Status]* • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C register)

Symbol: TMADD
Full Name: Time Add
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-39

1

Program Example

The time data in DW0000 to DW00101 is added to the time data in MW00100 to
MW00101.

8 hrs 40 min 32 sec + 1 hrs 22 min 16 sec = 10 hrs 2 min 48 sec
(MW00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

1.2.13 SUBTRACT TIME Instruction (TMSUB)

Outline

The TMSUB instruction subtracts one time (hours/minutes/seconds) from another time. The
Source is subtracted from the Dest and the result is stored in the Dest. The formats of

Source and Dest are as follows.

If the contents of the Dest and Source are with the appropriate ranges, the operation will be
performed normally. After the operation is completed, the [Status] is turned OFF. If the con-
tents of the Dest and Source are outside the data ranges, the operation is not performed. In
this case, 9999H is stored in the column "second" of the Dest, and the [Status] is turned ON.

Time Data Before Execution After Execution

MW00100 0840H 1002H

MW00101 0032H 0048H

DW00000 0122H 0122H

DW00001 0016H 0016H

Table 1.4 Data Format

Register Offset Data Contents Data Range (BCD)

0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59

1 Seconds 0000 to 0059

1 Ladder Program Instructions

1.2.13 SUBTRACT TIME Instruction (TMSUB)

1-40

Format

Parameter

* Possible to omit.

Program Example

The time data in DW0000 to DW0001 is subtracted to the time data in MW00100 to
MW00101.

8 hrs 40 min 32sec + 1 hrs 22 min 16 sec = 7 hrs 18 min 16 sec
(MW00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

[Status]* • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C register)

Time Data Before Execution After Execution

MW00100 0840H 0718H

MW00101 0032H 0016H

DW00000 0122H 0122H

DW00001 0016H 0016H

Symbol: TMSUB
Full Name: Time Sub
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-41

1

1.2.14 SPEND TIME Instruction (SPEND)

Outline

The SPEND instruction subtracts one time (year/month/day/hours/minutes/seconds) from
another time data and calculates the elapsed time. Source is subtracted from the Dest and the

result is stored in the Dest. The formats of Source and Dest are as follows.

If the contents of the Dest, Source and the operation result are with the appropriate ranges,
the operation will be performed normally. After the operation is completed, [Status] is
turned OFF. If the contents of the Dest and Source are outside the data ranges, the operation
is not performed. In this case, 9999H is stored in the column "second" of the Dest, and the
[Status] is turned ON.

Format

Table 1.5 Source Format

Register Offset Data Contents Data Range (BCD) I/O

0 Year (BCD) 0000 to 0099 IN

1 Month/Day (BCD) Upper byte (month) : 1 to 12
Lower byte (day) : 1 to 31

IN

2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59

IN

3 Seconds (BCD) 0000 to 0059 IN

Table 1.6 Dest Format

Register Offset Data Contents Data Range (BCD) I/O

0 Year (BCD) 0000 to 0099 IN/OUT

1 Month/Day (BCD) Upper byte (month) : 1 to 12
Lower byte (day) : 1 to 31

IN/OUT

2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59

IN/OUT

3 Seconds (BCD) 0000 to 0059 IN/OUT

4 Total number of seconds This is the number of records which is obtained
by converting Year/Month/Day/Hour/Minutes/
Seconds, which is the results of operations, to
seconds. (Double-length integer)

IN/OUT

5

Symbol: SPEND
Full Name: Time Spend
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.14 SPEND TIME Instruction (SPEND)

1-42

Parameter

* Possible to omit.

Program Example

The time elapsed from the time data in MW00100 to MW00103 to the time data in
DW00000 to DW00003 is stored to MW00100 - MW00105.

98 yrs 5 mos 11 days 15 hrs 4 min 47 sec - 98 yrs 4 mos 2 days 8 hrs 13 min 8 sec
(MW00100) (MW00101) (MW00102) (MW00103) (DW00000) (DW00101) (DW00102) (DW00103)
= 0 yrs 39 days 6 hrs 51 min 39 sec
 (MW00100) (MW00101) (MW00102) (MW00103)

In the operation results, the year is counted as 365 days and a leap year is not taken into consideration.
Also, the number of months is not counted. It is counted in days.

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

[Status]* • Any bit type register (except for # and C register)
• Any bit type register with subscript (except for # and C register)

Time Data Before Execution After Execution

MW00100 H0098 H0000

MW00101 H0511 H0039

MW00102 H1504 H0651

MW00103 H0047 H0039

MW00104 −
3394299 (Decimal)

MW00105 −

DW00000 H0098 H0098

DW00001 H0402 H0402

DW00002 H0813 H0813

DW00003 H0008 H0008

INFO

1.2 Numeric Operation Instructions

1-43

1

1.2.15 SIGN INVERSION Instruction (INV)

Outline

The INV instruction inverts the sign of the contents of the Source, and the result is stored in
the Dest.

Format

Parameter

Program Example

Integer Type Data

Parameter Name Setting

Source • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: INV
Full Name: Inverse
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.16 1’S COMPLEMENT Instruction (COM)

1-44

Double-length Integer Type Data

Real Number Type Data

1.2.16 1’S COMPLEMENT Instruction (COM)

Outline

The COM instruction determines the 1’s complement of the contents of the Source and the
result is stored in the Dest.

Format

Parameter

Parameter Name Setting

Source • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: COM
Full Name: Complement
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-45

1

Program Example

Integer Type Data

Double-length Integer Type Data

1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)

Outline

The ABS instruction determines the absolute value of the contents of the Source and the
result is stored in the Dest.

Format

Parameter

Parameter Name Setting

Source • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register

Dest • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: ABS
Full Name: Absolute
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.18 BINARY CONVERSION Instruction (BIN)

1-46

Program Example

Integer Type Data

Double-length Integer Type Data

Real Number Type Data

1.2.18 BINARY CONVERSION Instruction (BIN)

Outline

The BIN instruction converts a binary coded decimal (BCD) value in the Source and into a
binary value (binary conversion) and the result is stored in the Dest. If the 4-digit BCD
value in the integer is abcd, the output value (Dest) of the BIN instruction can be determined
by the following formula:
 Dest = (a × 1000) + (b × 100) + (c × 10) + d
Although the above formula is applicable even if the value in the Source is not in BCD nota-
tion (e.g. 123FH), correct results are obtained in such cases.

1.2 Numeric Operation Instructions

1-47

1

Format

Parameter

Program Example

Integer Type Data

Double-length Integer Data

Parameter Name Setting

Source • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: BIN
Full Name: Convert to Binary
Category: MATH
Icon:

1 Ladder Program Instructions

1.2.19 BCD CONVERSION Instruction (BCD)

1-48

1.2.19 BCD CONVERSION Instruction (BCD)

Outline

The BCD instruction converts a binary value in the Source into a BCD value (BCD conver-
sion) and the result is stored in the Dest. If the 4 - digit decimal value in the Source is abcd,
the output value (Dest) of the BCD instruction can be determined by the following formula:
 Dest = (a × 4096) + (b × 256) + (c × 16) + d
Although the above formula is applicable even if the value in the Source cannot be
expressed in BCD notation (e.g. numbers greater than 9999 or negative numbers), correct
results are obtained in such cases.

Format

Parameter

Parameter Name Setting

Source • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: BCD
Full Name: Convert to BCD
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-49

1

Program Example

Integer Type Data

Double-length Integer Type Data

1 Ladder Program Instructions

1.2.20 PARITY CONVERSION Instruction (PARITY)

1-50

1.2.20 PARITY CONVERSION Instruction (PARITY)

Outline

The PARITY instruction counts the number of bits in the Source that are set to ON (or 1) and
the result is stored in the Dest.

Format

Parameter

Program Example

Integer Type Data

Double-length Integer Type Data

Parameter Name Setting

Source • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register

Dest • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

• Subscript register

Symbol: PARITY
Full Name: Count ON Bit
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-51

1

1.2.21 ASCII CONVERSION Instruction (ASCII)

Outline

The ASCII instruction converts the specified characters (character string in Source) to the
corresponding ASCII character codes and stores them in the designated Dest. It recognizes
uppercase and lowercase characters separately.

The first character is stored in the lower-place byte of the first word and the second character
is stored in the higher-place byte of the first word. Other characters are stored in the same
way. If the number of characters is odd, the higher-place byte of the last word in the storage
register is set to 0. Up to 32 characters can be entered.

Format

Parameter

Program Example

The character string "ABCD" is stored in MW00100 to MW00101.

Parameter Name Setting

Source • ASCII characters

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

Symbol: ASCII
Full Name: Convert Character to ASCII
Category: MATH
Icon:

MW00100

MW00101

Upper Lower

MW00100 = 4241H

MW00101 = 4443H

42H ('B')

44H ('D')

41H ('A')

43H ('C')

1 Ladder Program Instructions

1.2.22 ASCII CONVERSION 2 Instruction (BINASC)

1-52

The character string "ABCDEFG" is stored in MW00100 to MW00103.

1.2.22 ASCII CONVERSION 2 Instruction (BINASC)

Outline

The BINASC instruction converts the 16-bit binary data stored in the Source into four-digit
hexadecimal ASCII character codes and stores them in the designated Dest (two words).

Format

Parameter

MW00100

MW00101

Upper Lower

MW00102

MW00103

"0" is entered in the extra byte.

MW00100 = 4241H

MW00101 = 4443H

MW00100 = 4645H

MW00101 = 0047H

42H ('B')

44H ('D')

46H ('F')

00H

41H ('A')

43H ('C')

45H ('E')

47H ('G')

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript
• Constant

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

Symbol: BINASC
Full Name: Convert Binary to ASCII
Category: MATH
Icon:

1.2 Numeric Operation Instructions

1-53

1

Program Example

The "1234H" binary stored in MW00200 is converted to a for digit hexadecimal ASICII
code and stored in MW00100 to MW00101.

1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

Outline

The ASCBIN instruction converts four-digit hexadecimal ASCII character codes in the
Source into 16-bit binary data and stores it in the Dest.

Format

Parameter

BINASC

MW00200

MW00100

MW00100

MW00101

MW00100 = 3231H

MW00101 = 3433H

Upper Lower

32H ('2')

34H ('4')

31H ('1')

33H ('3')

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C register)
• Any integer type register with subscript (except for # and C reg-

ister)

Symbol : ASCBIN
Full Name : Convert ASCII to Binary
Category : MATH
Icon :

1 Ladder Program Instructions

1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

1-54

Program Example

The for-byte ASCII code stored in MW00100 to MW00101 is converted to two-byte binary
data, and the result is stored in MW00200.

ASCBIN

MW00100

MW00200

MW00100

MW00101

MW00200

Source

12H

Upper

34H

LowerUpper Lower

32H ('2')

34H ('4')

31H ('1')

33H ('3')

1.3 Logical Operation/Comparison Instructions

1-55

1

1.3 Logical Operation/Comparison Instructions

1.3.1 AND Instruction (AND)

Outline

The AND instruction outputs the logical product (AND) of Source A and Source B to the
Dest.

Format

Parameter

Table 1.7 1 bit Truth Table for the Logical Product

Source A Source B Dest
0 0 0

0 1 0

1 0 0

1 1 1

Parameter Name Setting

Source A • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Source B • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Dest • Any integer type and double-length integer type register
(except for # and C register)

• Any integer type and double-length integer type register with
subscript (except for # and C register)

• Subscript register

Symbol: AND
Full Name: AND
Category: LOGIC
Icon:

1 Ladder Program Instructions

1.3.2 OR Instruction (OR)

1-56

Program Example

The logical product of MW000100 and a constant is stored in MW00101.

1.3.2 OR Instruction (OR)

Outline

The OR instruction outputs the logical sum (OR) of Source A and Source B to the Dest.

Format

Table 1.8 1 bit Truth Table for the Logical Sum

Source A Source B Dest
0 0 0

0 1 1

1 0 1

1 1 1

Symbol: OR
Full Name: Inclusive OR
Category: LOGIC
Icon:

1.3 Logical Operation/Comparison Instructions

1-57

1

Parameter

Program Example

The logical sum of MW00100 and a constant is stored in MW00101.

1.3.3 XOR Instruction (XOR)

Outline

The XOR instruction outputs the exclusive logical sum (XOR) of Source A and Source B to
the Dest.

Parameter Name Setting

Source A • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Source B • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Dest • Any integer type and double-length integer type register
(except for # and C register)

• Any integer type and double-length integer type register with
subscript (except for # and C register)

• Subscript register

Table 1.9 1 bit Truth Table for the Exclusive Logical Sum

Source A Source B Dest
0 0 0

0 1 1

1 0 1

1 1 0

1 Ladder Program Instructions

1.3.3 XOR Instruction (XOR)

1-58

Format

Parameter

Program Example

The exclusive logical sum of MW00100 and a constant is stored in MW00101.

Parameter Name Setting

Source A • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Source B • Any integer type and double-length integer type register
• Any integer type and double-length integer type register with

subscript
• Subscript register
• Constant

Dest • Any integer type and double-length integer type register
(except for # and C register)

• Any integer type and double-length integer type register with
subscript (except for # and C register)

• Subscript register

Symbol: XOR
Full Name: Exclusive OR
Category: LOGIC
Icon:

1.3 Logical Operation/Comparison Instructions

1-59

1

1.3.4 Comparison Instruction (<)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is smaller than 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: <
Full Name: Less Than (A < B)
Category: LOGIC
Icon:

1 Ladder Program Instructions

1.3.5 Comparison Instruction (<=)

1-60

1.3.5 Comparison Instruction (<=)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is under 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: <=
Full Name: Less Than or Equal (A <= B)
Category: LOGIC
Icon:

1.3 Logical Operation/Comparison Instructions

1-61

1

1.3.6 Comparison Instruction (=)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is equal to 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: =
Full Name: Equal (A = B)
Category: LOGIC
Icon:

1 Ladder Program Instructions

1.3.7 Comparison Instruction (!=)

1-62

1.3.7 Comparison Instruction (!=)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is not equal to 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: !=
Full Name: Not Equal (A! = B)
Category: LOGIC
Icon:

1.3 Logical Operation/Comparison Instructions

1-63

1

1.3.8 Comparison Instruction (>=)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is above 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: >=
Full Name: Greater Than or Equal (A >= B)
Category: LOGIC
Icon:

1 Ladder Program Instructions

1.3.9 Comparison Instruction (>)

1-64

1.3.9 Comparison Instruction (>)

Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

Format

Parameter

Program Example

If the value of MW00100 is bigger than 100, after the instructions operation are executed.

Parameter Name Setting

Source A • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Source B • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Symbol: >
Full Name: Greater Than (A > B)
Category: LOGIC
Icon:

1.3 Logical Operation/Comparison Instructions

1-65

1

1.3.10 RANGE CHECK Instruction (RCHK)

Outline

The RCHK instruction checks whether the input value in the Input is within the Lower Limit
and Upper Limit, and then outputs the result to the bit output. The contents of the Input are
retained.

• If the Input value (Input) is greater than the Lower Limit and less than the Upper Limit,
the result (Bit Output) = ON.

• In the cases other than the above, the result (Bit Output) = OFF.

Format

Upper limit

Lower limit

Input

Bit output = OFF

Bit output = ON

Bit output = OFF

Symbol: RCHK
Full Name: Range Check
Category: LOGIC
Icon:

1 Ladder Program Instructions

1.3.10 RANGE CHECK Instruction (RCHK)

1-66

Parameter

Program Example

Integer Type Data

Parameter Name Setting

Input • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Lower Limit • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Upper Limit • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

 Input (MW00100) Output (DB000000)

-1000 > MW00100 OFF

-1000 <= MW00100 <= 1000 ON

MW00100 >1000 OFF

1.3 Logical Operation/Comparison Instructions

1-67

1

Double-length Integer Type Data

Real Number Type Data

 Input (ML00100) Output (DB000000)

-100000 > ML00100 OFF

-100000 <= ML00100 <= 100000 ON

ML00100 >100000 OFF

 Input (DF00100) Output (DB000000)

-10.5 > DF00100 OFF

-10.5 <= DF00100 <= 10.5 ON

DF00100 >10.5 OFF

1 Ladder Program Instructions

1.4.1 SUB-DRAWING CALL Instruction (SEE)

1-68

1.4 Program Control Instructions

1.4.1 SUB-DRAWING CALL Instruction (SEE)

Outline

The SEE instruction is used to call a sub-drawing from a drawing or to call a sub-sub- draw-
ing from a sub-drawing. Calling is not possible between drawings of different types. For
example, SEE H01 cannot be specified in DWG.L.

Format

Parameter

Program Example

Parameter Name Setting

Name Program Name

Symbol: SEE
Full Name: Call Program
Category: CONTROL
Icon:

DWG.A

DWG.A01

END

(SEE)

Name. A01

Start of execution of
child drawing A01

End of execution of

child drawing A01

SEE A01

1.4 Program Control Instructions

1-69

1

1.4.2 MOTION PROGRAM CALL Instruction (MSEE)

Outline

MSEE instruction is used in referring to the motion program.
This instruction can be referred only from DWG.H.
It is not possible to refer from DWG.A and DWG.L.

Format

Parameter

Program Example

Parameter Name Setting

Program No.
(Motion Program No.)

• Direct specification: Numerical value of 1-256
• Indirect specification: Register of integer type

Dest
(Work Register)

• Register address (except for # and C registers)

Symbol: MSEE
Full Name: Call Motion Program
Category: MOTION
Icon:

DWG.H MPM001

END

(MSEE)
 Program No. 1
 Data DA00000

DWG H Motion program

VEL [X] 6000 [Y] 6000 ;
MOV [X] 1000 [Y] 1000 ;
MVS [X] 2000 ;

1 Ladder Program Instructions

1.4.3 FUNCTION CALL Instruction (FUNC)

1-70

1.4.3 FUNCTION CALL Instruction (FUNC)

Outline

The FUNC instruction is used to call a user function or system function from a drawing, sub-
drawing, or user function. The user function to be called must be defined in advance. (Sys-
tem functions do not have to be defined by the user because they are already defined by the
system.)

Format

Parameter

Parameter Name Setting

Name Program name

INPUT Input parameter (the data type depends on function definition)

ADRESS Address parameter (Address type register)

OUTPUT Output parameter (the data type depends on function definition)

Symbol: FUNC
Full Name: User Function
Category: CONTROL
Icon:

1.4 Program Control Instructions

1-71

1

The forms of parameter input and output are shown below.

Program Example

Input Data
Form

Input Designa-
tion

Description

Bit Input B-VAL Designates the output to be of a bit type. The bit type data
become the input to the function.

Integer Type
Input

I-VAL Designates the input to be of an integer type. The contents
(integer data) of the register with the designated number
become the input to the function.

I-REG Designates the input to be the contents of an integer type
register. The number of the integer type register is desig-
nated when referencing the function. The contents (integer
data) of the register with the designated number become
the input to the function.

Double-length
Integer Type
Input

L-VAL Designates the input to be of a double-length integer type
register.
When reference the function, the contents (double-length
integer data) of the register with the designated number
become the input to the function.

L-REG Designates the input to be the contents of a double-length
integer type register. When reference the function, the con-
tents (double-length integer data) of the register with the
designated number become the input to the function.

Real Number
Type Input

F-VAL Designates the input to be of a real number type. The con-
tents (real number data) of the register with the designated
number become the input to the function.

F-REG Designates the input to be the contents of a real number
type register.
The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become
the input to the function.

Address Input − Hands over the address of the designated register (an arbi-
trary integer register) to the function. Only 1 input is
allowed in the case of a user function.

1 Ladder Program Instructions

1.4.4 DIRECT INPUT STRING Instruction (INS)

1-72

1.4.4 DIRECT INPUT STRING Instruction (INS)

Outline

The INS instruction continuously performs direct input to a single module according to the
contents of a previously-set parameter table. INS can only be used for LIO modules.

Format

Parameter

* Possible to omit.

Method of Setting RSSEL

Designates the rack/slot where the target module is mounted.

 Hexadecimal expression: xxyyH
 xx = rack number (01H ≤ xx ≤ 04H)
 yy = slot number (00H ≤ yy ≤ 0DH)

Parameter Name Setting

Parameter • Register address (except for # and C registers)
• Register address with subscript

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol : INS
Full Name : Direct Input String
Category : CONTROL
Icon :

Table 1.10 INS Instruction Parameter/Data

ADR Type Symbol Name Specifications Input or
Output

0 W RSSEL Module designation 1 Designation of module for performing input<For
details refer to (1) and (2) below>

IN

1 W MDSEL Module designation 2 IN

2 W STS Status Output of a bit equivalence of the status for each
word input

OUT

3 W N Number of words Designation of number of continuous input words IN

4 W ID1 Input data 1 If there is an error in the output of input data, 0 is
stored

OUT

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

N+3 W IDN Input data N OUT

1.4 Program Control Instructions

1-73

1

The rack number = 1, slot number = 3 with tixation in MP930

Method of Setting MDSEL

The input module type = 0, rack number = 1, slot number = 3, data offset = 0 with fixation in MP930

Program Example

Data input from LIO mounted at rack 2, slot 4.

INFO

F C 8 4 0

a b c d Hexadecimal:
abcdH

a: Input module type
b: Rack number (1 ≤ b ≤ 4)
c: Slot number (1 ≤ c ≤ 9)
d: Data offset (0 ≤ d ≤ 7)

0: Discrete input module
1: Register input module

INFO

1 Ladder Program Instructions

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

1-74

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

Outline

The OUTS instruction continuously performs direct output to a single module according to
the contents of a previously-set parameter table. OUTS can only be used for LIO modules.

Format

Parameter

* Possible to omit.

* Method of setting RSSEL and N (number of words) is the same as for INS.

Parameter Name Setting

Parameter • Register address (except for # and C registers)
• Register address with subscript

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: OUTS
Full Name: Direct Output String
Category: CONTROL
Icon:

Table 1.11 OUTS Instruction Parameter/Data

ADR Type Symbol Name Specifications Input or
Output

0 W RSSEL Module designation 1 Designation of module for performing output∗ IN

1 W MDSEL Module designation 2 IN

2 W STS Status Output of a bit equivalence of the status for each
word output

OUT

3 W N Number of words Designation of number of words output continuously IN

4 W OD1 Output data 1 Setting output data IN

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

N+3 W ODN Output data N IN

1.4 Program Control Instructions

1-75

1

Program Example

Two words output to LIO-01 mounted at rack 3, slot 10.

Two outputs will be done by using the OUTS instruction because local I/O is allocated by default for
MP930.

INFO

1 Ladder Program Instructions

1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

1-76

1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

Outline

The XCALL instruction is used to call an extension program. Extension programs are table
format programs. Although a pulurality of XCALL instructions may be used in one draw-
ing, the same extension program cannot be called more than once.

Format

Parameter

Program Example

Parameter Name Setting

Name MCTBL: Constant table (M register)
IOTBL: I/O conversion table
ILKTBL: Interlock table
ASMTBL: Parts composition table

Symbol: XCALL
Full Name: Call Extended Program
Category: CONTROL
Icon:

DWG.x.xx Expansion Conversion Program

XCALL ILKTBL

XPEND
The converted ladder
program cannot be
viewed at the Editor.

(XCALL)
 Name ILKTBL

1.4 Program Control Instructions

1-77

1

1.4.7 WHILE Instruction (WHILE, END_WHILE)

Outline

Instruction between WHILE and END_WHILE is repeatedly executed as long as the condi-
tion specified by WHILE instruction is satisfied. When the condition is no longer satisfied,
instruction sequence is not executed and the program proceeds with the instruction immedi-
ately after END_WHILE.

Format

• At instruction development display ON

• At instruction development display OFF

Parameter

Parameter Name Setting

Conditional Expression Description by Expression

Symbol: WHILE
END_WHILE

Full Name: While Do
 End of While
Category: CONTROL
Icon: ,

Symbol: WHILE-END_WHILE
Full Name: While Do and
 End of While
Category: CONTROL
Icon:

1 Ladder Program Instructions

1.4.7 WHILE Instruction (WHILE, END_WHILE)

1-78

Program Example

The total for 100 registers, from MW00100 to MW00199, is stored in MW00200.

1.4 Program Control Instructions

1-79

1

1.4.8 IF Instruction (IF, END_IF)

Outline

If the conditional expression in the IF instruction is approved, the instruction sequence
between IF and END_IF is executed. If the conditional expression in the IF instruction is
not approved, the instruction sequence between IF and END_IF is not executed.

Format

• At instruction development display ON

• At instruction development display OFF

Parameter

1. Eight IF instructions can be nested.

2. If an instruction is defined after a contact, this instruction is regarded as an IF instruction and
included in the nest.

Parameter Name Setting

Conditional Expression Description by Expression

Symbol: IF
END_IF

Full Name: If Then
 End of If
Category: CONTROL
Icon: ,

Symbol: IF-END_ IF
Full Name: IF Then and

End of If
Category: CONTROL
Icon:

INFO

1 Ladder Program Instructions

1.4.9 IF Instruction (IF, ELSE, END_IF)

1-80

Program Example

If MB000108 is ON, MW00201 is added to MW00200, and MW00201 is incremented.

1.4.9 IF Instruction (IF, ELSE, END_IF)

Outline

If the conditional expression in the IF instruction is approved, the instruction sequence 1
between IF and ELSE is executed. If the conditional expression in the IF instruction is not
approved, the instruction sequence 2 between ELSE and END_IF is executed.

Format

• At instruction development display ON

Symbol: IF
 ELSE
 END_IF
Full Name: If Then
 Else
 End of If
Category: CONTROL
Icon: , ,

1.4 Program Control Instructions

1-81

1

• At instruction development display OFF

Parameter

1. Eight IF instructions can be nested.

2. If an instruction is defined after a contact, this instruction is regarded as an IF instruction and
included in the nest.

Program Example

MW00011 is set to 0 if MW00010 is positive number, and set to 1 if MW00010 is negative
number.

Parameter Name Setting

Conditional Expression Description by Expression

Symbol: IF-ELSE-
END_IF

Full Name: IF Then and
 Else and
 End of If
Category: CONTROL
Icon:

INFO

1 Ladder Program Instructions

1.4.10 FOR Instruction (FOR, END_FOR)

1-82

1.4.10 FOR Instruction (FOR, END_FOR)

Outline

The instruction sequence surrounded by the FOR instruction and the corresponding
END_FOR instruction are executed the specified number of times: N = (Max - Init + 1)/
Step. Variable starts from initial value (Init) and is incremented by Step on each execution.
The instruction sequence is ended when Variable > Max.

Format

• At instruction development display ON

• At instruction development display OFF

Symbol: FOR
END_FOR

Full Name: For
End of For

Category: CONTROL
Icon: ,

Symbol: FOR-END_FOR
Full Name: For and

End of For
Category: CONTROL
Icon:

1.4 Program Control Instructions

1-83

1

Parameter

Program Example

The high byte and low byte, form MW00100 to MW00102, are exchanged.

Parameter Name Setting

Variable • Any integer type register
• Any integer type register with subscript
• Subscript register (I and J registers)

Init • Any integer type register
• Any integer type register with subscript
• Subscript register
• Constant

Max • Any integer type register
• Any integer type register with subscript
• Subscript register
• Constant

Step • Any integer type register
• Any integer type register with subscript
• Subscript register
• Constant

1 Ladder Program Instructions

1.4.11 EXPRESSION Instruction (EXPRESSION)

1-84

1.4.11 EXPRESSION Instruction (EXPRESSION)

Outline

EXPRESSION instruction is composed by one block. It considers on a par with a coil type
component, and an input line has the Instruction of Enable/Disable command. In the block,
Expression box for an operation formula description is prepared, and the description of the
operation formula to 1000 lines is possible.

Format

Parameter

Program Example

Parameter Name Setting

Conditional Expression Description by Expression

Symbol: EXPRESSION
Full Name: Expression
Category: CONTROL
Icon:

1.5 Basic Function Instructions

1-85

1

1.5 Basic Function Instructions

1.5.1 SQUARE ROOT Instruction (SQRT)

Outline

The SQRT instruction calculates the square root of an integer or real number value as the
operation result. The input units and output results for integer and real number values are
different. This instruction cannot be used for double-length integer data.

Integer Type Data

The square root of Source is stored in Dest. The operation result of the SQRT instruction
slightly differs from the square root in mathematical terms. To be more precise, the opera-
tion result is expressed by the following formula:

 32768∗ sign (A)∗ SQRT (|A|/ 32768)
 sign (A): sign of the Source
 |A| : absolute value of the Source

In other words, the operation result is equal to the mathematical square root multiplied by
approximately 181.02. If the input is a negative value, the square root of the absolute value
is calculated first and then the negative value of the square root is output as the operation
result.
The maximum error of the output value is +/-2.

Real Number Type Data

The square root of Source is stored in Dest. If the input is a negative value, the square root
of the absolute value is calculated first and then the negative value of the square root is out-
put as the operation result. This instruction can be used in a real number operation.

Format

Symbol: SQRT
Full Name: Square Root
Category: FUNCTION
Icon:

1 Ladder Program Instructions

1.5.1 SQUARE ROOT Instruction (SQRT)

1-86

Parameter

Program Example

Integer Type Data

• When the input is a positive number

• When the input is a negative number

Real Number Type Data

• When the input is a positive number

• When the input is a negative number

Parameter Name Setting

Source
(Input)

• Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Dest
(Output)

• Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

1.5 Basic Function Instructions

1-87

1

1.5.2 SINE Instruction (SIN)

Outline

The SIN instruction calculates the sine of an integer or real number value as the operation
result. The input units and output results for integer and real number values are different.
This instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 = 0.01 degree) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 10,000.

If a value outside the range of -327.68 to 327.67 is entered, the correct result cannot be
obtained. For example, if 360.00 is entered, -295.36 degrees will be output as the result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the sine of the input is stored in the Dest.

Format

Parameter

Parameter Name Setting

Source
(Input)

• Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Dest
(Output)

• Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Symbol: SIN
Full Name: Sine
Category: FUNCTION
Icon:

1 Ladder Program Instructions

1.5.3 COSINE Instruction (COS)

1-88

Program Example

Integer Type Data

Input X = 30 degrees (MW00100 = 30∗100 = 3000)

Output SIN (X) = 0.50 (MW00102 = 0.50∗10000 = 5000)

Real Number Type Data

1.5.3 COSINE Instruction (COS)

Outline

The COS instruction calculates the cosine of integer or real number values as the operation
result.

The input units and output results for integer and real number values are different. This
instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 = 0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 10,000. If a value outside the range of -327.68 to 327.67 is
entered, the correct result is obtained. For example, if 360.00 is entered, -295.36 degrees is
output as a result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the cosine of the input is stored in the
Dest.

1.5 Basic Function Instructions

1-89

1

Format

Parameter

Program Example

Integer Type Data

Input X = 60 degrees (MW00100 = 60∗100 = 6000)

Output COS (X) = 0.50 (MW00102 = 0.50∗10000 = 500)

Real Number Type Data

Parameter Name Setting

Source
(Input)

• Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Dest
(Output)

• Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Symbol: COS
Full Name: Cosine
Category: FUNCTION
Icon:

1 Ladder Program Instructions

1.5.4 TANGENT Instruction (TAN)

1-90

1.5.4 TANGENT Instruction (TAN)

Outline

The TAN instruction uses the Source as the input (unit = degrees) and stores the tangent of
the input in the Dest. This instruction can be used in a real number operation.

Format

Parameter

Program Example

The tangent of the input value (X = 45.0 degrees) [TAN (X) = 1.0] is calculated.

TANGENT Instruction cannot be used for integer type and double-length integer type data.

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

Symbol: TAN
Full Name: Tangent
Category: FUNCTION
Icon:

INFO

1.5 Basic Function Instructions

1-91

1

1.5.5 ARC SINE Instruction (ASIN)

Outline

The ASIN instruction uses the Source as the input and stores the arc sine (unit = degrees) of
the input in the Dest. This instruction can be used in a real number operation.

Format

Parameter

Program Example

The arc sine of the input value (0.5) [ASIN (0.5) = θ = 30.0 degrees] is calculated.

ARC SINE Instruction cannot be used for integer type and double-length integer type data.

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

Symbol: ASIN
Full Name: Arc Sine
Category: FUNCTION
Icon:

INFO

1 Ladder Program Instructions

1.5.6 ARC COSINE Instruction (ACOS)

1-92

1.5.6 ARC COSINE Instruction (ACOS)

Outline

The ACOS instruction uses the Source as the input and stores the arc cosine (unit = degrees)
of the input in the Dest. This instruction can be used in a real number operation.

Format

Parameter

Program Example

The arc cosine of the input value (0.5) [ACOS (0.5) = X = 60.0 degrees] is calculated.

ARC COSINE Instruction cannot be used for integer type and double-length integer type data.

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

Symbol: ACOS
Full Name: Arc Cosine
Category: FUNCTION
Icon:

INFO

1.5 Basic Function Instructions

1-93

1

1.5.7 ARC TANGENT Instruction (ATAN)

Outline

The ATAN instruction calculates the arc tangent of integer or real number data as the opera-
tion result.

The input units and output results for integer and real number data are different. This
instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 = 0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 100.

Real Number Type Data

The Source is used as the input (unit = degrees) and the arc tangent of the input is stored in
the Dest.
This instruction cannot be used for integer type and double-length integer data.

Format

Parameter

Parameter Name Setting

Source
(Input)

• Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Dest
(Output)

• Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Symbol: ATAN
Full Name: Arc Tangent
Category: FUNCTION
Icon:

1 Ladder Program Instructions

1.5.8 EXPONENT Instruction (EXP)

1-94

Program Example

Integer Type Data

Input X = 1.00 (MW00100 = 1.00∗100 = 100)

Output X = 45 degrees (MW00102 = 45∗100 = 4500)

Real Number Type Data

1.5.8 EXPONENT Instruction (EXP)

Outline

The EXP instruction uses the Source as the input (x) and stores the natural logarithmic base

(e) to the power of the input (ex) in the Dest as the operation result. This instruction can be
used only in a real number operation.

Format

Symbol: EXP
Full Name: Exponential
Category: FUNCTION
Icon:

1.5 Basic Function Instructions

1-95

1

Parameter

Program Example

e (= 2.7183) to the power of the input value (x = 1.0) is calculated.

Maximum value (3.4 ･･･ E + 38) is stored and an operation error will not occur even if the operation
results of EXP instruction in an overflow.

1.5.9 NATURAL LOGARITHM Instruction (LN)

Outline

The LN instruction uses the Source as the input (x) and stores the natural logarithm (Loge
x)

of the input in the Dest as the operation result. This instruction can be used only in a real
number operation.

Format

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

INFO

Symbol: LN
Full Name: Natural Logarithm
Category: FUNCTION
Icon:

1 Ladder Program Instructions

1.5.10 COMMON LOGARITHM Instruction (LOG)

1-96

Parameter

Program Example

The natural logarithm of the input value (x = 10.0) [Loge(x) = 2.3026] is calculated.

LN instruction is input (x) value is checked, execute the following handling.

• When the input is minus LN (-1), calculate an absolute value.
• When the input is zero LN (0), take -∞ for solution.

1.5.10 COMMON LOGARITHM Instruction (LOG)

Outline

The LOG instruction uses the Source as the input (x) and stores the common logarithm

(Log10
x) of the input in the Dest as the operation result. This instruction can be used only in

a real number operation.

Format

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

INFO

Symbol: LOG
Full Name: Logarithm Base 10
Category: FUNCTION
Icon:

1.5 Basic Function Instructions

1-97

1

Parameter

Program Example

The common logarithm of the input value (x = 10.) [Log10(x) = 1.0] is calculated.

LOG instruction is input (x) value is checked, execute the following handling.

• When the input is minus LOG (-1), calculate an absolute value.
• When the input is zero LOG (0), take -∞ for solution.

Parameter Name Setting

Source
(Input)

• Any real number type register
• Any real number type register with subscript
• Constant

Dest
(Output)

• Any real number type register (except for # and C register)
• Any real number type register with subscript (except for # and

C register)

INFO

1 Ladder Program Instructions

1.6.1 BIT ROTATION LEFT Instruction (ROTL)

1-98

1.6 Data Manipulation Instructions

1.6.1 BIT ROTATION LEFT Instruction (ROTL)

Outline

The ROTL instruction is used to rotate bits to the left the number of times designated in the
bit table designated by the leading bit address and bit width.

Format

Parameter

Parameter Name Setting

Head Bit Address • Any bit type register (except for # and C registers)
• Any bit type register with subscript (except for # and C regis-

ters)

Number of Rotations • Any integer type register
• Any integer type register with subscript
• Constant

Bit Width • Any integer type register
• Any integer type register with subscript
• Constant

4 3 2 1 0m - 3m - 2m - 1

Bit width (m)

Head bit address

Number of rotations

Symbol: ROTL
Full Name: Bit Rotate Left
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-99

1

Program Example

The data having MB00000A (bit A of MW00000) as the head address and a bit width of 10
are rotated five times to the left.

1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

Outline

The ROTR instruction is used to rotate bits to the right the number of times designated in the
bit table designated by the leading bit address and bit width.

Rotation symmetry range (Bit width = 10)

F C 9 4 0

F

0 0 1 1 1 0

1 0 0 0

0 1 0 0 0 0

C 9 4 0

MW00000

MW00000

MW00001

Before
execution

After
execution

0 1 1 1 MW00001

4 3 2 1 0m - 3m - 2m - 1

Bit width (m)

Head bit address

Number of rotations

1 Ladder Program Instructions

1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

1-100

Format

Parameter

Program Example

The data having MB00000 (bit 0 of MW00000) as the head address and a bit width of 10 are
rotated once to the right.

Parameter Name Setting

Head Bit Address • Any bit type register (except for # and C registers)
• Any bit type register with subscript (except for # and C regis-

ters)

Number of Rotations • Any integer type register
• Any integer type register with subscript
• Constant

Bit Width • Any integer type register
• Any integer type register with subscript
• Constant

Symbol: ROTR
Full Name: Bit Rotate Right
Category: MOVE
Icon:

F C 8 4 0

Rotation symmetry range (Bit width = 10)

F C 8 4 0

1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1

1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0

Before
execution

After
execution

1.6 Data Manipulation Instructions

1-101

1

1.6.3 MOVE BITS Instruction (MOVB)

Outline

The MOVB instruction moves the designated number of bits (Width) from the beginning of
the move source bits (Source) to the beginning of the move destination bits (Dest). The
move process is performed one bit at a time in the direction in which the relay number
increases.

Unless the move source bits overlap with the move destination bits, the move source bit
table is stored. If there is overlap between them, the move source bit table may not be stored.

Format

 Transfer source
 data area

 Transfer
 destination
 data area

Source Dest
Width

Number of transfers (m)

(a)
(b)
c
d
e
f
g

(h)

(f)
(g)
(h)

c
d
e
f
g

Transfer source
(a)
(b)
a
b
c
d
e

(h)

Transfer destination

(f)
(g)
(h)

a
b
c
d
e

When the transfer source and
transfer destination overlap (2)

11 10 10 10

5 1 04 3 2m - 1 m - 2 m - 3

Address of the head
transfer source bit

11 10 10 10 Address of the
head transfer
destination bit

1

1

Transfer source Transfer destination

When the transfer source and
transfer destination overlap (1)

⇒

Symbol: MOVB
Full Name: Move Bit
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.3 MOVE BITS Instruction (MOVB)

1-102

Parameter

Program Example

The 10 bits of data starting from MB000000 (bit 0 of MW00000) are transferred to
MB000010 (bit 0 of MW0000).

Parameter Name Setting

Source • Any bit type register
• Any bit type register with subscript

Dest • Any bit type register (except for # and C registers)
• Any bit type register with subscript (except for # and C regis-

ters)

Width • Any integer type register
• Any integer type register with subscript
• Constant

After transfer

1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0

1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1

Transfer range

MW00000

MW00001

MW00000

MW00001

Transfer range

0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1

1.6 Data Manipulation Instructions

1-103

1

1.6.4 MOVE WORD Instruction (MOVW)

Outline

The MOVW instruction moves the designated number of words (Width) from the beginning
of the move source registers (Source) to the beginning of the move destination registers
(Dest). The move process is performed one word at a time in the direction in which the reg-
ister number increases.

Unless the move source registers overlap with the move destination registers, the move
source word table is stored. If there is overlap between them, the move source bit table may
not be stored.

Format

Source Dest
Width

Transfer source
data area

 Transfer
 destination
 data area

(a)
(b)
c
d
e
f
g

(h)

(f)
(g)
(h)

c
d
e
f
g

(a)
(b)
a
b
a
b
a

(h)

(f)
(g)
(h)

a
b
c
d
e

Transfer source Transfer destinationTransfer source Transfer destination

When the transfer source and
transfer destination overlap (2)

When the transfer source and
transfer destination overlap (1)

⇒

Symbol: MOVW
Full Name: Move Word
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.4 MOVE WORD Instruction (MOVW)

1-104

Parameter

Program Example

The word data MW00000 to MW00009 are transferred to MW00100 to MW00109.

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Width • Any integer type register
• Any integer type register with subscript
• Constant

After
transfer

1234H

2345H

3456H

9999H

1234H

2345H

3456H

9999H

MW00000

MW00001

MW00002

MW00009

MW00100

MW00101

MW00102

MW00109

•
•

•

•
•

•

•
•

•

•
•

•

1.6 Data Manipulation Instructions

1-105

1

1.6.5 EXCHANGE Instruction (XCHG)

Outline

The XCHG instruction is used to exchange data between data tables 1 (Data Table1) and 2
(Data Table2).

Format

Parameter

Parameter Name Setting

Data Table 1 • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Data Table 2 • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Width • Any integer type register
• Any integer type register with subscript
• Constant

Data Table 1 DataTable 2

Width

 a

 b

c

d

e

f

g

 h

n

o

p

i

j

k

l

m

 a

 b

c

d

e

f

g

h

n

o

p

i

j

k

l

m

After executing the XCHG instructionBefore executing the XCHG instruction

Data Table 1 Data Table 2

Data Table 1 DataTable 2 DataTable 2Data Table 1

⇔

Symbol: XCHG
Full Name: Exchange
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.6 SET WORDS Instruction (SETW)

1-106

Program Example

The contents of MW00000 to MW00009 are exchanged to MW00100 to MW00109.

1.6.6 SET WORDS Instruction (SETW)

Outline

The SETW instruction stores the designated data (Set Data) in all registers designated by the
transfer destination register number (Dest) and the number of destination registers (Width).
The storage process is performed one word at a time in the direction in which the register
number increases.

After
transfer

1031H

1032H

1033H

1034H

1035H

1036H

1037H

1038H

1039H

1030H

1031H

1032H

1033H

1034H

1035H

1036H

1037H

1038H

1039H

1030H

2050H

2051H

2052H

2053H

2054H

2055H

2056H

2057H

2058H

2059H

2050H

2051H

2052H

2053H

2054H

2055H

2056H

2057H

2058H

2059H

MW00000

MW00001

MW00002

MW00003

MW00004

MW00005

MW00006

MW00007

MW00008

MW00009

MW00100

MW00101

MW00102

MW00103

MW00104

MW00105

MW00106

MW00107

MW00108

MW00109

MW00100

MW00101

MW00102

MW00103

MW00104

MW00105

MW00106

MW00107

MW00108

MW00109

MW00000

MW00001

MW00002

MW00003

MW00004

MW00005

MW00006

MW00007

MW00008

MW00009

xxxxx

Transfer data Transfer destination area

V = S, I, O, M, D

Transfer
destination
register no.

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

Number of

transfers

VWxxxxx + (n - 1)

VWxxxxx + n

VWxxxxx

VWxxxxx + 1

VWxxxxx + 2

VWxxxxx + 3

•
•

•

1.6 Data Manipulation Instructions

1-107

1

Format

Parameter

Program Example

The contents of MW00100 to MW00119 are set to 0.

Parameter Name Setting

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Set Data • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Width • Any integer type register
• Any integer type register with subscript
• Constant

Symbol: SETW
Full Name: Set Word
Category: MOVE
Icon:

00000

Transfer data Transfer destination

00000

00000

00000

00000

00000

00000

MW00100

MW00101

MW00102

MW00103

MW00118

MW00119

•
•

•

1 Ladder Program Instructions

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

1-108

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

Outline

The BEXTD instruction stores the byte sequence stored in the transfer source registers
(Source) one byte at a time in the word sequence in the transfer destination registers (Dest).
The higher-place bytes of the transfer destination registers are set to 0.

Format

VWyyyyy

V = S, I, O, M, D

DestSource

d

f

VWxxxxx

Number of
transfers

(Number of bytes)
c

e

b

00H

c

00H

d

00H

e

00H

f

00H

a (Lower byte)

b (Upper byte)

VWxxxxx + 1

VWxxxxx + 2

a (Lower byte)

b (Upper byte)

 VWyyyyy + 1

VWyyyyy + 2

VWyyyyy + 3

VWyyyyy + 4

VWyyyyy + 5

Symbol: BEXTD
Full Name: Extend Byte toWord
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-109

1

Parameter

Program Example

The 5 bytes beginning with MW00100 are expanded into five words beginning with
MW00200.

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Byte Width • Any integer type register
• Any integer type register with subscript
• Constant

12H

13H

14H

00H

14H

00H

MW00100

MW00102

MW00104

MW00101

MW00103

MW00201

MW00202

MW00203

MW00204

MW0020010H (Lower byte)

11H (Upper byte)

10H (Lower byte)

00H (Upper byte)

11H

00H

12H

00H

13H

00H

1 Ladder Program Instructions

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

1-110

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

Outline

The BPRESS instruction stores the lower-place bytes of the word sequence stored in the
transfer source registers (Source) in the byte sequence of the transfer destination registers
(Dest). The higher-place bytes of the transfer source registers are ignored. This function is
the reverse of that of the BEXTD instruction.

• In the case of BPRESS VWxxxxx to VWyyyyy B = N

Format

Parameter

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Byte Width • Any integer type register
• Any integer type register with subscript
• Constant

VWxxxxx

When the number of transfered bytes
is an odd number, "0" is set.
V = S, I, O, M, D

DestSource

Number of
transfers

(Number of bytes)

a (Lower byte)

b (Upper byte)

c

d

e

00

a (Lower byte)

xxH (Upper byte)

b

xxH

c

xxH

d

xxH

e

xxH

VWyyyyy

VWyyyyy + 2

VWyyyyy + 1VWxxxxx + 1

VWxxxxx + 2

VWxxxxx + 3

VWxxxxx + 4

Symbol: BPRESS
Full Name: Compress Word to Byte
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-111

1

Program Example

The five words beginning with MW00100 are compressed into 5 bytes beginning with
MW00200.

1.6.9 BINARY SEARCH Instruction (BSRCH)

Outline

The BSRCH instruction uses a binary search method to search the designated data (Search
Data) within the designated search range (Source). The search result (offset from the lead-
ing register number of the search range for the matching data) is stored in the designated reg-
ister (Result).

Note: 1. Before executing the BSRCH instruction, sort the data within the
search range in ascending order.

2. If there are two or more words with identical data, the first register
number that matches the data will be stored.

3. If no matching data is found, -1 will be stored.

Format

When the number of transfered
bytes is an odd number, "0" is set.

10H (Lower byte)

11H (Upper byte)

MW00200

MW00201

MW00202

12H

13H

14H

00H

10H (Lower byte)

00H (Upper byte)

11H

00H

12H

00H

13H

00H

14H

00H

MW00100

MW00101

MW00102

MW00103

MW00104

Symbol: BSRCH
Full Name: Binary Data Search
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.9 BINARY SEARCH Instruction (BSRCH)

1-112

Parameter

Program Example

Data matching with 01234 are searched for in registers MW00100 to MW00199, and the
result is stored in register DW00000.

Parameter Name Setting

Source • Any integer type and double-length integer type register
• Any integer type and double-length type register with subscript

Width • Any integer type and double-length integer type register
• Any integer type and double-length type register with subscript

Search Data • Any integer type and double-length integer type register
• Any integer type and double-length type register with subscript
• Constant

Result • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Offset number of MW00100
is stored in DW00000.
DW00000 00102 - 00100

DW00000

MW00102 MW00100

0

00321

01234

99765

MW00100

MW00101

MW00102

MW00199

00002

←

•
•

•

•
•

•

1.6 Data Manipulation Instructions

1-113

1

1.6.10 SORT Instruction (SORT)

Outline

The SORT instruction sorts data within the designated register range (Data Table, Width) in
ascending order.

Format

Parameter

Program Example

The data in registers MW00100 to MW00119 are sorted in ascending order.

Parameter Name Setting

Data Table • Any integer type and double-length integer type register
(except for # and C registers)

• Any integer type and double-length integer type register with
subscript (except for # and C registers)

Width • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)
• Constant

Symbol: SORT
Full Name: Sort
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

1-114

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

Outline

The SHFTL instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width (Bit Width) to the left the designated number of bits (Number of
Shifts).

Format

Parameter

Program Example

A ten-bit wide section of data with MB0000A (bit A of MW00000) as the head is shifted
five bits to the left.

Parameter Name Setting

Head Bit Address • Any bit type register (except for # and C registers)
• Any bit type register with subscript (except for # and C regis-

ters)

Number of Shifts • Any integer type register
• Any integer type register with subscript
• Constant

Bit Width • Any integer type register
• Any integer type register with subscript
• Constant

Symbol: SHFTL
Full Name: Bit Shift Left
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-115

1

1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)

Outline

The SHFTR instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width to (Bit Width) the right the designated number of bits (Number of
Shifts).

Format

Parameter

A

Note: The upper five bits are thrown away.

1 1 0 0 0

1 0 0 0

1

A

1 0 0 0 0 0

0 1 0 1

3

30 is entered.

MW00001

MW00000

MW00001

MW00000

. .

. .

.

.

Parameter Name Setting

Head Bit Address • Any bit type register (except for # and C registers)
• Any bit type register with subscript (except for # and C regis-

ters)

Number of Shifts • Any integer type register
• Any integer type register with subscript
• Constant

Bit Width • Any integer type register
• Any integer type register with subscript
• Constant

Symbol: SHFTR
Full Name: Bit Shift Right
Category: MOVE
Icon:

1 Ladder Program Instructions

1.6.13 COPY WORD Instruction (COPYW)

1-116

Program Example

A five-bit wide section of data with MB000005 (bit A of MW00000) as the head is shifted
three bits to the right.

1.6.13 COPY WORD Instruction (COPYW)

Outline

The COPYW instruction copies the designated number of words (Width) from the beginning
of the copy source register (Source) to the beginning of the copy destination register (Dest).
The copy process copies the entire block of data from the copy source to the copy destina-
tion. Even if there is overlap between the copy source and the copy destination, the full
copy data block is copied to the copy destination.

Format

5

0 is entered.
Note: The lower three bits are thrown away.

1 1 1 1 1

0 0 0 1 1

2

MW00000

MW00000

.

.

.

Symbol: COPYW
Full Name: Copy Word
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-117

1

Parameter

Program Example

The word data of MW00000 to MW00009 are transferred to MW00100 to MW00109.

Parameter Name Setting

Source • Any integer type register
• Any integer type register with subscript

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

Width • Any integer type register
• Any integer type register with subscript
• Constant

After
transfer

1032H

1133H

1234H

1841H

1032H

1133H

1234H

1841H

1842H 1842H

MW00001

MW00002

MW00008

MW00009

MW00100

MW00101

MW00102

MW00108

MW00109

MW00000

•
•

•

•
•

•

•
•

•

•
•

•

1 Ladder Program Instructions

1.6.14 BYTE SWAP Instruction (BSWAP)

1-118

1.6.14 BYTE SWAP Instruction (BSWAP)

Outline

The BSWAP instruction swaps the higher-place and lower-place bytes of the designated reg-
ister (Dest).

Format

Parameter

Parameter Name Setting

Dest • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)

a

Upper Lower

After swap

b ab

Before swap

VWxxxxx VWxxxxx

V = S, I, O, M, DUpper Lower

Symbol: BSWAP
Full Name: Byte Swap
Category: MOVE
Icon:

1.6 Data Manipulation Instructions

1-119

1

Program Example

The upper and lower bytes of MW00100 to MW00102 are swapped.

12H

13H 44H

14H 54H

34H 12H34H

44H 13H

54H 14H

MW00100

MW00101

MW00102

MW00100

MW00102

MW00101

Upper Lower

After swapBefore swap

Upper Lower

Upper Lower

After swapBefore swap

Upper Lower

Upper Lower

After swapBefore swap

Upper Lower

1 Ladder Program Instructions

1.7.1 DEAD ZONE A Instruction (DZA)

1-120

1.7 DDC Instructions

1.7.1 DEAD ZONE A Instruction (DZA)

Outline

The DZA instruction executes a dead zone operation on integer, double-length integer or
real number data.

The following operation is performed, where Input is the input value, Zone is the designated
dead zone value, and Output is the output value:

• Output = Input (absolute value of Input is greater than or equal to the absolute value of
Zone)

• Output = 0 (absolute value of Input is less than the absolute value of Zone)

Format

+D

-D

X

Y

Symbol: DZA
Full Name: Dead Zone A
Category: DDC
Icon:

1.7 DDC Instructions

1-121

1

Parameter

Program Example

Integer Type Operation

Double-length Integer Type Operation

Parameter Name Setting

Input • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Zone • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Output • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

 Outside
dead zone
 Within

dead zone

 Within
dead zone

 Outside
dead zone

1 Ladder Program Instructions

1.7.2 DEAD ZONE B Instruction (DZB)

1-122

Real Number Type Operation

1.7.2 DEAD ZONE B Instruction (DZB)

Outline

The DZB instruction executes a dead zone operation on integer, double-length integer or real
number data.

The following operation is performed, where Input is the input value, Zone is the designated
dead zone value, and Output is the output value:

• Output = Input - the absolute value of Zone (the absolute value of Input is greater than or
equal to the absolute value of Zone; Input is greater than or equal to 0)

• Output = Input + the absolute value of Zone (the absolute value of Input is greater than
or equal to the absolute value of Zone; Input is less than or equal to 0)

• Output = 0 (the absolute value of Input is less than the absolute value of Zone)

 Outside
dead zone

 Within
dead zone

X

Y

+D

-D

1.7 DDC Instructions

1-123

1

Format

Parameter

Program Example

Integer Type Operation

Parameter Name Setting

Input • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Zone • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Output • Any integer type, double-length integer type and real number
type register (except for # and C registers)

• Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

• Subscript register

Symbol: DZB
Full Name: Dead Zone B
Category: DDC
Icon:

 Outside
dead zone

 Within
dead zone

1 Ladder Program Instructions

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

1-124

Double-length Integer Type Operation

Real Number Type Operation

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

Outline

The LIMIT instruction executes an upper/lower limit operation on integer, double-length
integer, or real number data. The following operation is performed, where Input is the input
value, Lower Limit is the lower limit, Upper Limit is the upper limit, and Output is the output
value:

• Output = Lower Limit (Input is less than Lower Limit)
• Output = Input (Lower Limit is less than or equal to Input which is less than or equal to

Upper Limit)
• Output = Upper Limit (Upper Limit is less than Input)

 Out side
dead zone
 Outside
dead zone

 Within
dead zone

 Outside
dead zone

 Within
dead zone

Lower limit: A

X

Y

Upper limit: B

1.7 DDC Instructions

1-125

1

Format

Parameter

Parameter Name Setting

Input • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Lower Limit • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Upper Limit • Any integer type, double-length integer type and real number
type register

• Any integer type, double-length integer type and real number
type register with subscript

• Subscript register
• Constant

Output • Any integer type and double-length integer register (except for
and C registers)

• Any integer type and double-length integer register with sub-
script (except for # and C registers) (except for # and C regis-
ters)

• Subscript register

Symbol: LIMIT
Full Name: Limit
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

1-126

Program Example

Integer Type Operation

Double-length Integer Type Operation

 Input (MW00100) Output (MW0010)

-100 > MW00100 -00100 (under the lower limit)

-100 ≤ MW00100 ≤ 100 Value of MW00100 (within the upper
and lower limit)

MW00100 >100 00100 (above the upper limit)

 Input (ML00100) Output (ML00102)

-100000 > ML00100 -100000 (under the lower limit)

-100000 ≤ ML00100 ≤ 100000 Value of ML00100 (within the upper and
lower limit)

ML00100 > 100000 100000 (above the upper limit)

1.7 DDC Instructions

1-127

1

Real Number Type Operation

1.7.4 PI CONTROL Instruction (PI)

Outline

The PI instruction executes a PI control operation according to the contents of a previously
set parameter table. The input (Input) to the PI operation must be integer or real number
data. Double-length integer data cannot be used. The configurations of the parameter tables
for integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

Input (MF00200) Output (MF00202)

-100.0 > MF00200 -100.0 (under the lower limit)

-100.0 ≤ MF00200 ≤ 100.0 Value of MF00200 (within the upper and
lower limit)

MF00200 > 100.0 100.0 (above the upper limit)

Table 1.12 Integer Type PI Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN

2 W Ki Integration adjustment
gain

Gain of the integration circuit input (a gain of 1 is set
to 100)

IN

3 W Ti Integration time Integration time (ms) IN

4 W IUL Upper integration limit Upper limit for the I offset IN

5 W ILL Lower integration limit Lower limit for the I offset IN

6 W UL Upper PI limit Upper limit for the P + I offset IN

7 W LL Lower PI limit Lower limit for the P + I offset IN

8 W DB PI output dead band Width of the dead band for the P + I offset IN

9 W Y PI output PI offset output (also output to the A register) OUT

10 W Yi I offset Storage of the I offset OUT

11 W IREM I remainder Storage of the I remainder OUT

1 Ladder Program Instructions

1.7.4 PI CONTROL Instruction (PI)

1-128

* Relay I/O Bit Assignment

* Relay I/O Bit Assignment

Here, the PI operation is expressed as follows:

The following operation is performed within the PI instruction:

BIT Symbol Name Specifications I/O

0 IRST Integration reset "ON" is input when integration is reset IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Table 1.13 Real Number Type PI Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F Kp P gain Gain of the P offset IN

4 F Ki Integration adjustment
gain

Gain of the integration circuit input IN

6 F Ti Integration time Integration time (s) IN

8 F IUL Upper integration limit Upper limit for the I offset IN

10 F ILL Lower integration limit Lower limit for the I offset IN

12 F UL Upper PI limit Upper limit for the P + I offset IN

14 F LL Lower PI limit Lower limit for the P + I offset IN

16 F DB PI output dead band Width of the dead band for the P + I offset IN

18 F Y PI output PI offset output (also output to the A register) OUT

20 F Yi I offset I stored OUT

BIT Symbol Name Specifications I/O

0 IRST Integration reset "ON" is input when integration is reset IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Y 1

X
 = Kp + Ki ×

Ti × S

X: deviation input value

Y: output value

Ti
Y = Kp × X + {(Ki × X + IREM) /

Ts
 + Yi }

Yi : previous output value

Ts: scan time setting

,

,

1.7 DDC Instructions

1-129

1

Block Diagram

• When the P + I offset reaches the upper or lower PI limit (UL, LL) or the PI dead
band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed by the present value.

• When the integration reset (IRST) is "ON"
Yi = 0 and IREM = 0 are output.

Format

Parameter

Parameter Name Setting

Input • Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Input
X

Kp

Ki Ts/Ti

Z-1

I LIMIT
Output

Y

LIMIT, DB

Symbol: PI
Full Name: PI Control
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.4 PI CONTROL Instruction (PI)

1-130

Program Example

Integer Type Operation

MW00100 to MW00111 are used for the parameter table.

Real Number Type Operation

MF00200 to MF00220 are used for the parameter table.

Deviation input value

Head address of parameter table
PI output value

Deviation input value

Head address of parameter table
PI output value

1.7 DDC Instructions

1-131

1

1.7.5 PD CONTROL Instruction (PD)

Outline

The PD instruction executes a PD control operation according to the contents of a previously
set parameter table. The input (Input) to the PD operation must be integer or real number
data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

* Relay I/O Bit Assignment

Table 1.14 Integer Type PD Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN

2 W Kd D gain Gain of the differential circuit input (a gain of 1 is set
to 100)

IN

3 W Td1 Divergence differential
time

The differential time (ms) used in the case of diverg-
ing input.

IN

4 W Td2 Convergence differential
time

The differential time (ms) used in the case of con-
verging input.

IN

5 W UL Upper PD limit Upper limit for the P + D offset IN

6 W LL Lower PD limit Lower limit for the P + D offset IN

7 W DB PD output dead band Width of the dead band for the P + D offset IN

8 W Y PD output PD offset output (also output to the A register) OUT

9 W X Input value storage Storage of the present deviation input value OUT

BIT Symbol Name Specifications I/O

0 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

1 Ladder Program Instructions

1.7.5 PD CONTROL Instruction (PD)

1-132

* Relay I/O Bit Assignment

Here, the PD operation is expressed as follows:

The following operation is performed within the PD instruction:

Table 1.15 Real Number Type PD Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F Kp P gain Gain of the P correction IN

4 F Kd D gain Gain of the differential circuit input IN

6 F Td1 Divergence differential
time

The differential time (s) used in the case of diverging
input.

IN

8 F Td2 Convergence differential
time

The differential time (s) used in the case of converg-
ing input.

IN

10 F UL Upper PD limit Upper limit for the P + D offset IN

12 F LL Lower PD limit Lower limit for the P + D offset IN

14 F DB PD output dead band Width of the dead band for the P + D offset IN

16 F Y PD output PD offset output (also output to the A register) OUT

18 F X Input stored Present deviation input value stored OUT

BIT Symbol Name Specifications I/O

0 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Y

X
= Kp + Kd × Td × S

X: deviation input value

Y: output value

Td
Y = Kp X + Kd (X – X) ×× ×

Ts

X : previous input value

Ts: scan time setting

,

,

1.7 DDC Instructions

1-133

1

Block Diagram

• When the change in deviation output (X-X’) and the previous deviation input (X’)
are the same in sign (diverging) in the differential (D) operation
The divergence differential time (Td1) is used as the differential time.

• When the change in deviation output (X-X’) and the previous deviation input (X’)
are opposite in sign (converging) in the differential (D) operation
The convergence differential time (Td2) is used as the differential time.

Format

Parameter

Parameter Name Setting

Input • Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Input
X

Output
Y

LIMIT, DB+
-

+

+

Td/Ts

Z-1

Kp

Kd

Symbol: PD
Full Name: PD Control
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.5 PD CONTROL Instruction (PD)

1-134

Program Example

Integer Type Operation

MW00100 to MW00109 are used for the parameter table.

Real Number Integer Type Operation

MF00200 to MF00218 are used for the parameter table.

Deviation input value

Head address of parameter table
PD output value

Deviation input value

Head address of parameter table
PD output value

1.7 DDC Instructions

1-135

1

1.7.6 PID CONTROL Instruction (PID)

Outline

The PID instruction executes a PID control operation according to the contents of a previ-
ously set parameter table. The input (Input) to the PID operation must be integer or real
number data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

* Relay I/O Bit Assignment.

Table 1.16 Integer Type PID Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W Kp P gain Gain of the P correction (a gain of 1 is set to 100) IN

2 W Ki I gain Gain of the integration circuit input (a gain of 1 is set
to 100)

IN

3 W Kd D gain Gain of the differentiation circuit input (a gain of 1 is
set to 100)

IN

4 W Ti Integration time Integration time (ms) IN

5 W Td1 Divergence differential
time

The differential time (ms) used in the case of diverg-
ing input.

IN

6 W Td2 Convergence differential
time

The differential time (ms) used in the case of con-
verging input.

IN

7 W IUL Upper integration limit Upper limit for the I correction value IN

8 W ILL Lower integration limit Lower limit for the I correction value IN

9 W UL Upper PID limit Upper limit for the P + I + D offset IN

10 W LL Lower PID limit Lower limit for the P + I + D offset IN

11 W DB PID output dead band Width of the dead band for the P + I + D offset IN

12 W Y PID output PID offset output (also output to the A register) OUT

13 W Ti I offset I offset stored OUT

14 W IREM I remainder I remainder stored OUT

15 W X Input value storage Present deviation input value stored OUT

BIT Symbol Name Specifications I/O

0 IRST Integration reset "ON" is input when integration is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

1 Ladder Program Instructions

1.7.6 PID CONTROL Instruction (PID)

1-136

* Relay I/O Bit Assignment

Here, the PID operation is expressed as follows:

The following opertion is performed within the PID instruction:

Table 1.17 Real Number Type PID Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F Kp P gain Gain of the P offset IN

4 F Ki I gain Gain of the integration circuit IN

6 F Kd D gain Gain of the differentiation circuit input IN

8 F Ti Integration time Integration time (ms) IN

10 F Td1 Divergence differential
time

The differential time (s) used in the case of diverging
input.

IN

12 F Td2 Convergence differential
time

The differential time (s) used in the case of converg-
ing input.

IN

14 F IUL Upper integration limit Upper limit for the I offset IN

16 F ILL Lower integration limit Lower limit for the I offset IN

18 F UL Upper PID limit Upper limit for the P + I + D offset IN

20 F LL Lower PID limit Lower limit for the P + I + D offset IN

22 F DB PID output dead band Width of the dead band for the P + I + D offset IN

24 F Y PID output PID offset output (also output to the A register) OUT

26 F Ti I offset I offset stored OUT

28 F X Input value storage Present deviation input value stored OUT

BIT Symbol Name Specifications I/O

0 IRST Integration reset "ON" is input when integration is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Y 1
X = Kp + Ki × ×Ti S + Kd × Td × S

X: deviation input value
Y: output value

Ti Td
Y = Kp X + { } (Ki × × ×× X + IREM) /

Ts
+ Yi + Kd (X – X)

Ts

X : previous input value

Yi : previous I output value

Ts: scan time setting

, ,

,
,

1.7 DDC Instructions

1-137

1

Block Diagram

• When the P + I + D offset reaches the upper or lower PID limit (UL, LL) or the PID
dead band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed with the present value.

• When the change in deviation output (X-X’) and the previous deviation input X’
are the same in sign (diverging) in the differential (D) operation
The divergence differential time (Td1) is used as the differential time.

• When the change in deviation output (X-X’) and the previous deviation input X’
are opposite in sign (converging) in the differential (D) operation
The convergence differential time (Td2) is used as the differential time.

• When the integration reset (IRST) is "ON"
Yi = 0 and IREM = 0 are output.

Format

Input
X

Output
Y

LIMIT, DB

Ki Ts/Ti

I LIMIT

+

+

+

Kd Td/Ts

+
+

+
Kp

Z-1

Z-1

-

Symbol: PID
Full Name: PID Control
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.6 PID CONTROL Instruction (PID)

1-138

Parameter

Program Example

Integer Type Operation

MW00100 to MW00115 are used for the parameter table.

Real Number Type Operation

MF00200 to MF00228 are used for the parameter table.

Parameter Name Setting

Input • Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Deviation input value

Head address of parameter table
PID output value

Deviation input value

Head address of parameter table
PID output value

1.7 DDC Instructions

1-139

1

1.7.7 FIRST-ORDER LAG Instruction (LAG)

Outline

The LAG instruction calculates the first-order lag according to the contents of a previously
set parameter table. The input (Input) to the LAG operation must be integer or real number
data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

* Relay I/O Bit Assignment.

* Relay I/O Bit Assignment

Here, the LAG operation is expressed as follows:

Table 1.18 Integer Type LAG Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W T First-order lag time con-
stant

First-order lag time constant (ms) IN

2 W Y LAG output LAG output (also output to the A register) OUT

3 W REM Remainder Remainder stored OUT

BIT Symbol Name Specifications I/O

0 IRST LAG reset "ON" is input when LAG is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Table 1.19 Real Type LAG Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F T First-order lag time con-
stant

First-order lag time constant (s) IN

4 F Y LAG output LAG output (also output to the F register) OUT

BIT Symbol Name Specifications I/O

0 IRST LAG reset "ON" is input when LAG is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Y 1

X
=

1 + T S
 ; ie. T (dY/dt) + Y = X ×

×

1 Ladder Program Instructions

1.7.7 FIRST-ORDER LAG Instruction (LAG)

1-140

The following operation is performed within the LAG instruction with dt = Ts and dY = Y-
Y’:

Y = 0 and REM = 0 are output when the LAG reset (RST) is "ON".

Format

Parameter

Parameter Name Setting

Input • Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

T × Y + Ts × X + REM
Y =

T + Ts

X: input value

Y: output value

Y : previous output value

Ts: scan time setting

,

,

Symbol: LAG
Full Name: First Order Lag
Category: DDC
Icon:

1.7 DDC Instructions

1-141

1

Program Example

Integer Type Operation

MW00100 to MW00103 are used for the parameter table.

Real Number Type Operation

MF00200 to MF00204 are used for the parameter table.

Deviation input value

Head address of parameter table
LAG output value

Deviation input value

Head address of parameter table
LAG output value

1 Ladder Program Instructions

1.7.8 PHASE LEAD/LAG Instruction (LLAG)

1-142

1.7.8 PHASE LEAD/LAG Instruction (LLAG)

Outline

The LLAG instruction calculates the phase lead/lag according to the contents of a previously
set parameter table. The input (Input) to the LLAG operation must be integer or real number
data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each
parameter as an integer consisting of the lower-place 16 bits.

* Relay I/O Bit Assignment

* Relay I/O Bit Assignment

Table 1.20 Integer Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W T2 Phase lead time
constant

Phase lead time constant (ms) IN

2 W T1 Phase lag time constant Phase lag time constant (ms) IN

3 W Y LLAG output LLAG output (may also be output to the A register) OUT

4 W REM Remainder Remainder stored OUT

5 W X Input stored Input value stored OUT

BIT Symbol Name Specifications I/O

0 IRST LLAG reset "ON" is input when LLAG is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

Table 1.21 Real Number Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 W T2 Phase lead time constant Phase lead time constant (s) IN

4 W T1 Phase lag time constant Phase lag time constant (s) IN

6 W Y LLAG output LLAG output (may also be output to the F register) OUT

8 W X Input preservation Input value stored OUT

BIT Symbol Name Specifications I/O

0 IRST LLAG reset "ON" is input when LLAG is reset. IN

1 to 7 − (Reserved) Reserved relay for input IN

8 to F − (Reserved) Reserved relay for output OUT

1.7 DDC Instructions

1-143

1

Here, the LLAG operation is expressed as follows:

The following operation is performed within the LLAG instruction with dt = Ts, dY = Y-Y’,
and dX = X-X’

Y = 0, REM = 0, X = 0, are output when the LLAG reset (RST) is "ON".

Format

Parameter

Parameter Name Setting

Input • Any integer type and real number type register
• Any integer type and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type and real number type register (except for #
and C registers)

• Any integer type and real number type register with subscript
(except for # and C registers)

• Subscript register

Y 1 + T2 × S
X

=
1 + T1 × S

 ; ie. T × (dY/dt) + Y = T2 × (dX/dt) + X

T1 × Y + (T2 + Ts) × X – T2 × X + REM
Y =

T1 + Ts

X: input value

Y: output value

X: previous input value

Y: previous output value

Ts: scan time setting

, ,

,

,

Symbol: LLAG
Full Name: Phase Lead Lag
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.9 FUNCTION GENERATOR Instruction (FGN)

1-144

Program Example

Integer Type Operation

MW00100 to MW00105 are used for the parameter table.

Real Number Type Operation

MF00200 to MF00208 are used for the parameter table.

1.7.9 FUNCTION GENERATOR Instruction (FGN)

Outline

The FGN instruction generates a function curve according to the contents of a previously set
parameter table. The input to the FGN instruction can be integer, double-length integer, or
real number data. The configuration of the parameter table differs according to the type of
data.

Deviation input value

Head address of parameter table
LLAG output value

Deviation input value

Head address of parameter table
LLAG output value

Deviation input value

Head address of parameter table
LLAG output value

Table 1.22 Integer Type FGN Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W N Number of data Number of pairs of X and Y IN

1 W X1 Data 1 IN

2 W Y1 Data 1 IN

3 W X2 Data 2 IN

4 W Y2 Data 2 IN
••• ••• ••• ••• ••• •••

2N-1 W XN Data N IN

2N W YN Data N IN

1.7 DDC Instructions

1-145

1

If the data set in the parameter table for the FGN instruction are Xn and Yn, the data must be

set so that Xn ≤ Yn+1. The FGN instruction searches for an Xn/ Yn pair within the parameter

table for which Xn ≤ X ≤ Yn+1 and computes the output value Y according to the following

formula:

If the Xn/ Yn pair, which satisfies Xn ≤ X ≤ Yn+1 for an input value X, does not exist in the

parameter table, the result will be as follows:

• IF X < X1

• IF X > X1

Table 1.23 Double-length lnteger or Real Type FGN Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W N Number of data Number of pairs of X and Y IN

1 W − (Reserved) Reserved register IN

2 L/F X1 Data 1 IN

4 L/F Y1 Data 1 IN

6 L/F X2 Data 2 IN

8 L/F Y2 Data 2 IN
••• ••• ••• ••• ••• •••

4N-2 L/F XN Data N IN

4N L/F YN Data N IN

Y n+1 – Yn
Y = Yn +

Xn+1 – Xn
× (X– Xn) (1≤ ≤n N – 1)

Y2 – Y1
Y = Y1 +

X2 – X2

(X– X1)

Yn – Yn - 1Y = Yn+1 + Xn – Xn - 1
 (X – X1 (

X1 X2 X X3 X4

Y1

Y2

Y

Y3
Y4

Input value

Output
value

1 Ladder Program Instructions

1.7.9 FUNCTION GENERATOR Instruction (FGN)

1-146

Format

Parameter

Program Example

Integer Type Operation (Number of Data: N = 20)

#W00000 to #W00040 are used for the parameter table.

Parameter Name Setting

Input • Any integer type, double-length integer and real number type
register

• Any integer type register with subscript
• Any integer type, double-length integer and real number type

register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type, double-length integer and real number type
register (except for # and C registers)

• Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)

• Subscript register

Symbol: FGN
Full Name: Function Generator
Category: DDC
Icon:

Deviation input value

Head address of parameter table
FGN output value

1.7 DDC Instructions

1-147

1

Double-length Integer Type Operation (Number of Data: N = 20)

#L00000 to #L00080 are used for the parameter table.

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

Outline

The IFGN instruction generates a function curve according to the contents of a previously
set parameter table. The input to the IFGN instruction can be integer, double-length integer,
or real number data.

The configuration of the parameter table differs according to the type of data.

If the data set in the parameter table for the IFGN instruction are Xn and Yn, the data must be

set so that Yn is less than or equal to Yn+1. The IFGN instruction searches for an Xn/Yn pair

within the parameter table in which Yn is less than or equal to Y which is less than or equal

to Yn+1 from input value Y and calculates the output value X.

Deviation input value

Head address of parameter table
FGN output value

Deviation input value

Head address of parameter table
FGN output value

Table 1.24 Integer Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W N Number of data Number of pairs of X and Y IN

1 W X1 Data 1 IN

2 W Y1 Data 1 IN

3 W X2 Data 2 IN

4 W Y2 Data 2 IN
••• ••• ••• ••• ••• •••

2N-1 W XN Data N IN

2N W YN Data N IN

1 Ladder Program Instructions

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

1-148

If the data set in the parameter table for the IFGN instruction are Xn and Yn, the data must be

set so that Xn ≤ Yn+1. The IFGN instruction searches for an Xn/ Yn pair within the parame-

ter table for which Yn ≤ Y ≤ Yn+1 and computes the output value Y according to the follow-

ing formula:

If the Xn/ Yn pair, which satisfies Yn ≤ Y ≤ Yn+1 for an input value Y, does not exist in the

parameter table, the result will be as follows:

• IF X < Y1

• IF Y > Y1

Table 1.25 Double-length Integer or Real Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W N Number of data Number of pairs of X and Y IN

1 W − (Reserved) Reserved register IN

2 L/F X1 Data 1 IN

4 L/F Y1 Data 1 IN

6 L/F X2 Data 2 IN

8 L/F Y2 Data 2 IN

••• ••• ••• ••• ••• •••

4N-2 L/F XN Data N IN

4N L/F YN Data N IN

Xn+1 – Xn
X = Xn +

Yn+1 – Yn
× (Y – Yn)

X2 – X1 X = X1 +
Y2 – Y1

(Y – Y1)

Xn – Xn-1 X = Xn+1 +
Yn – Yn -1

(Y – Y1)

X1 X2 X X3 X4

Y1

Y2

Y

Y3

Y4

Ouput value

Input
value

1.7 DDC Instructions

1-149

1

Format

Parameter

Parameter Name Setting

Input • Any integer type, double-length integer and real number type
register

• Any integer type register with subscript
• Any integer type, double-length integer and real number type

register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type, double-length integer and real number type
register (except for # and C registers)

• Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)

• Subscript register

Symbol: IFGN
Full Name: Inverse Function Generator
Category: DDC
Icon:

1 Ladder Program Instructions

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

1-150

Program Example

Integer Type Operation (Number of Data: N = 20)

#W00000 to #W00040 are used for the parameter table.

Double-length Integer Type Operation (Number of Data: N = 20)

#L00000 to #L00080 are used for the parameter table.

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

Deviation input value

Head address of parameter table
IFGN output value

Deviation input value

Head address of parameter table
IFGN output value

Deviation input value

Head address of parameter table
IFGN output value

1.7 DDC Instructions

1-151

1

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

Outline

The LAU instruction performs acceleration and deceleration at a fixed acceleration/deceler-
ation rate upon input of a speed reference (Input). The operation is performed according to
the contents of a previously set parameter table.

The input to the LAU operation must be integer or real number data. Double-length data
cannot be used. The configurations of the parameter tables for integer and real number data
are different. Operations are performed by processing each parameter as an integer consist-
ing of the lower-place 16 bits.

* Relay I/O Bit Assignment

* When the quick stop (QS) is "OFF", the quick stop time (QT) is used as acceleration/decelera-
tion time.

Table 1.26 Integer Type LAU Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W LV 100% input level Scale of the 100% input value IN

2 W AT Acceleration time Time for acceleration from 0% to 100% (0.1 s) IN

3 W BT Deceleration time Time for deceleration from 0% to 100% (0.1 s) IN

4 W QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN

5 W V Current speed LAU output (also output to the A register) OUT

6 W DVDT Current acceleration/de-
celeration speed

Scale with the normal acceleration rate being set to
5000.

OUT

7 W − (Reserved) Reserved register −

8 W VIM Previous speed instruction For storage of the previous value of the speed
instruction input

OUT

9 W DVDTK DVDT coefficient Scaling coefficient of the current acceleration
(DVDT) (-32768 to 32767)

IN

10 L REM Remainder Remainder of the acceleration/deceleration rate OUT

BIT Symbol Name Specifications I/O

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop. ∗ IN

2 DVDTF DVDT operation non-
execution

"Closed" entered in DVDT operation non-execution IN

3 DVDTS DVDT operation selec-
tion

Selection DVDT operation method IN

4 to 7 − (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. OUT

9 BRY In deceleration "ON" is output during deceleration. OUT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. OUT

B EQU Coincidence "ON" is output when input value = output value. OUT

C to F − (Reserved) Reserved relay for input OUT

1 Ladder Program Instructions

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

1-152

* Relay I/O Bit Assignment

* When the quick stop (QS) is “OFF” , the quick stop time (QT) is used as
acceleration/deceleration time.

The following operations are performed inside integer type LAU instructions.

Integer Type LAU Instruction

Table 1.27 Real Type LAU Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F LV 100% input level Scale of the 100% input value IN

4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN

6 F BT Deceleration time Time for deceleration from 0% to 100% (s) IN

8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN

10 F V Current speed LAU output (also output to the F register) OUT

12 F DVDT Current acceleration/de-
celeration speed

Scaled with the normal acceleration rate being set to
5000.

OUT

BIT Symbol Name Specifications I/O

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop.∗ IN

2 to 7 − (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. OUT

9 BRY In deceleration "ON" is output during deceleration. OUT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. OUT

B EQU Coincidence "ON" is output when input value = output value. OUT

C to F − (Reserved) Reserved relay for input OUT

LV × Ts (0.1 ms) + REM When VI > V (V 0),

Acceleration rate (ADV) = AT (0.1 s) × 1000 V = V + ADV: In acceleration (ARY)
ON

When VI < V (V 0),

V = V - ADV: In acceleration (ARY)
ON

≥

≤

, ,

,

, ,

,

LV × Ts (0.1 ms) + REM When VI > V (V < 0)

Deceleration rate (BDV) = BT (0.1 s) × 1000 V = V + BDV: In deceleration (BRY)
ON
When VI < V (V > 0)

V = V - BDV: In deceleration (BRY)
ON

,

,

, ,

,

,

1.7 DDC Instructions

1-153

1
• If the DVDT operation instruction (DVDTF) is ON, a current acceleration/deceleration

operation (DVDT) is performed.
• If DVDTF is OFF, DVDT = 0 is output. If DVDTF is ON, a current acceleration/decel-

eration operation (DVDT) is output after one of the following operations has been per-
formed through DVDT operation selection (DVDTS).

After (∗S) operates (∗O) of either as follows, the operation of addition-subtraction speed
(DVDT) is output by DVDT operation selection (DVDTS) now when DVDTF is turn-
ing on.

• When the "line is running" signal (RN) is "OFF", V = 0 and DVDT = 0 are output.

Real Type LAU Instruction

LV × Ts (0.1 ms) + REM When QS = ON (VI > V) ,

Quick stop rate (QDV) = QT (0.1 s) × 1000 V = V

V : previous speed output value

VI: Speed designated input

Ts: scan time setting

 + QDV: In deceleration (BRY)
ON
At QS=ON(VI < V, V > 0)

V = V - QDV: In deceleration (BRY)
ON

,

,

,

, ,

,

V - V’
If DVDTS is ON: DVDT =

ADV
 × 5000

If DVDTS is OFF DVDT = (V × DVDTK) - (V’ × DVDTK)

At V = 0, the zero velocity (LSP) is ON, at VI = V equality (EQU) turns ON.

:

LV × Ts (0.1 ms) When VI > V (V > 0) ,

Acceleration rate (ADV) = AT(s) × 10000 V = V + ADV: ARY (in acceleration) is

ON
When VI < V' (V < 0) ,

V = V - ADV: ARY (in acceleration) is
ON

’

’

’

’ ’

-LV × Ts (0.1 ms) When VI < V (V > 0)

Deceleration rate (BDV) = BT(s) × 10000 V = V + BDV: BRY (in deceleration) is

ON
At VI > V (V <0)

V = V - BDV: BRY (in deceleration) is
ON

’’

’

’ ’

’

-LV × Ts (0.1 ms) When QS = ON (V > VI),
Quick stop rate (QDV) =

QT(s) × 10000 V = V + QDV: BRY (in deceleration) is

ON
When QS = ON (V < VI)

V = V - QDV: BRY (in deceleration) is
ON

V : previous speed output value

VI: Speed designated input

Ts: scan time setting (ms)

’

’

’

’

’

1 Ladder Program Instructions

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

1-154

The current acceleration/deceleration (DVDT) is output after the following operation is car-
ried out:

When the "line is running" signal (RN) is "OFF", V = 0 and DVDT = 0 are output.

Format

Parameter

Parameter Name Setting

Input • Any integer and real number type register
• Any integer and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer and real number type register (except for # and C
registers)

• Any integer and real number type register with subscript
(except for # and C registers)

• Subscript register

V - V’
DVDT =

ADV
× 5000

Symbol: LAU
Full Name: Linear Accelerator
Category: DDC
Icon:

1.7 DDC Instructions

1-155

1

Program Example

Integer Type Operation

MW00100 to MW00111 are used for the parameter table.

Real Number Type Operation

MF00200 to MF00212 are used for the parameter table.

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Outline

The SLAU instruction performs acceleration and deceleration at a variable acceleration/
deceleration rate upon input of a speed reference (Input). The operation is performed
according to the contents of the previously set parameter table.

Positive and negative values can be entered for speed reference input. Always set a value so
that the linear acceleration or deceleration time (AT or BT) is greater than or equal to the S-
curve acceleration or deceleration time (AAT or BBT).

The input to the SLAU operation must be integer or real number data. Double-length inte-
ger data cannot be used. The configurations of the parameter tables for integer and real
number data are different

Deviation input value

Head address of parameter table
LAU output value

Deviation input value

Head address of parameter table
LAU output value

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

1-156

Table 1.28 Integer Type SLAU Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W LV 100% input level Scale of the 100% input IN

2 W AT Acceleration time Time for acceleration from 0% to100% (0.1 s) IN

3 W BT Deceleration time Time for deceleration from 0% to100% (0.1 s) IN

4 W QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN

5 W AAT S-curve acceleration time Time spent in the S-curve area during acceleration
(0.01 s)

IN

6 W BBT S-curve deceleration time Time spent in the S-curve area during deceleration
(0.01 s)

IN

7 W V Current speed SLAU output (also output to the A register) OUT

8 W DVDT1 Current acceleration/
deceleration speed1
(DVDT1)

Scaled with the normal acceleration rate being set to
5000.

OUT

9 W − (Reserved) Reserved register −

10 W ABMD Speed increase upon
holding

Amount of change in speed after hold instruction and
until stabilization.

OUT

11 W REM1 Remainder Remainder of acceleration/deceleration rate OUT

12 W − (Reserved) Reserved register −

13 W VIM Remainder For storage of the previous value of the speed desig-
nation input

OUT

14 L DVDT2 Current acceleration/
deceleration speed2
(DVDT2)

1000 times of actual acceleration/deceleration OUT

16 L DVDT3 Current acceleration/
deceleration speed3
(DVDT3)

Current acceleration/deceleration (= DCDT2/1000) OUT

18 L REM2 Remainder Remainder of S-curve area acceleration/deceleration
rate

OUT

20 W REM3 Remainder Remainder of the current speed OUT

21 W DVDTK DVDT1 coefficient Scaling coefficient (-32768 to 32767) of current
acceleration/deceleration (DVDT1)

IN

1.7 DDC Instructions

1-157

1

* Relay I/O Bit Assignment

* When the quick stop (QS) is "OFF", the quick stop time is used for the acceleration/deceleration
time.

BIT Symbol Name Specifications I/O

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop∗ IN

2 DVDTF Non-execution of
DVDT1 operation

Input of "OFF" into non-execution of DVDT1 opera-
tion.

IN

3 DVDTS DVDT1 operation se-
lection

Selection DVDT1 operation method IN

4 to 7 − (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. OUT

9 BRY In deceleration "ON" is output during deceleration. OUT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. OUT

B EQU Coincidence "ON" is output when input value = output value. OUT

C EQU (Reserved) Reserved relay for output OUT

D CCF Work relay System internal work relay OUT

E BBF Work relay System internal work relay OUT

F AAF Work relay System internal work relay OUT

Table 1.29 Real Type SLAU Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W − (Reserved) Reserved register −

2 F LV 100% input level Scale of the 100% input IN

4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN

6 F BT Deceleration time Time for deceleration from 100% to 0% (s) IN

8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN

10 F AAT S-curve acceleration time Time spent in the S-curve area during acceleration
(s)

IN

12 F BBT S-curve deceleration time Time spent in the S-curve area during deceleration
(s)

IN

14 F V Current speed SLAU output (also output to the F register) OUT

16 F DVDT Current acceleration/de-
celeration

Scaled with the normal acceleration rate being set. OUT

18 F ABMD Speed increase upon hold-
ing

Amount of change in speed after hold instruction
until stabilization.

OUT

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

1-158

* Relay I/O Bit Assignment

The following operations are performed inside integer type SLAU instructions.

Integer Type SLAU Instruction

BIT Symbol Name Specifications I/O

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop. IN

2 to 7 − (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. OUT

9 BRY In deceleration "ON" is output during deceleration. OUT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. OUT

B EQU Coincidence "ON" is output when input value = output value. OUT

C to F − (Reserved) Reserved relay for output OUT

LV × Ts (0.1 ms) + REM1 Outside S- curve area (ADVS > ADV)
Acceleration rate (ADV) =

AT(0.1s) × 1000 When VI > V (V ≥ 0)

V = V + ADV: In acceleration (ARY)
ON

When VI < V (V ≤ 0)

V = V - ADV: In acceleration (ARY)
ON

, ,

,

,

, ,

LV × Ts (0.1 ms) + REM1 Outside S-curve area (BDVS > BDV)
Deceleration rate (BDV) =

BT (0.1s) × 1000 At VI > V (V < 0)

V = V + BDV: In deceleration (BRY)
ON

When VI < V (V > 0)
V = V - BDV: In deceleration (BRY)

ON

, ,

, ,

,

,

LV × Ts (0.1 ms) + REM1 When QS = ON (VI > V) ,
Quick stop rate (QDV) = QT (0.1 s) × 1000

ON
When QS = ON (VI < V’),

ON
(NOTE) The quick stop rate is not S -
curve movement, but linear movement
(same as the quick stop rate of SLAU).

V = V + QDV: In deceleration(BRY),

V = V - QDV: In deceleration(BRY),

,

1.7 DDC Instructions

1-159

1

• Addition-subtraction speed 1(DVDT1) is operated now when DVDT1 operation instruc-
tion (DVDTF) is turning on.

• When DVDTF is turning off, DVDT1 = 0 is output.

After (∗S) operates (∗O) of either as follows, the operation of addition-subtraction speed
1 (DVDT1) is output by DVDT1 operation selection (DVDTS) now when DVDTF is
turning on.

When DVDTS is turning off: DVDT = (V × DVDTK)-(V’ × DVDTK); DVDTK:
DVDT coefficient

• Addition-subtraction speed 2 (DVDT2) is output as follows now.

(∗S) is accelerating: In S character section: DVDT2 = ±ADVS.

 Outside S character section: DVDT2 = ±ADV

The moderation inside: In S character section: DVDT2 = ±BDVS.

 Outside S character section: DVDT2 = ±BDV

• It was output to operate (∗O) as follows maintenance per hour degree rise (ABMD).

• 0 velocities (LSP) turn on in turning on with V = 0 and agreement (EQU) is turned on by
VI = V.

• When line in operation (RN) is "Open", V = 0, DVDT1 = 0, DVDT2 = 0, DVDT3 = 0,
ABMD = 0, REM1 = 0, REM2 = 0, and REM3 = 0 are output.

ADV × Ts (0.1 ms) + REM2 ADVS
 ,
: previous value of ADVS

AADVS =
AAT (0.01 s) × 100 Inside the S-curve area (BDVS<BDV)

When VI > V (V ≥ 0),

V = V + ADVS: In acceleration (ARY)

ON

When VI < V (V ≤ 0),

V = V - ADVS: In acceleration (ARY)

ON

Acceleration rate in the S-curve area (ADVS) = ADVS ± AADVS

 ,

 ,

 , ,

 , ,

 ,

S character section moderation rate (BDVS) = BDVS ± BBDVS

BDV × Ts(0.1 ms) + REM2 In (BDVS < BDV) in S character section
BBDVS=

BBT (0.01 s) × 100 At VI > V (V < 0)

V = V + BDVS; Moderation inside (BRY)
turning on
At VI < V (V > 0)

V=V -BDVS; (BRY) turning on when
being accelerating

V : Speed output value last time

VI: Speed instruction input

Ts: Scanning time setting

 , ,

 ,

 , ,

 ,

 ,

 ,

(V - V’)
When DVDTS is turning on: DVDT1=

ADV
× 5000

DVDT2’ × DVDT2’
ABMD =

2 × AADVS (BBDVS)

Present value last time of addition-subtraction

speed 2 (DVDT2)

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

1-160

Real Type SLAU Instruction

• After (∗S) operates (∗O) as follows, addition-subtraction speed (DVDT) is output now.

(∗S) is accelerating: In S character section: DVDT = ADVS.

Outside S character section: DVDT = ADV

Moderation inside : In S character section: DVDT = BDVS.

Outside S character section: DVDT = BDV

• It was output to operate (∗O) as follows maintenance per hour degree rise (ABMD).

• When line in operation (RN) is "Open", V = 0, DVDT = 0, and ABMD = 0 are output.

LV × Ts (0.1 ms) Outside S character section
Acceleration rate (ADV) =

AT (s) × 10000 (ADVS > ADV)

VI > V (V > 0):

V = V + ADV

 , ,

 ,

LV × Ts (0.1ms) Outside S character section

Moderation rate (BDV) =
BT(s) × 10000 (BDVS < BDV)

VI < V (V > 0):

V = V + BDV

 ,

 , ,

LV × Ts (0.1 ms) QS = ON (V > VI):
Rapid stop rate (QDV) =

QT(s) × 10000 V = V + QDV

 ,

 ,

S character section acceleration rate (ADVS) = ADVS ± AADVS

ADV × Ts (0.1 ms) : Value last time of ADVS = ADVS
AADVS =

AAT(s) × 10000 In (ADVS < ADV) in S character section

VI > V (V > 0):

V = V + ADVS

 ,

 ,

 ,

 ,

 ,

S character section moderation rate (BDVS) = BDVS ± BBDVS

BDV × Ts (0.1 ms) :Value last time of BDVS = BDVS
BBDVS =

BBT(s) × 10000 Outside S character section

(BDVS > BDV)

VI < V (V > 0):
V = V + BDVS

V : Speed output value last time

VI: Speed instruction input

Ts: Scanning time setting value

 ,

 ,

 ,
 , ,

 ,

DVDT × DVDT
ABMD =

2 × AADVS (BBDVS)

1.7 DDC Instructions

1-161

1

Format

Parameter

Program Example

Integer Type Operation

MW00100 to MW000121 are used for the parameter table.

Parameter Name Setting

Input • Any integer and real number type register
• Any integer and real number type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer and real number type register (except for # and C
registers)

• Any integer and real number type register with subscript
(except for # and C registers)

• Subscript register

Symbol: SLAU
Full Name: S-Curve Linear Accelerator
Category: DDC
Icon:

Deviation input value

Head address of parameter table
SLAU output value

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

1-162

Real Number Type Operation

MF00200 to MF00218 are used for the parameter table.

Note: Please note the following when you use integer type SLAU instruc-
tion.
Please do not change input value (VI) before reaching input value
(VI) (de-and acceleration inside).
When input value (VI) is changed in the de-and acceleration, over-
shooting/undershoot might be generated. (Refer to the figure below)
Please make the application program when you change input value
(VI) in the de-and acceleration by either the undermentioned.
• Please use real type SLAU instruction.
• Please use the LIMIT instruction together when you use inte-

ger SLAU instruction. The output value of integer type
SLAU instruction is limited, and that is, please assume the
output value of the LIMIT instruction to be a input value of
the LIMIT instruction, and limit overshooting/undershoot.

I will encourage the use of one real type SLAU instruction
from the easiness of making the application program.

Deviation input value

Head address of parameter table
SLAU output value

BT

Speed
(V)

VI
(100%)

0

Acceleration Deceleration

S-curve
section

Straight
line area

S-curve
section

AAT AT-AAT

AT

AT + AAT BT + BBT

AAT

S-curve
section

Straight
line area

S-curve
section

BBT BT-BBT BBT

Acceleration
start

Acceleration
completed

Deceleration
start

Deceleration
completed

Time
(t)

1.7 DDC Instructions

1-163

1

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

Outline

The PWM instruction converts the value of the Input to PWM as an input value (between -
100.00 and 100.00%, with increments of 0.01%) and outputs the result to the Output and the
parameter table.

Double-length integer and real number operations are not allowed.

X: input value
Ts: scan time set value (ms)
When 100.00% is input: all ON
When 0% is input: 50% duty (50% ON)
When -100.00% is input: all OFF

When the PWM reset (PWMRST) is ON, all internal operations are reset and PWM opera-
tions are performed with that instant as the starting point. After turning the power ON, set
PWMRST to ON to clear all internal operations, then use the PWM instruction.

Speed

VI

0

Overshooting

(*S) the instruction
 (input value)
changes while accelerating.
(Change to VI 0)

Time

Instruction (input value)
change in moderation

VI)

Speed

V I

0

Undershoot

Time

→

→

(Change to 0

PWMT (X + 10000)
Time of ON output =

20000

PWMT (X + 10000)
Number of ON outputs =

Ts × 20000

1 Ladder Program Instructions

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

1-164

* Relay I/O Bit Assignment

Format

Table 1.30 Integer Type PWM Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 W RLY Relay I/O Relay input, relay output ∗ IN/OUT

1 W PWMT PWM cycle PWM cycle (1 ms) (1 to 32767 ms) IN

2 W ONCNT ON output set timer Set timer for ON output (1 ms) OUT

3 W CVON ON output counting timer Counting timer for ON output (1 ms) OUT

4 W CVON
REM

ON output counting timer
remainder

ON output counting timer remainder (0.1 ms) OUT

5 W OFFCNT OFF output set timer Set timer for OFF output (1 ms) OUT

6 W CVOFF OFF output counting timer Counting timer for OFF output (1 ms) OUT

7 W CVOFF
REM

OFF output counting timer
remainder

OFF output counting timer remainder (0.1 ms) OUT

BIT Symbol Name Specifications I/O

0 PWM
RST

PWM reset "ON" is input when PWM is reset IN

2 to 7 − (Reserved) Reserved relay for input IN

8 PWM
OUT

PWM output PWM is output (2 value output: ON = 1, OFF = 0) OUT

9 to F − (Reserved) Reserved relay for output OUT

Symbol: PWM
Full Name: Pulse Width Modulation
Category: DDC
Icon:

1.7 DDC Instructions

1-165

1

Parameter

Program Example

MW00100 is used as PWM input and MW00200 to MW00207 as a parameter table.

PWM reset with the first scan of DWG.L. (SB000001 when used with DWG.H)

Parameter Name Setting

Input • Any integer type register
• Any integer type register with subscript
• Subscript register
• Constant

Parameter • Register address (except for # and C registers)
• Register address with subscript (except for # and C registers)

Output • Any integer type register (except for # and C registers)
• Any integer type register with subscript (except for # and C reg-

isters)
• Subscript register
• Constant

PWM deviation input value

Head address of parameter table
PWM output value

INFO

1 Ladder Program Instructions

1.8.1 BLOCK READ Instruction (TBLBR)

1-166

1.8 Table Data Manipulation Instructions

1.8.1 BLOCK READ Instruction (TBLBR)

Outline

The TBLBR instruction consecutively reads file register table elements in block format that
are specified by table name (Table Name), row number, and column number. It then stores
the elements in a continuous region starting with the specified register (Read Data). The
type of the element being read is automatically determined according to the specified table.
The type of the storage destination register is ignored and the read data is stored according to
the table element type without converting the data type.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the
storage destination register is retained without reading the data.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON.

Table 1.31 List of Error Codes

Error Code Error Name Content

0001H Referenced table undefined The target table is not defined.

0002H Outside row number range The row number of the table element is not within
the range of the target table.

0003H Outside column number range The column number of the table element is not
within the range of the target table.

0004H Number of elements incorrect The number of elements of the target is invalid.

0005H Insufficient space in storage destina-
tion

There is not enough space for storing.

0006H Incorrect element type The type of the specified element is a malfunction.

0007H Cue buffer error An attempt is made to read the cue buffer when it is
empty, or the buffer is written to by pointer advance
when it is full.

0008H Cue table error The specified table is not a table of the cue type.

0009H System error An unexpected error is detected internally in the sys-
tem during instruction execution.

1.8 Table Data Manipulation Instructions

1-167

1

Format

Parameter

* Possible to omit.

Table 1.32 Block Read PI Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW1 Table element beginning
row number

Beginning row number of the target table element
(1 to 65535)

IN

2 L COL1 Table element beginning
column number

Beginning column number of the target table ele-
ment (1 to 32767)

IN

4 W RLEN Number of row elements Number of row elements (1 to 32767) IN

5 W CLEN Number of column ele-
ments

Number of column elements (1 to 32767) IN

Parameter Name Setting

Table Name Table name

Read Data • Register address (except for # and C registers)
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: TBLBR
Full Name: Table Block Read
Category: TABLE
Icon:

1 Ladder Program Instructions

1.8.2 BLOCK WRITE Instruction (TBLBW)

1-168

Program Example

From the table defined as TABLE1, with DW00010 to DW00015 as a parameter table, data
(element type is integer type) from the starting table element position to the end position are
stored in block form in the area starting from MW00100.

1.8.2 BLOCK WRITE Instruction (TBLBW)

Outline

The TBLBW instruction writes the contents of a continuous region starting with the speci-
fied register (Write Data) to the file register table elements in block format that are specified
by table name (Table Name), row number, and column number. The data is processed
assuming that the type of the table elements in the storage destination register is the same as
that of the table elements in the storage source register.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the
storage destination register is retained without writing the data.

Upon normal termination, the number of words transferred is set in the [Output] and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output] and the [Status] is
turned ON.

Table 1.33 Block Write Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW1 Table element beginning
row number

Beginning row number of the target table
element (1 to 65535)

IN

2 L COL1 Table element beginning
column number

Beginning column number of the target table
element (1 to 32767)

IN

4 W RLEN Number of row elements Number of row elements (1 to 32767) IN

5 W CLEN Number of column
elements

Number of column elements (1 to 32767) IN

1.8 Table Data Manipulation Instructions

1-169

1

Format

Parameter

* Possible to omit.

Program Example

From the table defined as TABLE1, with DW00010 to DW00015 as a parameter table, area
(element type is integer type) from the starting table element position to the end position are
stored in block form in the data from MW00100.

Parameter Name Setting

Table Name Table name

Write Data • Register address (except for # and C registers)
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: TBLBW
Full Name: Table Block Write
Category: TABLE
Icon:

1 Ladder Program Instructions

1.8.3 ROW SEARCH Instruction (TBLSRL)

1-170

1.8.3 ROW SEARCH Instruction (TBLSRL)

Outline

The TBLSRL instruction searches for the column element of the file register table specified
by the table name (Table Name), row number, and column number. If there is data that
matches the data in the specified register (Search Data), the instruction reports that row
number. The type of the data to be searched is automatically determined according to the
specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching column element is found, 1 is set in the search
result, the row number is set in the [Output], and the [Status] is turned OFF. If no matching
column element is found, 0 is set in the search result.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON.

Format

Table 1.34 Row Search Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW1 Table element head row
number

Head row number of the target table element
 (1 to 65535)

IN

2 L ROW2 Table element last row
number

Last row number of the target table element
(1 to 65535)

IN

4 L COL-
UMN

Table element column
number

Column number of the target table element
(1 to 32767)

IN

6 W FIND Search result Search results
0: No matching row
1: Matching row exists

OUT

Symbol: TBLSRL
Full Name: Table Row Search
Category: TABLE
Icon:

1.8 Table Data Manipulation Instructions

1-171

1

Parameter

* Possible to omit.

Program Example

The table defined as TABLE1 is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

Outline

The TBLSRC instruction searches for the row element of the file register table specified by
a table name (Table Name), row number, and column number. If there is data that matches
the data of the specified register (Search Data), the instruction reports that column number.
The type of the data to searched is automatically determined according to the specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching row element is found, 1 is set in the search result,
the row number is set in the [Output], and the [Status] is turned OFF. If no matching col-
umn element is found, 0 is set in the search result.

When an error occurs, the corresponding error code is set in the [Output] and the [Status] is
turned ON.

Parameter Name Setting

Table Name Table name

Search Data • Register address
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

1 Ladder Program Instructions

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

1-172

Format

Parameter

* Possible to omit.

Table 1.35 Column Search Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW1 Table element row
number

Row number of the target table element
(1 to 65535)

IN

2 L COL-
UMN1

Table element head
column number

Head column number of the target table
element (1 to 32767)

IN

4 L COL-
UMN2

Table element last column
number

Last column number of the target table
element (1 to 32767)

IN

6 W FIND Search result Search results
0: No matching column
1: Matching column exists

OUT

Parameter Name Setting

Table Name Table name

Search Data • Register address
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: TBLSRC
Full Name: Table Column Search
Category: TABLE
Icon:

1.8 Table Data Manipulation Instructions

1-173

1

Program Example

The table defined as TABLE1 is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

1.8.5 BLOCK CLEAR Instruction (TBLCL)

Outline

The TBLCL instruction clears the data of the block element of the file register table speci-
fied by a table name (Table Name), row number, and column number. If the element type is
a character string, space is written. If the element type is a numeric value, 0 is writte n.

If both the table element leading row number and the table element leading column number
are 0, the entire table is cleared.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and data is not written.
Upon normal termination, the number of words cleared is set in the [Output], and the [Sta-
tus] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is

turned ON.

Table 1.36 Block Clear Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW Table element head row
number

Head row number of the target table element
 (0 to 65535)

IN

2 L COL-
UMN

Target table element head
column number

Head column number of the target table element
 (10 to 32767)

IN

4 W RLEN Number of row elements Number of row elements (1 to 32767) IN

5 W CLEN Number of column
elements

Number of column elements (1 to 32767) IN

1 Ladder Program Instructions

1.8.5 BLOCK CLEAR Instruction (TBLCL)

1-174

Format

Parameter

* Possible to omit.

Program Example

The designated block in the table defined as TABLE1 is cleared using DW00010 to
DW00015 as a parameter table.

Parameter Name Setting

Table Name Table name

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: TBLCL
Full Name: Table Block Clear
Category: TABLE
Icon:

1.8 Table Data Manipulation Instructions

1-175

1

1.8.6 BLOCK MOVE Instruction (TBLMV)

Outline

The TBLMV instruction transfers the data of the block elements of the file register table
specified by the table name (Table Name), row number, and column number to another
block. Block transfer between different tables and data transfer within the same table are
both possible. If the column element types of the source and destination blocks are different,
an error is reported and data is not written.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
unmatched storage destination element type are found, they are reported and data is not writ-
ten.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON.

Table 1.37 Inter Table Block Transfer Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW1 Table element head row
number

Head row number of the transfer source table
element (1 to 65535)

IN

2 L COL -
UMN1

Table element head col-
umn number

Head column number of the transfer source
table element (1 to 32767)

IN

4 W RLEN Number of row elements Number of transfer row elements to be
transferred (1 to 32767)

IN

5 W CLEN Number of column
elements

Number of transfer column elements to be
transferred (1 to 32767)

IN

6 L ROW2 Table element head
row number

Head row number of the transfer destination
table element (1 to 65535)

IN

8 L COL -
UMN2

Table element head
column number

Head column number of the transfer destination
table element (1 to 32767)

IN

1 Ladder Program Instructions

1.8.6 BLOCK MOVE Instruction (TBLMV)

1-176

Format

Parameter

* Possible to omit.

Program Example

There are tables defined as TABLE1 and TABLE2. The designated block in TABLE1 is
transferred to the designated block in TABLE2 using DW00010 to DW00019 as a parameter
table.

Parameter Name Setting

Src Table Name Table name

Dest Table Name Table name

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: TBLMV
Full Name: Table Block Move
Category: TABLE
Icon:

1.8 Table Data Manipulation Instructions

1-177

1

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

Outline

The QTBLR/QTBLRI instruction consecutively reads file register table column elements
specified by table name (Table Name), row numbers, and column numbers and stores the
elements in the continuous region starting with the specified register (Read Data). The type
of the element being read is automatically determined according to the specified table. The
type of the storage destination register is ignored and the read data is stored according to the
table element type without converting the data type.

The QTBLR instruction does not change the queue table read pointer. The QTBLRI instruc-
tion advances the queue table read pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or empty queue buffers are found, they are reported, data is
not read, and the queue table read pointer does not advance. The contents of the storage des-
tination register are retained.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON. The pointer value does not change.

Table 1.38 Queue Table Read Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW Table element correspond-
ing row number

Corresponding row number of the target table
element (0 to 65535)

IN

2 L COL-
UMN

Table element beginning
column number

Beginning column number of the target table
element (1 to 32767)

IN

4 W CLEN Number of column
elements

Number of column elements continuously read out
(1 to 32767)

IN

5 W Reserved

6 L RPTR Read pointer Read pointer of the queue after execution OUT

8 L WPTR Write pointer Write pointer of the queue after execution OUT

1 Ladder Program Instructions

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

1-178

Format

Parameter

* Possible to omit.

Parameter Name Setting

Table Name Table name

Read Data • Register address (except for # and C registers)
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

Symbol: QTBLR
QTBLRI

Full Name: Queue Table Read
Queue Table Read

Category: TABLE
Icon: ,

1.8 Table Data Manipulation Instructions

1-179

1

Program Example

Column element data (element format assumed to be integer) from the table defined as
TABLE1 is stored for the number of column elements beginning with MW00100 using
DW00010 to DW00014 as a parameter table.

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

Outline

The QTBLW/QTBLWI instruction writes the contents of the continuous region starting with
the specified register (Write Data) to the file register table column elements specified by
table name (Table Name), row numbers, and column numbers. The data is processed assum-
ing that the type of the table elements in the storage destination register is the same as that of
the table elements in the storage source register.

The QTBLW instruction does not change the queue table write pointer. The QTBLWI
instruction advances the queue table write pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or full queue buffers are found, they are reported, data is
not written, and the queue table write pointer does not advance.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON . The pointer value does not change.

1 Ladder Program Instructions

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

1-180

Format

Table 1.39 Queue Table Write Instruction Parameters

ADR Type Symbol Name Specifications I/O

0 L ROW Table element
corresponding row num-
ber

Corresponding row number of the target table
element (0 to 65535)

IN

2 L COL-
UMN

Table element
beginning column number

Beginning column number of the target table
element (1 to 32767)

IN

4 W CLEN Number of column
elements

Number of column elements to be continuously
write (1 to 32767)

IN

5 W Reserved

6 L RPTR Read pointer Read pointer of the queue after execution OUT

8 L WPTR Write pointer Write pointer of the queue after execution OUT

Symbol: QTBLW
QTBLWI

Full Name: Queue Table White
Queue Table Pointer
Clear

Category : TABLE
Icon:
 ,

1.8 Table Data Manipulation Instructions

1-181

1

Parameter

* Possible to omit.

Program Example

Integer form consecutive data for the number of column elements beginning with MW00100
is written in column element data in the table defined as TABLE1 using DW00010 to
DW00014 as a parameter table.

Parameter Name Setting

Table Name Table name

Write Data • Register address (except for # and C registers)
• Register address with subscript

Parameter • Register address
• Register address with subscript

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

1 Ladder Program Instructions

1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

1-182

1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

Outline

The QTBLCL instruction returns the queue read and queue write pointers of the file register
table specified by a table name (Table Name) to their initial state (first row).

Upon normal termination, 0 is set in the [Output], and the [Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON.

Format

Symbol: QTBLCL
Full Name: Queue Table Pointer

Clear
Category: TABLE
Icon:

1.8 Table Data Manipulation Instructions

1-183

1

Parameter

* Possible to omit.

Program Example

The cue read and cue write pointer of TABLE1 are reset to initial status.

Parameter Name Setting

Table Name Table name

[Output]* • Any integer type register (except for # and C registers)
• Any integer type register with subscript
• Subscript register

[Status]* • Any bit type register (except for # and C registers)
• Any bit type register with subscript

2-1

2

2
Standard System Function

This chapter describes the details of standard system functions.

2.1 Message Functions -2-2
2.1.1 Send Message Function (MSG-SND) - 2-2
2.1.2 Receive Message Function (MSG-RCV) - 2-13

2.2 Trace Functions - 2-22
2.2.1 Trace Function (TRACE) - 2-22
2.2.2 Data Trace Read Function (DTRC-RD) - 2-23
2.2.3 Failure Trace Read Function (FTRC-RD) - 2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) - 2-31

2.3 Inverter Functions - 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR) - - - - - - - - - - - - - - - - - 2-34
2.3.2 Inverter Constant Read Function (ICNS-RD) - - - - - - - - - - - - - - - - - 2-39

2.4 Other Functions - 2-42
2.4.1 Counter Function (COUNTER) - 2-42
2.4.2 First-in First-out Function (FINFOUT) - 2-44

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-2

2.1 Message Functions

2.1.1 Send Message Function (MSG-SND)

Outline

Sends a message to the called station which is on the line and which is designated by the
transmission device type. Supports a plurality of protocol types.

The execution command (Execute) must be held until Complete or Error becomes ON.

[Transmission Devices] CPU Module, 215IF, 217IF, 218IF, SVB-01 for MP920

[Protocols] MEMOBUS communication, non-procedural

Format

Symbol: MSG-SND
Full Name: Message Send
Category: SYSTEM
Icon:

2.1 Message Functions

2-3

2

Parameter

Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical
order.

Table 2.1 is Parameter List.

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Send message instruction

Abort B-VAL Send message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module = 8 215IF = 1 217IF = 5
218IF = 6 218-02 = 16 SVB-01 = 11

Pro-Typ I-REG Transmission protocol
MEMOBUS = 1
non-procedural = 2

Cir-No I-REG Line No.
CPU module = 1, 2 215IF = 1 to 8 217IF = 1 to 24
218IF = 1 to 8 SVB-01 = 1 to 16

Ch-No I-REG Transmission buffer channel No.
CPU module = 1, 2 215IF = 1 to 13 217IF = 1
218IF = 1 to 10 SVB-01 = 1 to 8

Param Address in-
put

Head address of set data (MW, DW, #W)

Output Busy B-VAL Message is being sent.

Complete B-VAL The sending of the message has been completed.

Error B-VAL Occurrence of error

Table 2.1 Parameter List

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural

PARAM 00 OUT Process result Process result

PARAM 01 OUT Status Status

PARAM 02 IN Called station number Called station number

PARAM 03 SYS System reserved System reserved

PARAM 04 IN Function code

PARAM 05 IN Data address Data address

PARAM 06 IN Data size Data size

PARAM 07 IN Called CPU number Called CPU number

PARAM 08 IN Coil offset

PARAM 09 IN Input relay offset

PARAM 10 IN Input register offset

PARAM 11 IN Holding register offset Register offset

PARAM 12 SYS For system use For system use

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-4

Process Result (PARAM00)

The process result is output to the upper byte. The lower byte is for system analysis.

• 00xx: In process (BUSY)
• 10xx: End of process (COMPLETE)
• 8xxx: Occurrence of error (ERROR)

Error Classification

• 81xx: Function code error

The sending of an unused function code was attempted. Or, an unused function code
was received.

• 82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-
ter offset setting is out of range.

• 83xx: Data size error

The size of the sent or received data is out of range.

• 84xx: Line No. setting error

The line No. setting is out of range.

• 85xx: Channel No. Setting error

The channel No. setting error.

• 86xx: Station address error

The station No. setting is out of range.

• 88xx: Transmission unit error

An error response was returned from the transmission unit.

• 89xx: Device selection error

A non-applicable device is selected.

PARAM 13 SYS System reserved System reserved

PARAM 14 SYS System reserved System reserved

PARAM 15 SYS System reserved System reserved

PARAM 16 SYS System reserved System reserved

Table 2.1 Parameter List (cont’d)

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural

2.1 Message Functions

2-5

2

Status (PARAM01)

Output the status of the transmission unit.

• Bit Assignment

• COMMAND
Command list is described below.

• RESULT

Symbol and Meaning of the Result list is described in Table 2.2.

Code Symbol Meaning

1 U_SEND Send generic message

2 U_REC Receive generic message

3 ABORT Forced interruption

8 M_SEND Send MEMOBUS command ... completed upon receipt of
response.

9 M_REC Receive MEMOBUS command ... accompanies sending of
response.

C MR_SEND Send MEMOBUS response.

Table 2.2 Result List

Code Symbol Meaning

0 − Executing

1 SEND_OK Sending has been completed correctly.

2 REC_OK Receiving has been completed correctly.

3 ABORT_OK Completion of forced interruption

4 FMT_NG Parameter format error

5 SEQ_NG,
or INIT_NG

Command sequence error
The token has not been received yet.
Not connected to a transmission system.

6 RESET_NG,
or
O_RING_NG

Reset state
Out-of-ring. The token could not be received even when the
token monitor time was exceeded.

7 REC_NG Data receive error (error detected by a program of a lower
rank)

RESULT

COMMAND

REQUEST

PARAMETER

F E D C B A 9 8 7 6 5 4 3 2 1 0

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-6

• PARAMETER
One of the error codes of Table 2.3 is indicated if RESULT = 4 (FMT_NG). Otherwise,

this indicates the address of the called station.

• REQUEST
1 = Request

0 = Completion of receipt report

Called Station Number (PARAM02)

Serial

 1 to 254: Message is sent to the station of designated device address.

Table 2.3 Error Codes List

Code Error

00 No errors

01 Station address is out of range.

02 Monitored MEMOBUS response receiving time error

03 Resending count setting error

04 Cyclic area setting error

05 Message signal CPU No. error

06 Message signal register No. error

07 Message signal word count error

2.1 Message Functions

2-7

2

Function Code (PARAM04)

The MEMOBUS function code to be sent is set. Refer to Table 2.4.

Note: 1. −: cannot be set, OK: can be set
2. Only MW (MB) can be used as the sending/receiving register dur-

ing master operation. The MB, MW, IB, and IW registers can be
used respectively as the coil, holding register, input relay, and input
registers during slave operation.

Table 2.4 Function Codes

Function Code Setting

00H Unused −

01H Read coil status OK

02H Read input relay status OK

03H Read contents of holding register OK

04H Read contents of input register OK

05H Change status of single coil OK

06H Write into a single holding register OK

07H Unused −

08H Loop-back test OK

09H Read contents of holding register (expanded) OK

0AH Read contents of input register (expanded) OK

0BH Write into holding register (expanded) OK

0CH Unused −

0DH Discontinuous readout of holding register (expanded) OK

0EH Discontinuous write into holding register (expanded) OK

0FH Change status of a multiple coil OK

10H Write into a plurality of holding register OK

11H to 20H Unused −

21H to 3FH System reserved −

40H to 4FH System reserved −

50H to Unused −

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-8

Data Address

The set contents will differ according to the function code as Table 2.5.

* 1. Request for readout from/write-in to coil or relay: Set the head bit
address of the data.

* 2. Request for continuous readout from/write-in to a register: Set head
word address of the data.

* 3. Request for discontinuous readout from/write-in to a register: Set head
word address of the data.

Table 2.5 Address Setting Range

Function Code Data Address Setting Range

00H Unused Ineffective

01H Read coil status 0 to 65535 (0 to FFFFH) ∗1

02H Read input relay status 0 to 65535 (0 to FFFFH)∗1

03H Read contents of holding register 0 to 32767 (0 to 7FFFH)∗2

04H Read contents of input register 0 to 32767 (0 to 7FFFH) ∗2

05H Change status of single coil 0 to 65535 (0 to FFFFH)∗1

06H Write into a single holding register 0 to 32767 (0 to 7FFFH) ∗2

07H Unused Ineffective

08H Loop-back test Ineffective

09H Read contents of holding register (expanded) 0 to 32767 (0 to 7FFFH) ∗2

0AH Read contents of input register (expanded) 0 to 32767 (0 to 7FFFH) ∗2

0BH Write into holding register (expanded) 0 to 32767 (0 to 7FFFH)∗2

0CH Unused Ineffective

0DH Discontinuous readout of holding register
(expanded)

0 to 32767 (0 to 7FFFH) ∗3

0EH Discontinuous write into holding register
(expanded)

0 to 32767 (0 to 7FFFH) ∗3

0FH Change status of a multiple coil 0 to 65535 (0 to FFFFH) ∗1

10H Write into a plurality of holding register 0 to 32767 (0 to 7FFFH) ∗2

2.1 Message Functions

2-9

2

Data Size (PARAM06)

Set the size (in number of bits or number of words) of the data that is requested for readout
or write-in. The setting range will differ according to the transmission module and the func-
tion code to be used. Refer to Table 2.6.

Called CPU Number (PARAM07)

PARAM07 sets the called CPU number.

Set the called CPU number to 1 if the called device is an MP2000 Series Machine Control-
ler.

If the called device is a Yaskawa Controller, but not in the MP2000 Series and it consists of
more than one CPU Module, set the destination CPU number.

In all other cases, set 0.

Table 2.6 Serial Data Size Setting Range

Function Code Data Address Setting Range
215IF/218IF CPU Module/

217IF/SVB-01
00H Unused Ineffective

01H Read coil status 1 to 2000 (1 to 07D0H) bits

02H Read input relay status 1 to 2000 (1 to 07D0H) bits

03H Read contents of holding register 1 to 125 (1 to 007DH) words

04H Read contents of input register 1 to 125 (1 to 007DH) words

05H Change status of single coil Ineffective

06H Write into a single holding register Ineffective

07H1 Unused Ineffective

08H Loop-back test Ineffective

09H Read contents of holding register
(expanded)

1 to 508
(1 to 01FCH)
words

1 to 252
(1 to 00FCH)
words

0AH Read contents of input register
(expanded)

1 to 508
(1 to 01FCH)
words

1 to 252
(1 to 00FCH)
words

0BH Write into holding register
(expanded)

1 to 507
(1 to 01FBH)
words

1 to 252
(1 to 00FBH)
words

0CH Unused Ineffective

0DH Discontinuous readout of holding
register (expanded)

1 to 508
(1 to 01FCH)
words

1 to 252
(1 to 00FCH)
words

0EH Discontinuous write into holding
register (expanded)

1 to 254
(1 to 00FEH)
words

1 to 126
(1 to 007EH)
words

0FH Change status of a multiple coil 1 to 800 (1 to 0320H) bits

10H Write into a plurality of holding reg-
ister

1 to 100 (1 to 0064H) words

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-10

Coil Offset (PARAM08)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,
and 0FH.

Input Relay Offset (PARAM09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and 0AH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, 0EH, and 10H.

For System Use (PARAM12)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by
the user program thereafter since this parameter will then be used by the system.

Relationship between the Data Address, Size and Offset

Relationship between the data address, size and offset are described in Figure 2.1.

Fig. 2.1 Relationship between the Data Address, Size and Offset

When transmission protocol is set to non-procedural

The setting of PARAM04, PARAM08, PARAM09, and PARAM10 are not necessary.

Transmission enabled register is only MW.

Sending side
offset address

Sending side
data address

Data

[MSG-SND]

Receiving side
offset address

Data

[MSG-RCV]

Sending side
data address

Offset

Data size

Offset

Data size

Data
address Data

address

MW00000

MWxxxxx

2.1 Message Functions

2-11

2

Input

EXECUTE (Send Message Execution Command)

When the command becomes "ON", the message is sent.

ABORT (Send Message Forced Interruption Command)

This command forcibly interrupts the sending of the message. This has priority over EXE-
CUTE (send message forced interruption command).

DEV-TYP (Transmission Device Type)

Designates transmission device type.

CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, SVB-01 = 11

PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not
received from the other station.

MEMOBUS : Setting = 1

Non-procedural : Setting = 2

CIR-NO (Circuit No.)

Designate the Circuit No.

CPU Module = 1, 2, 215IF = 1 to 8, 217IF = 1 to 24, 218IF = 1 to 8, SVB-01 = 1 to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be
set so as not to be duplicated on a single line.

CPU Module = 1, 215IF = 1 to 13, 217IF = 1, 218IF = 1 to 10, SVB-01 = 1 to 8

PARAM (Set Data Head Address)

The head address of the set data is designated. For details of the set data, refer to " Param-
eter Details" (on page 2-3).

BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2-12

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAM00 and PARAM
01 of " Parameter Details" (on page 2-3).

Program Example

Program example is described in Figure 2.2.

2.1 Message Functions

2-13

2
Fig. 2.2 Program Sample

2.1.2 Receive Message Function (MSG-RCV)

Outline

Receives a message from a calling station which is on the line and which is designated by
the transmission device type. Supports a plurality of protocol types.

The execution command (Execute) must be held until Complete or Error becomes ON.

[Transmission Devices] CPU module, 215IF, 217IF, 218IF, SVB-01 for MP920

[Protocols] MEMOBUS, non-procedural

Format

Symbol: MSG-RCV
Full Name: Message Receive
Category: SYSTEM
Icon:

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

2-14

Parameter

Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical
order.

Table 2.7 is Parameter List.

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Receive message instruction

Abort B-VAL Receive message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module = 8 215IF = 1 217IF = 5
218IF = 6 218-02 = 16 SVB-01 = 11

Pro-Typ I-REG Transmission protocol (Set up of RTU and ASCII is module configu-
ration definition.)

MEMOBUS = 1
non-procedural = 2

Cir-No I-REG Line No.
CPU module = 1 215IF = 1 to 8 217IF = 1 to 24
218IF = 1 to 8 SVB-01 = 1 to 16

Ch-No I-REG Transmission buffer channel No.
CPU module = 1 215IF = 1 to 13 217IF = 1
218IF = 1 to 10 SVB-01 = 1 to 8

Param Address in-
put

Head address of set data (MW, DW, #W)

Output Busy B-VAL Message is being received.

Complete B-VAL The receiving of the message has been completed.

Error B-VAL Occurrence of error

Table 2.7 Parameter List

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural

PARAM 00 OUT Process result Process result

PARAM 01 OUT Status Status

PARAM 02 OUT
IN*

Called station number Called station number

PARAM 03 SYS System reserved System reserved

PARAM 04 OUT Function code

PARAM 05 OUT Data address Data address

PARAM 06 OUT Data size Data size

PARAM 07 OUT Called CPU number Called CPU number

PARAM 08 IN Coil offset

PARAM 09 IN Input relay offset

PARAM 10 IN Input register offset

2.1 Message Functions

2-15

2
* Applicable only for 218IF.

Process Result (PARAM00)

The process result is output to the upper byte. The lower byte is for system analysis.

• 00xx: In process (BUSY)
• 10xx: End of process (COMPLETE)
• 8xxx: Occurrence of error (ERROR)

Error Classification

• 81xx: Function cord error

The sending of an unused function code was attempted. Or, an unused function code
was received.

• 82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-
ter offset setting is out of range.

• 83xx: Data size error

The size of the sent or received data is out of range.

• 84xx: Line No. setting error

The line No. setting is out of range.

• 85xx: Channel No. Setting error

The channel No. setting error.

• 86xx: Station address error

The station No. setting is out of range.

• 88xx: Transmission unit error

An error response was returned from the transmission unit. (Refer to " Parameter
Details" (on page 2-14)).

• 89xx: Device selection error

A non-applicable device is selected.

PARAM 11 IN Holding register offset Register offset

PARAM 12 IN Write-in range LO Register offset

PARAM 13 IN Write-in range HI Register offset

PARAM 14 SYS For system use For system use

PARAM 15 SYS System reserved System reserved

PARAM 16 SYS System reserved System reserved

Table 2.7 Parameter List (cont’d)

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

2-16

Status (PARAM01)

Output the status of the transmission unit. See "Status (PARAM01)" (on page 2-5) for
details.

Called Station Number (PARAM02)

The station number of sending side is output.

Function Code (PARAM04)

Output the MEMOBUS function code received. Refer to Table 2.8.

Note: 1. −: cannot be output, OK: can be output
2. The MB, MW, IB, and IW registers can be used respectively as the

coil, holding register, input relay, and input registers during slave
operation.

Table 2.8 Function Codes

Function Code Setting

00H Unused −

01H Read coil status OK

02H Read input relay status OK

03H Read contents of holding register OK

04H Read contents of input register OK

05H Change status of single coil OK

06H Write into a single holding register OK

07H Unused −

08H Loop-back test OK

09H Read contents of holding register (expanded) OK

0AH Read contents of input register (expanded) OK

0BH Write into holding register (expanded) OK

0CH Unused −

0DH Discontinuous readout of holding register (expanded) OK

0EH Discontinuous write into holding register (expanded) OK

0FH Change status of a multiple coil OK

10H Write into a plurality of holding register OK

11H to 20H Unused −

21H to 3FH System reserved −

40H to 4FH System reserved −

50H to Unused −

2.1 Message Functions

2-17

2

Data Address (PARAM05)

The data address requested by the sending side is output.

Data Size (PARAM06)

The data size (number of bits or number of words) of the requested read or write is output.

Called CPU Number (PARAM07)

PARAM07 outputs the called CPU number.

If the called device is an MP2000 Series Machine Controller, 1 is output.

If the called device is a Yaskawa Controller, but not in the MP2000 Series and it consists of
more than one CPU Module, the called CPU number is output.

In all other cases, 0 is output.

Coil Offset (PARAM08)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,
and 0FH.

Input Relay Offset (PARAM09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and 0AH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, 0EH, and 10H.

Write-in Range LO (PARAM12), Write-in Range HI (PARAM13)

Set the write allowable range for the request for write-in. A request which is outside of this
range will cause an error. This is valid in the case of function code 0BH, 0EH, 0FH, and
10H.

0 ≤ Write-in Range LO ≤ Write-in Range HI ≤ Maximum value of MW Address

For System Use (PARAM14)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by
the user program thereafter since this parameter will then be used by the system.

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

2-18

When Non-procedural is set for Transmission Protocol

PARAM04 has no function. The settings of PARAM08, PARAM09, and PARAM10 are not
necessary. The message receivable register is only MW.

Input

EXECUTE (Receive Message Exection Command)

When the command becomes "ON", the message is receive. This must be held until COM-
PLETE (completion of process) or ERROR (occurrence of error) becomes "ON".

ABORT (Receive Message Forced Interruption Command)

This command forcibly interrupts the receiving of the message. This has priority over EXE-
CUTE (receive message execution command).

DEV-TYP (Transmission Device Type)

Designates transmission device type.

CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, 218-02 = 16, SVB-01 = 11

PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not sent to
the called station.

MEMOBUS : Setting = 1

Non-procedural : Setting = 2

CIR-NO (Circuit No.)

Designate the circuit No.

CPU Module = 1, 2, 215IF = 1 to 8, 217IF = 1 to 24, 218IF = 1 to 8, SVB-01 = 1 to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be
set so as not to be duplicated on a single line.

CPU Module = 1, 215IF = 1 to 13, 217IF = 1, 218IF = 1 to 10, SVB-01 = 1 to 8

PARAM (Setting Data Head Address)

The head address of the set data is designated. For details of the set data refer to " Param-
eter Details" (on page 2-14).

2.1 Message Functions

2-19

2

Output

BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAM00 and
PARAM01 of " Parameter Details" (on page 2-14).

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

2-20

Program Example

Program example is described in Figure 2.3.

2.1 Message Functions

2-21

2
Fig. 2.3 Program Sample

2 Standard System Function

2.2.1 Trace Function (TRACE)

2-22

2.2 Trace Functions

2.2.1 Trace Function (TRACE)

Outline

Performs execution control of the traces of the trace data designated by the trace group No.
The trace is defined as "Data Trace Definition" screen.

• Tracing is executed when the trace execution command (Execute) is set to ON.
• The trace counter is reset when the trace reset command (Reset) is set to ON.

The trace end (Trc-End) output is also reset at this time.

• The trace end (Trc-End) output is set to ON when the trace execution count becomes
equal to the set count (set as Trace Definition).

Format

Parameter

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Trace execution command

Reset B-VAL Trace reset command

Group-No I-REG Designation of the trace group

Output Trc-End B-VAL End of Trace

Error B-VAL Occurrence of error

Status I-REG Trace execution status

Symbol: TRACE
Full Name: Trace
Category: SYSTEM
Icon:

2.2 Trace Functions

2-23

2

Configuration of the trace execution status (STATUS) is described below.

2.2.2 Data Trace Read Function (DTRC-RD)

Outline

Reads out the trace data of the main controller unit and stores this data in the user registers.

The data in the trace memory can be read out upon designating the record number and the
number of records. The readout can be performed by designating just the necessary items in
the record.

Format

Table 2.9 Configuration of the Trace Execution Status

Name Bit No. Remarks

Trace data full bit 0 This becomes ON after one round of reading of the
contents in the data trace memory of the designated
group has been completed.

System reserved bit 1 to bit 7

No trace definition bit8 The function will not be executed.

Designated group No.
error

bit9 The function will not be executed.

System reserved bit 10 to bit
12

Execution timing error bit13 The function will not be executed.

System reserved bit14

System reserved bit15

Symbol: DTRC-RD
Full Name: Data-Trace Read
Category: SYSTEM
Icon:

2 Standard System Function

2.2.2 Data Trace Read Function (DTRC-RD)

2-24

Parameter

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Designation of the execution of data trace read

Group-No I-REG Designation of the data trace group No. (1 to 4)

Rec-No I-REG Designation of the head record No. for readout (0 to
maximum number of records-1)

Rec-Size I-REG Designation of the number of records requested for
readout (1 to maximum number of records)

Select I-REG Item to be read out (0001H to FFFFH)
Bits 0 to F correspond to data designations 1 to 16 of
the trace definition.

Dat-Adr Address in-
put

Designation of the No. of the head register for readout
(address of MW or DW)

Output Complete B-VAL Completion of trace read

Error B-VAL Occurrence of error

Status I-REG Data trace read execution status

Rec-Size I-REG Number of records read

Rec-Len I-REG Length (in words) of 1 record that is read

Table 2.10 Configuration of the Data Trace Read Execution Status (STATUS)

Name Bit No. Note

System reserved bit0 to bit7

No trace definition bit8 The function is not executed.

Group No. error bit9 The function is not executed.

Designated record No.
error

bit10

Error in the designated
number of records read

bit11 The function is not executed.

Data storage error bit12 The function is not executed.

System reserved bit13

System reserved bit14

Address input error bit15 The function is not executed.

2.2 Trace Functions

2-25

2

Readout of Data

Readout of Data is described in Figure 2.4.

Fig. 2.4 Data Read

The most recent record No. of trace groups are each stored in SW00100 to SW00103.

Configuration of the Read Data

Configuration of the read data is described in Figure 2.5.

Fig. 2.5 Configuration of the Read Data

Table 2.11 Newest Records Number

System Register Number Data Trace Definition

SW00100 For group 1

SW00101 For group 2

SW00102 For group 3

SW00103 For group 4

SW00104 −

SW00105 −

SW00106 −

SW00107 −

Data Trace Memory

Number of
read records

Old

New

User Register

0

n

Record No.

No. of the head
record to be read

Head address of
the register into

 which data is readReadout

Max. 32512 words

Dat - Adr 1 to 32 words

1 to 32 words

1 to 32 words

Trace data

Old

New

Record 2

Record n

Record 1 ITEM1

ITEM16

•
•
•
•

•
•

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

2-26

Record Length

A Record is composed of the data for the selected items.
Word length of 1 record = Bn × 1 word + Wn × 1 word + Ln × 2 words + Fn × 2 words
Bn: Number of bit type register selected points
Wn: Number of word type register selected points
Ln: Number of double-length integer type register selected points
Fn: Number of real number type register selected points
Maximum of record length = 32 words (e.g. when there are 16 double-length integer type or
 real number type registers)
Minimum of record length = 1 words (e.g. when there is one bit type or integer type register)

Number of Records

The Number of Records is the following.

2.2.3 Failure Trace Read Function (FTRC-RD)

Outline

Reads the failure trace data and stores them in the user register. The data in the trace buffer
can be read out upon designating the number of records needed. Either the failure occur-
rence data or the restoration data are designated for readout. Enables the reset (initializa-
tion) of the failure trace buffer.

Format

Maximum Number of Records 32512/ Record Length

Number of records when the record length is the
maximum

0 to 1015

Number of records when the record length is the
minimum

0 to 32511

Symbol: FTRC-RD
Full Name: Failure-Trace Read
Category: SYSTEM
Icon:

2.2 Trace Functions

2-27

2

Parameter

Failure Occurrence Data Readout

Failure occurrence data readout is described in Figure 2.6. The readout will always be
started from the most recent record.

Fig. 2.6 Failure Occurrence Data Readout

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Failure trace readout instruction

Reset B-VAL Failure trace buffer reset instruction

Type I-REG Type of data read
1: Occurrence data
2: Restoration data

Rec-Size I-REG Number of read record
Occurrence data: 1 to 64 Restoration data: 450

Dat-Adr Address in-
put

Head register address for reading (address of MW or
DW)

Output Complete B-VAL Completion of failure trace read

Error B-VAL Occurrence of error

Status I-REG Failure trace read execution status

Rec-Size I-REG Number of records read

Rec-Len I-REG Length of record read

Table 2.12 Failure Trace Reading Execution Status (STATUS)

Name Bit No. Remarks

System reserved bit0 to bit7

No trace definition bit8 The function will not be executed.

Designated type No. error bit9 The function will not be executed.

System reserved bit10

Error in the designated
number of records

bit11 The function will not be executed.

Data storage error bit12 The function will not be executed.

System reserved bit13

System reserved bit14

System reserved bit15 The function will not be executed.

User Register

Readout

Failure Occurrence Trace Memory

Number of
read records

Old

New

Head address of
the register into
which data is read

Most recent
record

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

2-28

Readout Data Configuration (Failure Occurrence Data)

Data Configuration

Fig. 2.7 Data Configuration

Record Configuration

Fig. 2.8 Record Configuration

Structure of Register Designation No. (2 words)

Contain the failure detection relay information.

Fig. 2.9 Structure of Register Designation No.

Table 2.13 Bit Configuration

No. Bit Configuration of Bit Configuration of

7 Defined flag (1 = defined, 0 = unde-
fined)

System reserved (= 0)

6 System reserved (= 0) Data Type
Bit = 0, Integer = 1,
Double-length integer = 2,
Real Number = 3

5

4 0 = NO contact designation,
1 = NC contact designation

3 Type of register
S = 0,
I = 1,
O = 2,
M = 3

Bit Address 0 to F

2

1

0

Dat - Adr 1 to 5 words Record 1

Record 2

Record n

5 words

5 words

Max. 320 words

Trace data

Time of occurrence-old

Time of occurrence-new

•

•

•

•

Register Designation No.
2 words

1 word

1 word

1 word Year and month of occurrence

Day and hour of occurrence

Minutes and seconds of occurrence

1 record (5 words)

1 word

1 word

F 8 7 0

Data address 07D0

8301

(Example) MB020001 (hexadecimal expression)

⇒

2.2 Trace Functions

2-29

2

Number of Records

The Number of Records is the following.

Failure Restoration Data

Failure restoration data is described in Figure 2.10. The number (amount) of restoration data
is stored in SW00093 (ring counter for 1 to 9999).

Fig. 2.10 Failure Restoration Data

Readout Data Configuration (Failure Restoration Data)

Data configuration is described in Figure 2.11.

Fig. 2.11 Data Configuration

Minimum number of records 0 (no failure restoration data)

Maximum number of records 64

Failure Restoration Trace Data

Number of
read records

Old

New

User Register

n
Record No. of
read record

Head address of the
register into which
data is readReadout

Old

New

Dat - Adr 8 words Record 1

Record 2

Record n

8 words

8 words

Trace data

Time of restoration-old

Time of restoration-new

•

•

•

•

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

2-30

Record Configuration

Record composition is shown in Figure 2.12.

Fig. 2.12 Record Configuration

Number of Record

The Number of Records is the following.

Minimum number of records 0 (no failure restoration data)

Maximum number of records 450

Register Designation No.
2 words

1 word

1 word

1 word Year and month of occurrence

Day and hour of occurrence

Minutes and seconds of occurrence
1 record (8 words)

1 word

1 word

1 word Year and month of restoration

Day and hour of restoration

Minutes and seconds of restoration

2.2 Trace Functions

2-31

2

2.2.4 Inverter Trace Read Function (ITRC-RD)

Outline

Reads out the trace data of the inverter and stores this data in the user registers. The data in
the trace buffer can be read out upon designating the number of records needed. The readout
can be performed upon designating just the necessary items in the record.

Applicable inverters

• Connected MP930 via 216
• Connected SVB-01 for MP920 via 216
• Connected 215IF for MP920 and MP2000 series via 215

Format

Symbol: ITRC-RD
Full Name: Inverter-Trace Read
Category: SYSTEM
Icon :

2 Standard System Function

2.2.4 Inverter Trace Read Function (ITRC-RD)

2-32

Parameter

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Inverter trace read instruction

Abort B-VAL Inverter trace read forced interruption instruction

Dev-Typ I-REG Type of transmission device
215IF = 1 MP930 = 4 SVB-01 = 11

Cir-No I-REG Line No.
215IF = 1 MP930 = 1 SVB-01 = 1 to 16

St-No I-REG Slave station No.
215IF = 1 to 64 MP930 = 1 to 14 SVB-01 = 1 to 14

Ch-No I-REG Transmission buffer channel No. (No designation)
215IF = 1 to 3 MP930 = 1 SVB-01 = 1 to 8

Rec-Size I-REG Number of records to be read (1 to 64)

Select I-REG Items to be read (0001H to FFFFH)
Bits 0 to F correspond to trace data items 1 to 26

Dat-Adr Address in-
put

Head address of data buffer register (address of MW or DW)

Output Busy B-VAL The reading of inverter trace data is in progress.

Complete B-VAL Completion of inverter trace read

Error B-VAL Occurrence of error

Status I-REG Inverter trace read execution status

Rec-Size I-REG Number of read records

Rec-Len I-REG Length of read record (for 1 record)

Table 2.14 Configuration of the Inverter Trace Read Execution Status (STATUS)

Name Bit No. Remarks

System reserved bit0 to bit8

Transmission parameter
error

bit9 The function will not be executed.

System reserved bit10

Error in the designated
number of records

bit11 The function will not be executed.

Data storage error bit12 The function will not be executed.

Transmission error bit13 The function will not be executed.

System reserved bit14

Address input error bit15 The function will not be executed.

2.2 Trace Functions

2-33

2

Readout of Inverter Trace Data

The readout will always be started from the most recent record.

Readout Data Configuration

Data Configuration

Record Length

A record is composed of the data of the selected items.

Word length of 1 record = 1 to 16 words

Number of Records

Maximum number of records = 120

User Register

Readout

Inverter Trace Memory

Number of
read records

Old

New

Head address of
the register into
which data is read

Most recent
record

Max. 1920 words

Dat - Adr 1 to 16 words

1 to 16 words

1 to 16 words

Trace data

Old

New

Record 2

Record n

Record 1 ITEM1

ITEM16

•

•

•

•

•

•

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

2-34

2.3 Inverter Functions

2.3.1 Inverter Constant Write Function (ICNS-WR)

Outline

Writes the inverter constants.

The types and ranges of the inverter constants to be written can be designated.

Applicable inverters

• Connected MP930 via 216
• Connected SVB-01 for MP920 via 216
• Connected 215IF for MP920 and MP2000 series via 215

Format

Symbol: ICNS-WR
Full Name: Inverter-Constant Write
Category: SYSTEM
Icon:

2.3 Inverter Functions

2-35

2

Parameter

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Inverter constant write instruction

Abort B-VAL Inverter constant write forced interruption instruction

Dev-Typ I-REG Type of transmission device
215IF = 1 MP930 = 4 SVB-01 = 11

Cir-No I-REG Line No.
215IF = 1, 2 MP930 = 1 SVB-01 = 1 to 16

St-No I-REG Slave station No.
215IF = 1 to 64 MP930 = 1 to 14 SVB-01 = 1 to 14

Ch-No I-REG Transmission buffer channel No.
215IF = 1 to 3 MP930 = 1 SVB-01 = 1 to 8

Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An, 2 = Bn, 3 = Cn,
4 = Dn, 5 = En, 6 = Fn, 7 = Hn, 8 = Ln, 9 = On, 10 = Tn

Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.

Cns-Size I-REG Number of inverter constants (number of data to be written)1 to 100

Dat-Adr Address in-
put

Register address of set data (address of MW, DW, or #W)

Output Busy B-VAL Inverter constants are being written in.

Complete B-VAL The write-in of inverter constants has been completed.

Error B-VAL Occurrence of error

Status I-REG Inverter constant write execution status

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

2-36

Note: In the case of an inverter response error, the error codes from the
inverter are indicated in bit 0 to bit 7.
 01H(1) : function code error
 02H(2) : reference No. error
 03H(3) : write-in count error
 21H(33) : write-in data upper/lower limit error
 22H(34) : write-in error (during running, during UV)
 Numbers in () are of decimal expressions.

Configuration of the Write-in Data

Table 2.15 Configuration of Inverter Constant Write Execution Status (STATUS)

Name Bit No. Remarks

System reserved bit0 to bit7

Execution sequence error bit8 The function will not be executed.

Transmission parameter
error

bit9 The function will not be executed.

Designated type error bit10 The function will not be executed.

Designated No. error bit11 The function will not be executed.

Error in number (amount)
of the designated data

bit12 The function will not be executed.

Transmission error bit13 The function will not be executed.

Inverter response error bit14 The function will not be executed.

Address input error bit15 The function will not be executed.

bn-01

ASR integration time

PG dividing ratio

bn-05

bn-14

Cns-No

Cns-Size

Constant data 10

Constant data 2

Constant data 1

User Register

ASR proportional gain

AO optional output gain

Acceleration time 1

Inverter Constants

bn-25

bn-06

Cns-Typ

Dat-Adr

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

2.3 Inverter Functions

2-37

2

Method of Writing to an EEPROM

Procedures for writing constants to an EEPROM (inverter internal constant storage memory)
are shown in below.

Constants written with the system function "ICNS-WR" are once entered in work memory.
In order to actually store these in EEPROM, it is necessary to bring up the WRITE ENTER
command as shown in below.

WRITE ENTER Command

Using the "ICNS-WR" function, by writing the data "0" in the reference number "FFFD" the
WRITE ENTER command is entered for the inverter.

WRITE ENTER command

Writing of a inverter constant
 to work memory

EEPROMDigital
operator

Work memory

Inverter

Shared
memory

WRITE ENTER
command

"ICNS-WR" function

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

2-38

Program Example

An example of a program (if MP930) that writes "200" in the constant "C1-01" is shown
below.

2.3 Inverter Functions

2-39

2

2.3.2 Inverter Constant Read Function (ICNS-RD)

Outline

Reads the inverter constants.

The types and ranges of the inverter constants to be read can be designated.

Applicable inverters

• Connected MP930 via 216
• Connected SVB-01 for MP920 via 216
• Connected 215IF for MP920 and MP2000 series via 215

Format

Symbol: ICNS-RD
Full Name: Inverter-Constant Read
Category: SYSTEM
Icon:

2 Standard System Function

2.3.2 Inverter Constant Read Function (ICNS-RD)

2-40

Parameter

Note: In the case of an inverter response error, the error codes from the
inverter are indicated in bit0 to bit7.
 01H(1): function code error
 02H(2): reference No. error
 Numbers in () are of decimal expressions.

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Execute B-VAL Inverter constant read execution instruction

Abort B-VAL Inverter constant read forced interruption instruction

Dev-Typ I-REG Type of transmission device
215IF = 1 MP930 = 4 SVB-01 = 11

Cir-No I-REG Line No.
215IF = 1, 2 MP930 = 1 SVB-01 = 1 to 16

St-No I-REG Slave station No.
215IF = 1 to 64 MP930 = 1 to 14 SVB-01 = 1 to 14

Ch-No I-REG Transmission buffer channel No.
215IF = 1 to 3 MP930 = 1 SVB-01 = 1 to 8

Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An. 2 = Bn, 3 = Cn,
4 = Dn, 5 = En, 6 = Fn, 7 = Hn, 8 = Ln, 9 = On, 10 = Tn

Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.

Cns-Size I-REG Number of inverter constants (number of data to be read) 1 to 100

Dat-Adr Address in-
put

Register address of read-out destination (address of MW or DW)

Output Busy B-VAL Inverter constants are being read.

Complete B-VAL The reading of inverter constants has been completed.

Error B-VAL Occurrence of error

Status I-REG Inverter constant read execution status

Table 2.16 Configuration of Inverter Constant Read Execution Status (STASTUS)

Name Bit No. Remarks

System reserved bit0 to bit7

Execution sequence error bit8 The function will not be executed.

Transmission parameter
error

bit9 The function will not be executed.

Designated type error bit10 The function will not be executed.

Designated No. error bit11 The function will not be executed.

Error in number (amount)
of the designated data

bit12 The function will not be executed.

Transmission error bit13 The function will not be executed.

Inverter response error bit14 The function will not be executed.

Address input error bit15 The function will not be executed.

2.3 Inverter Functions

2-41

2

Configuration of the Data Readout

bn-01

ASR integration time

PG dividing ratio

bn-05

bn-14

Cns-No

Cns-Size

Constant data 10

Constant data 2

Constant data 1

User Register

ASR proportional gain

AO optional output gain

Acceleration time 1

Inverter Constants

bn-25

bn-06

Cns-Typ

Dat-Adr

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

2 Standard System Function

2.4.1 Counter Function (COUNTER)

2-42

2.4 Other Functions

2.4.1 Counter Function (COUNTER)

Outline

Increments or decrements the current value when the count up/down command (Up-Cmd,
Down-Cmd) changes from OFF to ON.

When the counter reset command (Reset) becomes ON, the current counter value is set to 0.
Also, the current counter value and the set value are compared and the comparison result is
output.

* The current value will not be incremented neither decremented if a
counter error (current value > set value) occurs.

Format

Parameter

Symbol: COUNTER
Full Name: Counter
Category: SYSTEM
Icon:

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input Up-Cmd B-VAL Count up command (OFF→ON) Data area for counter
process
1: Set value
2: Current value
3: Work flag

Down-Cmd B-VAL Count down command (OFF→ON)

Reset B-VAL Counter reset command

Cnt-Data Address in-
put

Head address of data area for counter pro-
cess (MW or DW register)

Output Cnt-Up B-VAL Becomes ON when current counter value = set value.

Cnt-Zero B-VAL Becomes ON when current counter value = 0.

Cnt-Err B-VAL Becomes ON when current counter value > set value.

2.4 Other Functions

2-43

2

The forms of parameter input and output are shown in below.

Input Data
Form

Input Desig-
nation

Description

Bit Input B-VAL Designates the output to be of a bit type. The bit type data
become the input to the function.

Integer
Type Input

I-VAL Designates the input to be of an integer type. The contents
(integer data) of the register with the designated number
become the input to the function.

I-REG Designates the input to be the contents of an integer type regis-
ter. The number of the integer type register is designated when
referencing the function. The contents (integer data) of the
register with the designated number become the input to the
function.

Double-
length Inte-
ger Type
Input

L-VAL Designates the input to be of a double-length integer type.
When reference the function, the contents (double-length inte-
ger data) of the register with the designated number become
the input to the function.

L-REG Designates the input to be the contents of a double-length inte-
ger type register. When reference the function, the contents
(double-length integer data) of the register with the designated
number become the input to the function.

Real Num-
ber Type
Input

F-VAL Designates the input to be of a real number type. The contents
(real number data) of the register with the designated number
become the input to the function.

F-REG Designates the input to be the contents of a real number type
register.
The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become the
input to the function.

Address
Input

− Hands over the address of the designated register (an arbitrary
integer register) to the function. Only 1 input is allowed in the
case of a user function.

2 Standard System Function

2.4.2 First-in First-out Function (FINFOUT)

2-44

2.4.2 First-in First-out Function (FINFOUT)

Outline

This is a first-in first-out type block data transfer function. The FIFO data table is composed
of a 4-word header part and a data buffer. 3 words of the header part (data size, input size,
output size) must be set before this function is referenced.

• When the data input command (In-Cmd) becomes ON, the designated number of data is
sequentially stored from the designated input data area to the data area of the FIFO
table.

• When the data output command (Out-Cmd) becomes ON, the designated number of data
are transferred from the head of the data area of the FIFO table to the designated output
data area.

• When the reset command (Reset) becomes ON, the number (amount) of data stored is set
to zero and the FIFO table empty output (Tbl-Emp) becomes ON.

• If "size of available space for data (empty size) < input size" or if "data size < output
size," the FIFO table error (Tbl-Err) becomes ON.

Format

Symbol: FINFOUT
Full Name: First-in First-out
Category: SYSTEM
Icon:

2.4 Other Functions

2-45

2

Parameter

I/O
Definition

Parameter
Name

I/O
Designation

Setting

Input In-Cmd B-VAL Data input command (IN-CMD) FIFO Table Configu-
ration
0: data size
1: input size
2: output size
3: number of data

stored
4: data

Out-Cmd B-VAL Data output command (OUT-CMD)

Reset B-VAL Reset command

FIFO-Tbl Address in-
put

Head address of FIFO table (MW or DW
address)

In-Data Address in-
put

Head address of input data (MW or DW
address)

Out-Data Address in-
put

Head address of output data (MW or DW
address)

Output Tbl-Full B-VAL FIFO table is full.

Tbl-Emp B-VAL FIFO table is empty.

Tbl-Err B-VAL FIFO table error.

A-1

A
Appendix A

Expression

It is necessary to describe the conditional expression and the operational
expression in IF, WHILE, and the EXPRESSION instruction in the ladder
instruction. Those expressions can be described by using "Expression".
This appendix describes the use rule of the Expression.

A.1 Expression -A-2
A.1.1 Operator - A-2

A.1.2 Operand - A-4

A.1.3 Instructions Available in EXPRESSION Instruction - - - - - - - - - - - - - - A-5

A.2 Recognizable Expression -A-6
A.2.1 Arithmetic Operator - A-6

A.2.2 Comparison Operator - A-6

A.2.3 Logic Operator - A-6

A.2.4 Substitution Operator - A-7

A.2.5 Function - A-7

A.2.6 Others - A-7

A.3 Application to Ladder Program -A-9
A.3.1 Conditional Expression of IF Instruction - A-9

A.3.2 Conditional Expression of WHILE Instruction - - - - - - - - - - - - - - - - - - A-9

A.3.3 Operational Expression of EXPRESSION Instruction - - - - - - - - - - - A-10

Appendix A Expression

A.1.1 Operator

A-2

A.1 Expression
The Expression is composed of the operator, the operand (constant and variable), and functions.
The end of one Expression is shown by the semicolon “;”. The expressions can be united by
using parentheses “(”,“)”.

Each component of the Expression is explained here.

A.1.1 Operator

Usable Operator

There is the following kinds of usable operators.

Arithmetic Operator

+ Addition

− Subtraction

∗ Multiplication

/ Division

% Surplus

& AND of each bit

| OR of each bit

Logic Operator (Only for the Bit Type)

&& Logical product

|| Logical add

! Logical denial

Comparison Operator

= = Equal to a right value

!= Not equal to a right value

> Greater than a right value

>= Greater than or equal to a right value

< Less than a right value

<= Less than or equal to a right value

A.1 Expression

A-3

A

Substitution Operator

= A right value is substituted for a left value

Reserved Word

true/false Value to logical expression

Priority Level and Uniting Rule

There is a priority level in the operator, and the uniting rule is applied.
The priority level and the uniting rule (order from which the operand is evaluated) of the
operator are settled in the next table. The table is sequentially shown from the operator with
a high priority level. The operator of the same line has the same priority level, and is evalu-
ated according to the uniting rule.

When using IF, WHILE and EXPRESSION instruction by hexadecimal, describe 0x . Descrip-
tion of H is error.

When using the others instruction, describe H .

Operator Explanation Uniting Rule

[] ()
- !
∗ / %

+ -
< > <= >=
== !=
&
|
&&
| |

expression
monadic
multiplication, division,
surplus
addition, subtraction
relation
relation (value)
AND of each bit
OR of each bit
logical AND
logical OR

right from left
left from right
right from left

right from left
right from left
right from left
right from left
right from left
right from left
right from left

INFO

Appendix A Expression

A.1.2 Operand

A-4

A.1.2 Operand

Constant

The constant is either the integer or the real number.

Integer

The integer can use the value within the range which can be expressed by 32 bit integer
value. (-2147483648 to 2147483647)

Real number

The real number can use the value within the range which can be expressed by 32 bit float
type. ± (1.175494351e-38F to 3.402823466e+38F)

Variable

In Expression, it is possible to describe by associating the arbitrary variable name permitted
by C language with controller’s register.
Controller’s bit type register is handled as bool type though the bool type variable does not
exist in C language. The bool type variable takes only either of value of true or false. It can
be used only for the logical expression.

The following limitations are installed in the variable name which can be used.

• It is started from characters other than the numerical value.
• The character which can be used is alphabet and underscore “_”, and figures among

ASCII characters.
• The same variable name as the following function names cannot be used.

Abc OK

get_input0 OK

1ab NG

Sin NG

EXAMPLE

A.1 Expression

A-5

A

A.1.3 Instructions Available in EXPRESSION Instruction

Instruction Contents Example Reserved
Word

+ Addition MW00001 = MW00002 + MW00003

– Subtraction MW00001 = MW00002 – MW00003

* Multiplication MW00001 = MW00002 * MW00003

/ Division MW00001 = MW00002 / MW00003

% Surplus MW00001 = MW00002 % MW00003

& AND of each bit MW00001 = MW00002 & 4096

| OR of each bit MW00001 = MW00002 | 4096

&& Logical product MB000010 = MB000011 && MB000012

|| Logical add MB000010 = MB000011 || MB000012

! Logical denial MB000010 = !MB000011

== Equal to a right value MB000010 = MB000011 == true

>= Greater than or equal to a right
value

MB000010 = MW00020 >= MW00021

> Greater than a right value MB000010 = MW00020 > MW00021

< Less than a right value MB000010 = MW00020 < MW00021

<= Less than or equal to a right value MB000010 = MW00020 <= MW00021

= A right value is substituted
for a left value

MW00001 = MW00002

true true MB000010 = MB000011 == true

false false MB000010 = MB000011 == false

sin() SIN MW00001 = sin(MW00002)

cos() COS MF00002 = cos(MF00004)

atan() ARCTAN MW00001 = atan(MF00002)

tan() TAN MW00001 = tan(MW00002)

() Parentheses MW00001 = (MW00002 + MW00003) / MW00004

asin() ARCSIN MW00001 = asin(MW00002)

acos() ARCCOS MW00001 = acos(MW00002)

sqrt() AQRT MW00001 = sqrt(MW00002)

abs() ABS MW00001 = abs(MW00002)

exp() EXP MW00001 = exp(MW00002)

log() LOG Natural logarithm MW00001 = log(MW00002)

log10() LOG10 Common logarithm MW00001 = log10(MW00002)

Appendix A Expression

A.2.1 Arithmetic Operator

A-6

A.2 Recognizable Expression
The Expression is described by combining the operand and the operator. There are some restric-
tions in the description method. The restriction is explained as follows.

A.2.1 Arithmetic Operator
This operator can be used for the operand of the integer type and the real type.
The monadic minus can be used only once. The bit operation can use only the integer type.
The arithmetic operation cannot be used for the operand of the bit type.
Even if the calculation value exceeds the range of the register, the type conversion is not
automatically done. Therefore, the user should allocate an appropriate type in the variable.

MW00001 = MW00002 + MW00003 OK

MW00001 = MW00002 / 345 OK

MF00002 = (MW00004 + MF00002) / (ML00018 + MW00008)OK

MW00001 = MW00002 & 4096 OK

MB000010 = MB000011 − MB000012 NG

MW00001 = MB000011 ∗ MW00001 NG

A.2.2 Comparison Operator
This operator can be used for the operand of the integer type and the real type.
The register of the bit type should come left. In the case to do the comparison which uses “=
= ” or “ != ” for the operand of the integer bit type, the comparison object should be an
expression of true/false.

MB000010 = MW00002 != MW00003 OK

MB000010 = MF00002 < 99.99 OK

MB000010 = MW00002 >= MW00003 OK

MB000010 = MB000011 = = true OK

MB000010 = MB000011 != 0 NG

MB000010 = MB000011 = = 1 NG

A.2.3 Logic Operator
This operator can be used only for the operand of the bit type.

MB000010 = MB000011 && MB000012 OK

MB000010 = !MB000011 OK

MB000010 = (MW000020 >= 50) && MB000011 OK

MB000010 = MW00001 || MW00002 NG

MB000010 = !MW00001 NG

EXAMPLE

EXAMPLE

EXAMPLE

A.2 Recognizable Expression

A-7

A

A.2.4 Substitution Operator
If it is a difference of the real type or the integer type even if a right, left type is different,
substitution is possible. However, the rounding error is caused when substituting from the
real type to the integer type.
Substitution for the bit type register can do only a logical value (bit type register or true/
false). In the case to substitute the values other than a logical value for the bit type register,
the values are compared with 0 (Or, 0.0), and the truth is converted into the substituted code.
The substitution of the bit type excluding the bit type register is assumed to be impossible.

MW00001 = MW00002 OK

ML00003 = MW00002 OK

MF00006 = MW00002 ∗ 343 OK

MB000010 = MB000011 OK

MW00001 = MF00012 OK

MB000102 = MW00010 OK

MB000102 = true OK

MW00010 = MB000101 NG

MW00010 = true NG

A.2.5 Function
The argument and the return value to the function depend on the specification of controller’s
function. That is, the output value is returned by the integer when the register of the integer
and the integer type is input to sin (), cos (), and atan (), and when the register of the real
number and the real type is input, the output value is returned by the real number. When the
register of the integer type is input because the argument of tan () is a real number, is treated
as a real type.

MW00001 = sin (MW00002) OK

MF00001 = cos (MF00002 ∗ 3.14) OK

MW00001 = − atan(MF00002) OK

A.2.6 Others

Parentheses

Two or more expressions can be united by using “(” and “)”.

MW00001 = − ((MW00002 − MW00003) / (MW00004 + MW00005)) OK

EXAMPLE

EXAMPLE

EXAMPLE

Appendix A Expression

A.2.6 Others

A-8

Array

The array can be specified by using “[” and “]” B as well as C language.

MW00001 = MW00002 [100] OK

MW00001 = MW00002 [MW00100] OK

MB00001 = MB000020 [0] OK

EXAMPLE

A.3 Application to Ladder Program

A-9

A

A.3 Application to Ladder Program
The use of Expression in the ladder program is divided into three kinds of the following.

• Conditional expression of IF instruction

• Conditional expression of WHILE instruction

• Operational expression of EXPRESSION instruction

The use example is explained as follows.

A.3.1 Conditional Expression of IF Instruction
The Expression is described in the conditional expression description area of the IF instruc-
tion and the ELSE instruction. However, only Expression which outputs the result of the
bool type can be described. Therefore, the description of the Expression which includes the
substitution operator is not recognized.

MB000001 = = true OK

MW00002 < 100 OK

MW00003 != MW00004 OK

MB000005 = false NG

MW00007 = MW00010 NG

A.3.2 Conditional Expression of WHILE Instruction
The Expression is described in the conditional expression description area of the WHILE
instruction. However, only Expression which outputs the result of the bool type can be
described. Therefore, the description of the Expression which includes the substitution oper-
ator is not recognized.

Refer to the example of A.3.1 "Conditional Expression of IF Instruction".

EXAMPLE

EXAMPLE

Appendix A Expression

A.3.3 Operational Expression of EXPRESSION Instruction

A-10

A.3.3 Operational Expression of EXPRESSION Instruction
The Expression is described in the conditional expression description area of the EXPRES-
SION instruction. The operational expression can be described according to the description
rule of Expression. However, Expression which outputs the result of the bool type cannot be
described.

MB000010 = MB000001 && MB000005; OK

MB000011 = MB000010 = = true; OK

MW00000 = (MW00001 + MW00005) / MW00004; OK

MW00003 = MW00000/50; OK

MW00002 = MW00001 & 300; OK

MW00010 = MW00003 − MW00002; OK

MB000001 = = true; NG

MW00006 >= 100; NG

MW00007 != MW00009; NG

EXAMPLE

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

Date of Publication Rev.
No.

WEB
Rev.
No.

Section Revised Content

July 2013 2 1.6.4 Revision: Description of Outline of MOVE WORD Instruction (MOVW)
Back cover Revision: Address

January 2013 1 1.7.4, 1.7.5, 1.7.6 Revision: Information on P, D, I, and Integration adjustment gains of PI, PD and PID
CONTROL instructions

Back cover Revision: Address
January 2012 0 − SIEZ-C887-13.1B<4>-6, available on the web.

1.7.11 Revision: Description of integer type operation of program example
Back cover Revision: Address

October 2011 6 2.1.2 Revision: Information on IN/OUT of the parameter (PARAM02)
July 2011 5 1.6.9 Addition: Notes for binary search instruction (BSRCH)
March 2011 4 1.4.10 Revision: Outline

1.7.11 Revision: Units of acceleration/deceleration/quick stop time in real type LAU instruction
parameters

1.7.11, 1.7.12 Revision: Setting of parameter
December 2010 3 Front cover Revision: Format

2.1.1, 2.1.2 Revision: Called station # → Called station number,
Called CPU # → Called CPU number,
Description of called CPU number (PARAM07)

Back cover Revision: Address, format
March 2010 2 1.1.3, 1.1.4, 1.1.5,

1.1.6
Addition: Description of error of the count

1.7.4, 1.7.5, 1.7.6 Revision: Information on P, I and D gains of PI, PD and PID CONTROL instructions
1.7.12 Revision: S-curve acceleration/deceleration time
Chapter2 Partly revised
2.1.1 Addition: Type of transmission device in Dev-Type: 218-02 = 16
A.1.1 Addition: INFO
A.1.3 Revision: Instructions Available in EXPRESSION instruction
Back cover Revision: Address

January 2008 1 1.2.22, 1.2.23 Revision: Program example
1.4.8, 1.4.9 Addition: Information on the nesting of IF instructions
A.2.5 Revision: arctan() → atan()
Back cover Revision: Address

August 2005 0 Back cover Revision: Address
March 2005 − All chapters Addition: MP2000-series

Revision: CP-717 to MPE720
Windows 95 to Windows 95/98/2000/NT

Back cover Revision: Address
July 2003 − Back cover Revision: Address

November 2002 − Back cover Revision: Address

December 2001 − − − First edition

MANUAL NO. SIEZ-C887-13.1B
Published in Japan January 2008 01-12

Date of
publication

Date of original
publication

Revision number
WEB revision number

4 -1

5

4

3

2

�

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama 358-8555, Japan
Phone 81-4-2962-5151 Fax 81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310
http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brasil
Phone 55-11-3585-1100 Fax 55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH
Hauptstraβe 185, Eschborn 65760, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398
http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD.
12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave.,
Dong Cheng District, Beijing 100738, China
Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture
thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure
to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2001-2013 YASKAWA ELECTRIC CORPORATION. All rights reserved.

13-6-9
Published in Japan July 2013 01-12

MANUAL NO. SIEZ-C887-13.1C

5 -2

YASKAWA ELECTRIC CORPORATION

New Ladder Editor
Machine Controller MP900/MP2000 Series

PROGRAMMING MANUAL

	Front Cover

	About This Manual
	About The Software
	Visual Aids
	Related Manuals
	CONTENTS
	1
Ladder Program Instructions
	1.1 Relay Circuit Instructions
	1.1.1 N.O. Contact Instruction (NOC)
	1.1.2 N.C. Contact Instruction (NCC)
	1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])
	1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])
	1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])
	1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])
	1.1.7 RISING PULSE Instruction (ON-PLS)
	1.1.8 FALLING PULSE Instruction (OFF-PLS)
	1.1.9 COIL Instruction (COIL)
	1.1.10 SET COIL Instruction (S-COIL)
	1.1.11 RESET COIL Instruction (R-COIL)

	1.2 Numeric Operation Instructions
	1.2.1 STORE Instruction (STORE)
	1.2.2 ADDITION Instruction (ADD)
	1.2.3 EXTENDED ADDITION Instruction (ADDX)
	1.2.4 SUBTRACTION Instruction (SUB)
	1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)
	1.2.6 MULTIPLICATION Instruction (MUL)
	1.2.7 DIVISION Instruction (DIV)
	1.2.8 MOD Instruction (MOD)
	1.2.9 REM Instruction (REM)
	1.2.10 INC Instruction (INC)
	1.2.11 DEC Instruction (DEC)
	1.2.12 ADD TIME Instruction (TMADD)
	1.2.13 SUBTRACT TIME Instruction (TMSUB)
	1.2.14 SPEND TIME Instruction (SPEND)
	1.2.15 SIGN INVERSION Instruction (INV)
	1.2.16 1’S COMPLEMENT Instruction (COM)
	1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)
	1.2.18 BINARY CONVERSION Instruction (BIN)
	1.2.19 BCD CONVERSION Instruction (BCD)
	1.2.20 PARITY CONVERSION Instruction (PARITY)
	1.2.21 ASCII CONVERSION Instruction (ASCII)
	1.2.22 ASCII CONVERSION 2 Instruction (BINASC)
	1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

	1.3 Logical Operation/Comparison Instructions
	1.3.1 AND Instruction (AND)
	1.3.2 OR Instruction (OR)
	1.3.3 XOR Instruction (XOR)
	1.3.4 Comparison Instruction (<)
	1.3.5 Comparison Instruction (<=)
	1.3.6 Comparison Instruction (=)
	1.3.7 Comparison Instruction (!=)
	1.3.8 Comparison Instruction (>=)
	1.3.9 Comparison Instruction (>)
	1.3.10 RANGE CHECK Instruction (RCHK)

	1.4 Program Control Instructions
	1.4.1 SUB-DRAWING CALL Instruction (SEE)
	1.4.2 MOTION PROGRAM CALL Instruction (MSEE)
	1.4.3 FUNCTION CALL Instruction (FUNC)
	1.4.4 DIRECT INPUT STRING Instruction (INS)
	1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)
	1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)
	1.4.7 WHILE Instruction (WHILE, END_WHILE)
	1.4.8 IF Instruction (IF, END_IF)
	1.4.9 IF Instruction (IF, ELSE, END_IF)
	1.4.10 FOR Instruction (FOR, END_FOR)
	1.4.11 EXPRESSION Instruction (EXPRESSION)

	1.5 Basic Function Instructions
	1.5.1 SQUARE ROOT Instruction (SQRT)
	1.5.2 SINE Instruction (SIN)
	1.5.3 COSINE Instruction (COS)
	1.5.4 TANGENT Instruction (TAN)
	1.5.5 ARC SINE Instruction (ASIN)
	1.5.6 ARC COSINE Instruction (ACOS)
	1.5.7 ARC TANGENT Instruction (ATAN)
	1.5.8 EXPONENT Instruction (EXP)
	1.5.9 NATURAL LOGARITHM Instruction (LN)
	1.5.10 COMMON LOGARITHM Instruction (LOG)

	1.6 Data Manipulation Instructions
	1.6.1 BIT ROTATION LEFT Instruction (ROTL)
	1.6.2 BIT ROTATION RIGHT Instruction (ROTR)
	1.6.3 MOVE BITS Instruction (MOVB)
	1.6.4 MOVE WORD Instruction (MOVW)
	1.6.5 EXCHANGE Instruction (XCHG)
	1.6.6 SET WORDS Instruction (SETW)
	1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)
	1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)
	1.6.9 BINARY SEARCH Instruction (BSRCH)
	1.6.10 SORT Instruction (SORT)
	1.6.11 BIT SHIFT LEFT Instruction (SHFTL)
	1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)
	1.6.13 COPY WORD Instruction (COPYW)
	1.6.14 BYTE SWAP Instruction (BSWAP)

	1.7 DDC Instructions
	1.7.1 DEAD ZONE A Instruction (DZA)
	1.7.2 DEAD ZONE B Instruction (DZB)
	1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)
	1.7.4 PI CONTROL Instruction (PI)
	1.7.5 PD CONTROL Instruction (PD)
	1.7.6 PID CONTROL Instruction (PID)
	1.7.7 FIRST-ORDER LAG Instruction (LAG)
	1.7.8 PHASE LEAD/LAG Instruction (LLAG)
	1.7.9 FUNCTION GENERATOR Instruction (FGN)
	1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)
	1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)
	1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)
	1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

	1.8 Table Data Manipulation Instructions
	1.8.1 BLOCK READ Instruction (TBLBR)
	1.8.2 BLOCK WRITE Instruction (TBLBW)
	1.8.3 ROW SEARCH Instruction (TBLSRL)
	1.8.4 COLUMN SEARCH Instruction (TBLSRC)
	1.8.5 BLOCK CLEAR Instruction (TBLCL)
	1.8.6 BLOCK MOVE Instruction (TBLMV)
	1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)
	1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)
	1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

	2 Standard System Function

	2.1 Message Functions
	2.1.1 Send Message Function (MSG-SND)
	2.1.2 Receive Message Function (MSG-RCV)

	2.2 Trace Functions
	2.2.1 Trace Function (TRACE)
	2.2.2 Data Trace Read Function (DTRC-RD)
	2.2.3 Failure Trace Read Function (FTRC-RD)
	2.2.4 Inverter Trace Read Function (ITRC-RD)

	2.3 Inverter Functions
	2.3.1 Inverter Constant Write Function (ICNS-WR)
	2.3.2 Inverter Constant Read Function (ICNS-RD)

	2.4 Other Functions
	2.4.1 Counter Function (COUNTER)
	2.4.2 First-in First-out Function (FINFOUT)

	Appendix A Expression

	A.1 Expression
	A.1.1 Operator
	A.1.2 Operand
	A.1.3 Instructions Available in EXPRESSION Instruction

	A.2 Recognizable Expression
	A.2.1 Arithmetic Operator
	A.2.2 Comparison Operator
	A.2.3 Logic Operator
	A.2.4 Substitution Operator
	A.2.5 Function
	A.2.6 Others

	A.3 Application to Ladder Program
	A.3.1 Conditional Expression of IF Instruction
	A.3.2 Conditional Expression of WHILE Instruction
	A.3.3 Operational Expression of EXPRESSION Instruction

	Revision History
	Back Cover

