

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

PLCs and Robots
The Quest for a Single Controller

Edward Nicolson, Senior Director, Motion Product Development
Yaskawa America, Inc.

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

1 Abstract:
As automation applications continue to grow, two distinct areas are starting to merge into common
deployments: robotics and motion. Robotics has traditionally been a path-dependent event-based
application. In contrast, motion control has more typically been a scan-based velocity or positioning
application, with the exception of machine tools.

The contrast between the two is not as great as in the user interface where robotics tends to be very
teach pendant centric and motion control uses programming methods such as structured text, ladder
and others. As these technologies merge together, they present many technical challenges. This paper
analyzes the two architectures and presents some possibilities for combined solutions.

2 Motivation:
This article is whimsically sub-titled “The Quest for a Single Controller”, the implication being that a
single controller could be as achievable as finding the Holy Grail. As we will review, there are many
compelling reasons why a single controller should be used. However, there are opposing factors that can
make this goal difficult to achieve as a successful product.

Consider the problem faced by an end user in an automated food packaging plant where a packaging
machine and a robot are to be installed to complete a packaging and palletizing application. The plant
manager desires to get the machines integrated as quickly and efficiently as possible to start production.

The packaging machine contains motors, actuators and IO and is run by a PLC controller with integrated
motion capabilities. The robot arrives with a handheld teach pendant for programming and operation.
In order for these two pieces of automation equipment to be placed into production, the plant employs
application engineers to complete the PLC programming. A separate applications engineer completes
the robot programming. As the task of integrating the equipment proceeds, it may get blocked when
one or more of the resources are unavailable to continue work on one system. The plant is also faced
with the additional cost and support for two different control platforms. As production starts, the plant
may also find that the system fails to meet rate due to the communication delays between the two
controller systems.

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

Given issues of multiple applications groups, increased cost, and sub-par performance, the plant
manager asks the question, “With all the high speed microprocessors available on the market today,
why can’t this all just be integrated in one controller with a single applications environment?”

This question can be analyzed by contrasting the internals of motion and robot controllers from the
viewpoint of their hardware architecture, software architecture, safety systems, and application
environment.

3 Hardware Architecture
Table 1 compares the hardware architecture of a motion controller and a robot controller. As the table
shows, motion controllers support a rich set of options for motors, I/O and drives. A deterministic
network is used to integrate these components into a stand-alone controller box. In contrast, a robot
controller typically uses a single type of actuation, has a limited number of sensors, and includes a cost-
optimized multi-axis drive package that contains power conversion capacity tailored to the needs of the
robot. The robot controller typically will use cards, instead of stand-alone boxes, in the cabinet to
reduce cost.

PLC + Motion Robot

Motor
Servo motor, stepper motor, pneumatic
actuator, VFD, multi vendor motor and
drive.

Servo motor

I/O Many I/O points (100 or more) Camera and a few IO points.

Drive
Individual drive units with internal power
conversion

Integrated drive units with power
conversion optimized for the robot
payload and motion.

Servo
Network

Open network for combining multiple
vendor solutions.

Usually an internal network or backplane

Motion
Controller

Stand-alone PLC box Controller card in a backplane

Safety Safety PLC box Safety module card in backplane

User
Interface

HMI panel
Fixed location

Teach pendant
Handheld

Table 1: Comparison of hardware architectures

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

Interestingly, the cost optimization attempted by the use of customized drive packages compared to
individual drive units of motion controllers can be thwarted by the large difference in production
volume of the two units. Robot controllers are typically manufactured in a smaller volume than
individual drives, allowing the individual drive solution to be cost competitive, or less expensive, than
the customized multi-axis drive solution.

One other point of difference is in the HMI. Motion controllers typically have a machine mounted touch
panel, whereas robots have a hand-held teach pendant.

Based on this comparison, outside of the safety hardware, it is quite feasible to create a robot controller
from the components of a PLC+Motion controller, especially if a vision system is added and a portable
HMI touch panel is used.

4 Software Architecture
A comparison of the software architecture of a motion and robot controller is shown in Table 2.

 PLC + Motion Robot

Drive and Servo
Network

Support multiple control modes, torque,
velocity, position, interpolation

Mainly interpolation with feed
forward

I/O Field bus drivers for remote I/O, local I/O
drivers synchronized to motion scan.

Built-in I/O drivers, vision may be
integrated into motion software.

Motion Controller Single axis point to point, cam/gear
master/slave relationships, virtual axes,
torque, velocity, position, actual path can
be critical.

Interpolated position with path
blending, kinematics, handling of
singularities, focus on end point in
position.

Logic Integrate wide array of I/O and logic
calculations into a continuous scan

Trigger motion off of I/O events or
I/O off of motion.

Communications Support MES communications Support communications to cell
controller. May be remotely
controlled by PLC.

Safety Safety PLC is programmed separately. Safety Module is included in the
controller.

User Interface HMI is programmed separately as part of
the application

Teach pendant is used as the
programming tool

Table 2: Comparison of software architectures

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

A key difference is that a motion controller must support a rich set of control options, from control
modes to master and slave axis relationships. In contrast, a robot controller typically uses a single
control mode (interpolation) to the drive. The complexity in a robot controller comes from the multi-
axis kinematics calculations and the trajectory-blending calculations. Robot controllers often focus more
on end point positioning and less on the accuracy of the path followed, whereas the actual path is often
critical for motion controllers.

With the addition of kinematics, path blending and singularity detection to a motion controller, it is
conceivable that from a software architecture standpoint it is also possible to include the required
components of a robot controller inside a motion controller.

5 Safety Architecture
A comparison of the safety architecture of a motion and robot controller is shown in Table 3.

 PLC + Motion Robot

Motor /
Encoder

May need safety encoder May need safety encoder

Drive A safety option is added on each axis. The
option monitors the drive and shuts it
down if safety parameters are exceeded.

A safety module monitors all axes
together.

Servo
Network

Black channel safe communications Encoder lines may feed directly to the
safety module.

Motion
Controller

Responsible for controlling the machine
using inputs from safety system.
Safety PLC monitors the safety inputs.

Responsible for keeping the robot inside
a working envelope.

Safety
monitoring

Each drive monitors the safety conditions
on a per axis basis.

The safety module tracks the worldspace
position of the robot, including all its
links. Must implement kinematics.

Certification Machine safety
Risk assessment : ISO 13849
Electrical components: EN 61508

Robot safety
ISO 10218-1
Application specific standard
Implementations are clearly defined.

Table 3: Safety architecture comparison

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

Safety certification is one area that provides a clear challenge for the integration of a motion and robot
controller. The robot safety standard, ISO 10218-1, provides clear instructions for the implementation
requirements of a robot controller in order to meet certification standards based on risk assessment
done on robots. However, the motion controller application must first go through a risk assessment
governed by the machine safety standards, such as ISO 13849. After the risk assessment is done, the
required safety components and logic can then be determined.

Another key difference is that the safety module for a robot controller must include a kinematic model
for the robot and must receive the encoder positions for all the axes. With this information, the robot
safety module can determine when the robot is within its safe area. For a motion controller, safety is
implemented on a per-axis basis with optional add-on advanced safety modules to each drive.

These differences present two challenges to implementing a robot safety system based on a motion
controller. First, the Safety PLC must be capable of receiving all the axis positions and must have a
complete kinematic model that is guaranteed to match the physical system. Second, for the
manufacturer of the controller, a method for creating a safety sandbox for the robot control must be
found so that the non-robot part of the motion application does not cause a breakdown in the safety
system.

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

6 Application Environment
A comparison of the application environment for motion and robot controllers is shown in Table 4.

 PLC + Motion Robot

Drive Drive tuning software Hidden from applications engineer

Servo
Network

Applications engineer must wire and
configure the network.

Hidden from applications engineer. May
allow an external axis.

I/O Map remote and local I/O by means of
variables or tags.

Vision system programming. I/O typically in a
fixed configuration.

Motion
Controller

Combine function blocks to initiate,
modify and terminate motion.

Call routines to start and wait for motion to
complete.

Languages Ladder, Structured Text, Function
block diagram, Sequential function
chart

Procedural textual language, point and path
teaching, I/O events

Debugging Live display of program variables,
download of updates to live
production machine.

Step through the robot program.

Error
Handling

Set error code, stop machine, manual
recovery

Catch error conditions and perform
automatic handling. Have to recover from
the appropriate point.

User
Interface

HMI programming software (N/A)

Table 4: Application environment comparison

What is immediately apparent is that the skill set required for motion controller applications engineers
is significantly more comprehensive than that for a robot applications engineer. Motion application
engineers must be able to tune servo drives, configure and connect servo networks, create an
application involving multiple languages in the PLC environment through the combination of function
blocks, and must be able to create an HMI application. In contrast, a robot applications engineer will
typically teach locations for the robot to pass through and use those locations in a script language to

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

cause the robot to sequence through the taught positions. Complexity in the robot application comes
through the addition of a vision system that requires dynamic adjustment of the end point targets.

The most important difference between the two environments is in the scan-based nature of a PLC and
motion controller compared to the event-based nature of robot programming. This will be examined in
more detail in the following sections.

6.1 Application Languages
In , a typical state machine implemented in the
IEC 61131-3 Sequential Function Chart (SFC)
language is presented. In this language,
individual states, transitions between states,
and actions taken in each state are graphically
represented. When debugging in this
environment, it is possible to see the active
states and follow transitions between states. It
is conceivable to implement a robot pick and
place sequence in such a state diagram by
representing each stage in the sequence as a
step and the transitions between the states as
the IO events and other triggers.

Comparatively, the pick and place sequence
in a typical robot text language is shown in
Figure 2. It is immediately apparent that
the robot text language is a much simpler
way of expressing the intended sequence of
operations. It is quicker for an application
engineer to put together this text sequence
than it is to implement the robot sequence
in the SFC, or any other IEC 61131-3
language. The key reason is the difference
between event and scan-based
architectures, which will be analyzed in the
next section.

Figure 1: SFC example code

Figure 2: Example robot code

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

Task Scheduling in Motion and Robot Controllers
Figure 3 shows the typical task scheduling in a PLC motion controller. The motion application engineer
will assign portions of the application code to each of the fast, medium, and slow tasks. Actual motion
processing is handled by the motion task, running at the highest priority and frequency. The challenge
for the application engineer is that at no time can the code assigned to each task exceed the time period
for the task, otherwise a watchdog will occur and the PLC will stop execution. This can be challenging
when the code execution for the task varies greatly depending on the amount of code to be executed
during a particular scan. If a programmer has not been exposed to the constraints of hard, real-time
application programming, the constraints that watchdogs impose on applications can be difficult to
overcome.

In contrast, a robot script program can be considered to run like the background task in the diagram. A
background task runs at lower priority, and is interrupted by, the motion task. The script engine in the
robot controller will execute the script until it is blocked by an event, such as waiting for a motion to
finish or an I/O to trigger.

As has been discussed, it is possible to implement the robot
application in the scan-based environment using a PLC
language such as SFC, but consider how that code will
actually execute on the controller. In the scan-based
implementation, the code enters the move state. During
each scan, the move completion status is checked. When
the move is detected to be complete, then execution
continues to the next state. This is the essence of a polling
architecture.

In contrast, the central processing unit load in the case of an
event-based script language is much lower. In this case, the
script task will block (i.e. wait) for a system event such as a
semaphore until the time that the system determines it is
time for execution to proceed. This relieves the central
processing unit from the task switching and repeated code
execution required in a scan-based environment.

Figure 3: Task Scheduling

WP.MTN.08, Copyright Yaskawa America, Inc. 5/25/2016, All Rights Reserved

7 Analysis
It is time to review the question: “Could a Robot controller be implemented as a special single purpose
use of a PLC+Motion controller?” The answer can be “Yes” if you conclude that the PLC and motion
controller appears to have all the hardware, I/O and other required components, and it is technically
feasible to put kinematics and other requirements in the controller. On the other hand, the answer is
“No” if you conclude that a PLC and motion controller lacks the programming languages, vision
integration, and trajectory generation capabilities required for a robot controller.

To some degree, the question is not what is technically feasible, but what is the best application user
experience. Many software engineers have been steeped in procedural programming skills from the
computer science education. Polling is often taught to be the wrong way to implement applications and
is shunned. Programmers with this background find it awkward to then start programming a procedural
robot sequence in an environment that requires polling. Although text languages, like structure text
(ST), exist in the IEC 61131-3 environment, this text is scanned so it is confusing for procedural
programmers to realize that they must keep track of the state for each scan and switch the code to be
executed based on the current state.

In many ways, it would be much easier and more natural to add a robot scripting language to the PLC
and motion controller that executes in an event based fashion. Ideally, this would be a standardized
language, not one that is proprietary to a particular vendor. With this addition it would be possible to
program the motion and robot code side by side. The motion applications engineer would then need to
be taught one more language environment and be able to complete the entire combined controller
application. Of course there are some technical issues to resolve such as:

• How can this be debugged in a step by step fashion?
• How to tie events into scanned code?
• How to train application engineers to think both in scan and event-based ways?
• Can error handling be coordinated between the two environments?

The other looming issue that has been discussed is safety. To resolve the issue of safety certification
would require deeper analysis of the safety standards. In the worst case, a complete risk assessment of
the combined motion and robot system would need to be conducted. Unfortunately, that might be cost
prohibitive to do on a per-site basis.

This paper has reviewed the possibility of creating a combined motion and robot controller. Creating
such a controller is entirely feasible, however the best application developer experience will be achieved
if a standardized event based scripting language can be added to the PLC and motion controller.

	1 Abstract:
	2 Motivation:
	3 Hardware Architecture
	4 Software Architecture
	5 Safety Architecture
	6 Application Environment
	6.1 Application Languages

	7 Analysis

